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Abstract: Accurate and fast identification of vibration signals detected based on the phase-sensitive
optical time-domain reflectometer (Φ-OTDR) is crucial in reducing the false-alarm rate of the long-
distance distributed vibration warning system. This study proposes a computer vision-based
Φ-OTDR multi-vibration events detection method in real-time, which can effectively detect perimeter
intrusion events and reduce personnel patrol costs. Pulse accumulation, pulse cancellers, median
filter, and pseudo-color processing are employed for vibration signal feature enhancement to generate
vibration spatio-temporal images and form a customized dataset. This dataset is used to train and
evaluate an improved YOLO-A30 based on the YOLO target detection meta-architecture to improve
system performance. Experiments show that using this method to process 8069 vibration data images
generated from 5 abnormal vibration activities for two types of fiber optic laying scenarios, buried
underground or hung on razor barbed wire at the perimeter of high-speed rail, the system mAP@.5
is 99.5%, 555 frames per second (FPS), and can detect a theoretical maximum distance of 135.1 km per
second. It can quickly and effectively identify abnormal vibration activities, reduce the false-alarm
rate of the system for long-distance multi-vibration along high-speed rail lines, and significantly
reduce the computational cost while maintaining accuracy.

Keywords: phase-sensitive optical time-domain reflectometer; computer vision; target detection;
real-time processing

1. Introduction

Phase-sensitive optical time-domain reflectometer (Φ-OTDR) is a simple and effective
method to measure single-mode fiber vibration [1,2], which has the advantages of dis-
tributed detection capability up to 100 km at a single station [3], as well as high resolution,
anti-electromagnetic interference, corrosion resistance, low energy loss, flame and explo-
sion resistance [4], and can be combined with Raman pumping amplification to achieve
long-range distributed abnormal vibration location inspection [5], which makes Φ-OTDR
extensively employed in perimeter security and oil pipeline monitoring.

However, the long-range detection and high sensitivity of Φ-OTDR will inevitably
result in high nuisance-alarm rates (NARs). In the case of vibration detection along the
fence and the ground near the fence of the high-speed railway (HSR) at this study, noise
mainly comes from the frequency drift and linewidth range of the optical devices, thermal
noise, and scattering noise of electronic devices. The interference signals are caused by the
airflow in the detection environment. Based on the hardware realization of long-distance
vibration detection, the subsequent signal processing and vibration classification prob-
lems become the essential factors for Φ-OTDR to be able to identify abnormal vibration
signals precisely, and the precision of the identification significantly affects the eventual
false alarm probability of the system. For the nonstationary vibration signals detected
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by Φ-OTDR, wavelet noise reduction can be used for long-range slow time-domain per-
turbation signal purification to achieve vibration localization [5]. Using wavelet packet
decomposition to extract the features of each energy layer of vibration signal, combined
with an artificial neural network classifier, high-precision recognition for vibration signals
can be achieved [6]. Short-time Fourier transform is also a typical feature extractor, and
combined with a Gaussian mixture model or convolutional neural network can complete
distinct intrusion activity detection and classification [7,8].

The above identification methods extract the slow time-domain signal features of
a vibration location and then distinguish various vibration activities by a well-designed
classifier. Nevertheless, since the fiber strain and refractive index near the vibration activity
will vary, it is complicated to determine the vibration source location in practical engineer-
ing applications. The deviation of vibration source location selection will also decrease the
recognition rate. In contrast, morphological feature extraction based on spatio-temporal
domain images can improve the recognition rate by adding contextual features [9]. When
the morphologic features of time-space domain signals are extracted and obtained in the
experiment, the relevance vector machine (RVM) can be used to achieve a relatively short
recognition time of below 1 s for vibration behavior [10]. In addition, convolutional neural
networks (CNNs) can effectively classify a single vibration activity image without expert
knowledge [11,12].

For 100-km level detection, however, various vibration activities may occur simul-
taneously in a single spatio-temporal domain image, and the real-time capability of the
system cannot be guaranteed on account of the apparent increment in total recognition
time. This problem necessitates the detection of multiple vibrational activity classes in a
single vibration alarm event spatio-temporal image by the target detection algorithm of
computer vision. Convolutional neural network-based target detectors are distinguished
into two categories: region-based CNNs (R-CNNs) [13] and their variants [14,15] belong to
two-stage target detectors, which utilize the region-based proposal sliding window method
to monitor targets in images; in contrast to two-stage detectors, single-step detectors, such
as You Only Look Once (YOLO) detectors [16] and their variants [17–19], employ down-
sampling components and concatenation components or a path aggregation network to
accomplish feature extraction of the original image in different dimensions, directly map-
ping from feature maps in different sizes to target probabilities, bounding box locations,
and target classification probabilities, which can increase the number of detected frames
per second with comparable performance [19]. YOLO detectors are the State-Of-The-Art
(SOTA) object detection algorithms in deep learning [20,21], and are real-time and efficient
in practical applications for portable embedded devices and have significant advantages
in terms of accuracy and processing speed [22]. While the feature extraction network in
the existing YOLO detection framework is designed for publicly available target detection
datasets [23,24], the corresponding feature extraction network needs to be improved for a
customized dataset.

Considering the Φ-OTDR high-speed railway perimeter security detection environ-
ment, this paper aims to complete monitoring of multiple vibration images in finite time
and complete multiple vibration target identification and localization in single image de-
tection. High-speed rail perimeter security is mainly threatened by climbing or jumping
over the fence. Early warning threats include people walking on the ground near the fence,
manual excavation, construction machinery, and interference, primarily from the shaking
of optic fiber caused by airflow due to natural wind or high-speed rail. Single-mode optical
fiber is laid on the razor barbed wire on the fence of the high-speed railway station to detect
the vibration signals of people climbing or jumping over the fence and the shaking caused
by airflow. About 1 km long single-mode optical fiber is buried at 100 m from the initial
fiber position and 20 cm underground to detect the early warning activities of people walk-
ing, manual excavation, and mechanical construction close to the fence. The raw signals
acquired by Φ-OTDR are purified by signal pre-processing and image pre-processing to
form the ultimate dataset. An improved YOLO model is trained and evaluated to accu-
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rately and quickly recognize abnormal vibration events. The contributions of this study are:
(1) The effect of parameter adjustment in the signal pre-processing module on inspection
is illustrated from the perspective of statistical theory; (2) An improved YOLO model for
high-speed railway perimeter abnormal vibration detection is proposed to achieve single
detection of multiple vibration targets; (3) The effect of different feature extraction networks
on the detection performance of the improved YOLO model is tested and discussed; (4) The
detection performance of the improved YOLO model with other State-of-The-Art (SOTA)
models has been compared and summarized.

This paper is organized as follows: Section 2 describes the entire system structure and
analyzes the statistical characteristics of the raw signal acquired by Φ-OTDR. Section 3
presents the principle of demodulating vibration signals from raw signals and proposes
signal pre-processing methods to improve the signal-to-noise ratio (SNR) and detection
probability, thereby illustrating the signal pre-processing procedure. Sequentially, it in-
troduces the way to acquire vibration data and generate the spatio-temporal images to
be identified. Section 4 discusses the experimental dataset generation method and the
components of the multi-target detection system, the effects of different feature extraction
network components on the detection performance of the data images, the basis for model
improvement, and the evaluation metrics. Section 5 focuses on the experimental procedure,
examines and compares the impact of different feature extraction networks on recognition,
and compares the performance of the improved YOLO model with other SOTA models.
The last section concludes the paper.

2. Baseline System
2.1. System Overview

For the high-speed railway perimeter detection environment with many noise and
interference signals, to quickly and accurately identify the vibration source class and thus
reduce the false-alarm rate, it is necessary first to design the signal pre-processing algorithm
and set the corresponding signal acquisition parameters based on the optical pulse detection
principle. Up to this point, the system has removed most of the noise to improve the SNR
of the Φ-OTDR detection signal and effectively detect vibration activities. In practice,
airflow can generate interference vibration signals, so such interference signals need to be
effectively identified and excluded from the necessary alarm to improve the reliability of
the overall system alarm. In this regard, it is essential to generate images from the pre-
processed data matrix, enhance the vibration target features, and finally use an improved
image target detection algorithm to identify all classes of vibration activities accurately.

As shown in Figure 1, the real-time Φ-OTDR vibration events detection system con-
tains three components: (1) Abnormal vibration detection environment, which is the
environment for abnormal vibration detection at the perimeter of the high-speed railway.
The primary monitoring events are the five kinds of vibration signals mentioned above. The
single-mode optical fiber is laid in the detection environment by burying underground or
hanging on the razor barbed wire to realize the distributed real-time detection of abnormal
vibration. (2) In the Φ-OTDR system, light probe pulses generated by a coherent laser
source with narrow linewidth are injected into the single-mode fiber through an optical
circulator. Due to the elastic scattering effect, the backscattered light interferes with each
scattering center in the fiber to generate Rayleigh backscattered light. The backscattered
light is converted into a digital signal by the data acquisition (DAQ) card through the
photodetector (PD). Then, the digital signal is transmitted to the algorithm processing
module. (3) The algorithm processing module functions as follows:
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Figure 1. Overall system operation structure.

1. The original digital signal is processed by the signal processing unit to accomplish
pulse accumulation, pulse cancellers, maximum value processing to generate the
primary data matrix, and then determine the location of the vibration signal appear-
ing on the detection fiber and the corresponding time according to the statistical
detection principle;

2. On this basis, the data matrix is converted into grayscale images and then processed
by median filtering and pseudo-color to generate the final spatio-temporal image of
vibration data to be detected;

3. The images are detected by the improved YOLO target detector, which first completes
the multi-scale feature conversion by the feature extraction network, then uses the
classifier to achieve the detection of multiple vibration targets in a single image,
and eventually improves the detection accuracy and reduces the false-alarm rate of
the system.

In this application, the raw signal acquired by Φ-OTDR is processed by the signal
processing unit and spatio-temporal image generation module to generate a customized
dataset. The dataset is subsequently divided into the training set, validation set, and test
set. The training and validation sets are employed to train and modify the improved YOLO
target detection model. The test set is applied to test and evaluate the model performance,
then select the optimal model.

On this foundation, the spatio-temporal image, which is generated from real-time
vibration data, is transmitted to the improved optimal model to obtain the classes of
multiple vibration activities and their locations in the image, thereby reducing the false-
alarm rate and ensuring the real-time effectiveness of the distributed fiber optic perimeter
security system.

2.2. Φ-OTDR Raw Signal Statistical Characteristics

The signal processing unit utilizes the statistical hypothesis detection principle to
obtain the location and corresponding time of all vibration events on the detection fiber,
and uses signal processing methods to improve the signal-to-noise ratio to enhance the
accuracy and precision of subsequent pattern recognition. Φ-OTDR backscattered light is
generated by the backscattering interference of coherent pulsed light from 2N +1, elastic
scattering centers in the region covered by half of the optical pulse width; refer to Figure 2a.



Sensors 2022, 22, 1127 5 of 23Sensors 2022, 22, x FOR PEER REVIEW 5 of 24 
 

 

 
(a) 

 
(b) 

Figure 2. Φ-OTDR backscattering principle: (a) Superposition principle of backscattered light from 
all scattering centers within a half-light pulse width; (b) The effect of vibration on the echo signal, 
where the variable scattering center is marked in yellow. 

Define the attenuation coefficient of the fiber as 𝛼𝛼, after Acousto-optic Modulator 
(AOM) modulation and Erbium Doped Fiber Amplifier (EDFA) amplification, a sequence 
of coherent optical pulses of periodic width (𝑇𝑇𝑇𝑇) 𝑛𝑛⁄  is injected into a single-mode fiber 
with group refractive index 𝑛𝑛, the optical field is 𝐴𝐴0 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑗𝑗(2𝜋𝜋𝜋𝜋𝑡𝑡1 + 𝜃𝜃(𝑡𝑡2))), 𝑡𝑡2 records 
the slow-time domain pulse emission time, and pulse repetition interval (PRI) indicates 
the difference in emission time of neighbor pulses. The specific backscattering process can 
be analyzed from the change in position of the light pulse on the fiber at different moments 
in a single detection. 

Considering 𝑡𝑡2 as the starting time, the backscattered light from the light pulse at 
the moment 𝑡𝑡1 in the fast-time domain is converted into an electrical signal by a PD, and 
then quantized and saved by a DAQ. The integrated reflection coefficient 𝜎𝜎 at position 
(𝑡𝑡1𝑇𝑇) 𝑛𝑛⁄  is derived from the combined effect of the 2𝑁𝑁 + 1 scattering centers in range 
𝑙𝑙(𝑡𝑡1) ∈ [(𝑡𝑡1𝑇𝑇) 𝑛𝑛⁄ , (2𝑡𝑡1𝑇𝑇 + 𝑇𝑇𝑇𝑇) 2𝑛𝑛⁄ ]. Specifically, at the moment 𝑡𝑡, the central position of the 
light pulse propagates to (𝑡𝑡1𝑇𝑇) 𝑛𝑛⁄ , and the backscattered light from the scattering center 
at (2𝑡𝑡1𝑇𝑇 + 𝑇𝑇𝑇𝑇) 2𝑛𝑛⁄  begins to scatter in the opposite direction of the light pulse propaga-
tion. 𝑡𝑡 + ∆𝑡𝑡 moment, the above backscattered light propagates to (2𝑡𝑡1𝑇𝑇 + 𝑇𝑇𝑇𝑇 − 2∆𝑡𝑡𝑇𝑇) 2𝑛𝑛⁄ , 
during which the backscattered light is the superposition of a series of small Rayleigh 
scattering centers within ∆𝑡𝑡𝑇𝑇 𝑛𝑛⁄ . When the pulsed light propagates half the light pulse 
width, i.e., the tail end of the pulsed light propagates to (𝑡𝑡1𝑇𝑇) 𝑛𝑛⁄ , the backscattered light 
at this point is superposed by the backscattered light from 2𝑁𝑁 + 1 scattering centers at 
different spatial positions within half the light pulse width 𝑙𝑙(𝑡𝑡1), and there is no further 

Figure 2. Φ-OTDR backscattering principle: (a) Superposition principle of backscattered light from
all scattering centers within a half-light pulse width; (b) The effect of vibration on the echo signal,
where the variable scattering center is marked in yellow.

Define the attenuation coefficient of the fiber as α, after Acousto-optic Modulator
(AOM) modulation and Erbium Doped Fiber Amplifier (EDFA) amplification, a sequence
of coherent optical pulses of periodic width (Tc)/n is injected into a single-mode fiber
with group refractive index n, the optical field is A0exp(j(2πFt1 + θ(t2))), t2 records the
slow-time domain pulse emission time, and pulse repetition interval (PRI) indicates the
difference in emission time of neighbor pulses. The specific backscattering process can be
analyzed from the change in position of the light pulse on the fiber at different moments in
a single detection.

Considering t2 as the starting time, the backscattered light from the light pulse at
the moment t1 in the fast-time domain is converted into an electrical signal by a PD, and
then quantized and saved by a DAQ. The integrated reflection coefficient σ at position
(t1c)/n is derived from the combined effect of the 2N +1 scattering centers in range
l(t1) ∈ [(t1c)/n, (2t1c + Tc)/2n]. Specifically, at the moment t, the central position of the
light pulse propagates to (t1c)/n, and the backscattered light from the scattering center
at (2t1c + Tc)/2n begins to scatter in the opposite direction of the light pulse propagation.
t + ∆t moment, the above backscattered light propagates to (2t1c + Tc− 2∆tc)/2n, during
which the backscattered light is the superposition of a series of small Rayleigh scattering
centers within ∆tc/n. When the pulsed light propagates half the light pulse width, i.e., the
tail end of the pulsed light propagates to (t1c)/n, the backscattered light at this point is
superposed by the backscattered light from 2N +1 scattering centers at different spatial
positions within half the light pulse width l(t1), and there is no further superposition. In
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the range of l(t1), the reflectivity corresponding to the ith scattering center is σi, the distance
to the (t1c)/n position is li, the echo phase is exp(j(2πF(t1 − 2nli/c) + θ(t2))), and θ(t2)

indicates the initial phase of the pulsed light. The final superposed echo signal ζ(t1, t2) at
the (t1c)/n position can be expressed as:

ζ(t1, t2) = A0 ∑N
i=−N

√
σiexp(−αli(t1))exp(j(2πF(t1 − 2nli(t1)/c) + θ(t2)))

= A0exp(−αl(t1))exp(j(2πFt1 + θ(t2)))∑N
i=−N

√
σiexp(−j4πnli/λ)

(1)

where λ represents light wavelength. Equation (1) reveals that the relative positions li of
all scattering centers in the half-wavelength region are interrelated with the echo signal
ζ(t1, t2). In the presence of vibrations in the area, the vibration-induced fiber strain leads to
changes in li and refractive index n at different positions, which in turn cause shifts in the
backscattered light phase and eventually change ζ(t1, t2). As demonstrated in Figure 2b,
both the variation of the relative position of the scattering center within the half-light pulse
width l(t1) and the change of the refractive index n lead to the shift of the echo signal at
(t1c)/n. Furthermore, when the scattering centers within the vibration area L are disturbed,
the vibration interferes with the backscattered light phase, leading to a shift in the echo
signal within the range (Tc)/2n + L. The location of the vibration occurrence is judged by
detecting the area where the echo signal shift is located.

For analysis of the echo signal, defineξ =
∣∣∣exp(j(2πFt1 + θ(t2)))∑N

i=−N
√

σiexp(−j4πnli/λ)
∣∣∣ =∣∣∣√σ(t1, t2)exp(−jφ(t1, t2))

∣∣∣, φi = 4πnli/λ. According to Euler’s formula, the integrated reflection
coefficient σ(t1, t2) and the integrated phase fluctuation φ(t1, t2) can be expressed as:

σ(t1, t2) = (
N
∑

i=−N

√
σi sin(φi))

2

+ (
N
∑

i=−N

√
σi cos(φi))

2

φ(t1, t2) = arctan(
N
∑

i=−N

√
σi sin(φi)/

N
∑

i=−N

√
σi cos(φi))

(2)

According to the central limit theorem, the real and imaginary parts of ∑N
i=−N

√
σiexp(−j4πnli/λ)

are statistically independent Gaussian random variables, and the echo phase is uniformly
distributed, so ξ is Rayleigh distributed, and σ(t1, t2) is exponentially distributed [25]. It is
observed that the phase jitter θ(t2) of the pulsed light at different moments does not affect
the final acquisition results, avoiding the effect of phase noise introduced by the laser and
the AOM [26].

The photodetector output electrical signal can be expressed as the following Equation:

I(t1, t2) = ρζζ
∗
= ρA2

0e−2αl(t1)ξ2 = ρA2
0e−2αl(t1)σ(t1, t2) (3)

where the photoelectric conversion rate ρ, the initial optical power A2
0 and the light decay

rate α can be considered as fixed values, while the variation of the collected vibration data
is from the variation of the integrated reflection coefficient σ(t1, t2). The electrical signals
received by the DAQ in the absence of vibration signals are the coherent noise power at
each location along the fiber.

3. Raw Signal Pre-Processing and Image Generation
3.1. Analysis of Vibration Detection Principles

According to the analysis in Section 2.2, the real and imaginary parts of the optical echo
signal z at the position (t1c)/n of the fiber can be considered as statistically independent
zero-mean Gaussian random variables when the fiber is devoid of vibration in the range
l(t1). The backscattered signal z is the sum of the Gaussian white noise sample w and the
target component s in the presence of a vibrational signal in this range, where s is a complex
constant of unknown amplitude

√
σs and phase φs, s =

√
σsexp(−jφs), during one sweep.
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The signal z received by the photodetector in one inspection decision can be expressed as
the following two hypotheses:

H0 : z = w w ∼ CN
(
0, δ2

w(t1)/2
)

H1 : z = s + w s =
√

σse−jφs
(4)

where δ2
w(t1) is related to the coherent noise at (t1c)/n. The null hypothesis H0 indicates

that there is no vibration event within the corresponding detection location, and the
probability density function (PDF) of y = |z| is Rayleigh distributed. The PDF of y in
the alternative hypothesis H1 is the Rice distribution, cf. Equation (5), where I0(·) is the
modified Bessel function of the first kind:

py(y|
√

σs, H1) =


2y
δ2

w
exp
(
− (y2+σs)

δ2
w

)
I0

(
2
√

σsy
δ2

w

)
y ≥ 0

0 y < 0
(5)

For a multi-pulse sampling system with a noncoherent integration of M samples, a
modified Bessel function of the first kind approximation leads to the statistic y′, where λ is
the detection threshold satisfying a fixed false-alarm rate:

y′ =
M−1

∑
m=0

y2
m

H1
≷
H0

δ4
w

σs
(ln(λ) +

σs

δ2
w
) = λ′ (6)

The presence of a vibration activity is detected by determining whether the sum of the
squares of the acquired signal amplitudes, y′, exceeds the threshold λ′. If H0 best accounts
for the data, and the false alarm probability PFA is a fixed value, the threshold λ′ is only
related to the number of noncoherent integration samples, M, and coherent noise δ2

w. If H1
best accounts for the data, the integrated reflection coefficient

√
σs, which is independent

in all M samples of a single detection decision, shows different distribution characteristics
pσ(σs) for different vibration sources [7,27]. The PDFs of the final statistic y′ corresponding
to the different vibration modes can be found using characteristic functions. The detection
probability of different vibrations is the integral value of the corresponding PDF within the
range exceeding the threshold.

Either improving the system signal-to-noise ratio or increasing the noncoherent inte-
gration samples number M can lead to an increase in the detection probability PD of the
system for vibration signals. High-frequency noise can be suppressed by pulse cancellers
to improve the system detection probability from the perspective of improving the signal-
to-noise ratio. In addition, increasing the noncoherent integration samples number M can
improve the detection performance with a constant SNR.

3.2. Signal Pre-Processing Procedure

In the signal acquisition process, there are Mp detection pulses contained within
one detection sweep. The backscattered light is converted to an electrical signal I af-
ter PD, and the detection data collected by DAQ at the fixed position (t1c)/n for a
single pulse is x = I(t1, t2) = ρA2

0exp
(
−2αl(t1)

)
σ(t1, t2). An array of detection data

X =
[

x0, x1, · · · xm, · · · xMp−1

]
can be obtained at the fixed fiber position in one detection

sweep. The number of noncoherent integration samples is M, the pulse canceller inter-
val is Mg, and detection data array is converted into Mc = Mp −M− 1−Mg statistics

X′ =
[

x′0, x′1, · · · x′i , · · · x′Mc−1

]
, where:

x′i = ∑M−1+i
m=i (xm − xm+Mg), i ∈ [0, Mc − 1] (7)
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as the final detection value x′max = max(X′) is taken and different threshold values are
set at different locations. The vibration signal is considered to exist if x′max exceeds the
threshold. The above steps are repeated for different detection locations within one sweep,
thus the vibration detection is completed from Mp pulses to one whole fiber. Moreover, to
improve the reliability of the detection decision, the decision rule is defined as a vibration
activity being detected at least K times in multiple decisions before it is finally determined
as a valid vibration activity, called coincidence detection, which can further improve the
detection probability and reduce the false-alarm rate. Vibration detection performance can
be optimized by adjusting Mp, Mg, M and K in the signal pre-processing procedure. After
setting the parameters, the data matrix collected in real-time by the system injecting light
pulses periodically into the optical fiber can generate the corresponding grayscale images
through numerical mapping for later image pre-processing and target detection.

3.3. Median Filtering and Pseudo-Color Processing

As described in Section 3.2, one array of detection data was obtained from Mp detection
pulses, and the vibration spatio-temporal data matrix can be generated during continuous
system detection. While there is still a certain probability of false alarm after effectively
improving the detection probability, discrete noise will appear if the spatio-temporal image
is generated directly. Before obtaining the spatio-temporal images, the grayscale images
generated from the data matrix need to be pre-processed to reduce the impact of image noise
on later multi-target detection, enabling the targets in the images to be better recognized,
and the classification accuracy to be improved [28]. The system uses median filtering to
smooth the image pixel values to achieve the effect of denoising [29]. The median filter
takes the median value of adjacent pixels as the output of the current pixel to suppress
high-frequency noise before image detection. Afterward, the data image is processed using
the pseudo-color image fusion method with low computational cost to achieve image
enhancement by assigning different colors to the gray levels in the image [30]. The fused
image can enhance the performance of object segmentation, feature extraction, and target
object detection [31]. The system generates in real-time the final spatio-temporal images to
be detected after the process described in Sections 3.2 and 3.3.

3.4. Vibration Data Collection

Fiber optic sensing technology overcomes the shortcomings of high-speed rail tracking
circuits easily damaged by lightning. Not only can it obtain the running status of the train
in real-time [32], but it also can play a well-assisted role in high-speed railway perimeter
intrusion detection [33]. The abnormal vibration to be detected by the Φ-OTDR high-
speed railway perimeter security warning system originates primarily from construction
machinery, manual excavation, walking near fences, climbing fences, airflow induced by
natural wind, or high-speed rail passing by. The first three types of early warning need to
be monitored by buried optical fiber cable. The last two types are monitored by optical fiber
cable hung on razor barbed wire, where fence climbing needs to be an alarm in real-time,
and vibration caused by airflow does not require an alarm.

The fiber optic sensing device uses a narrow linewidth (~1.69 kHz) laser at 1550 nm
with a typical output power of 13 dBm. Optical frequency shifts 200 MHz by controlling the
acousto-optic modulator with 50 ns pulse width. Detailed parameters of the device signal
processing are as follows: the optical pulse repetition frequency is 5 kHz, the sampling rate
is 250 MS/s for the DAQ, Mp as the number of samples in one single sweep is 1000, the
noncoherent integration samples number M is 880, and the pulse canceller interval Mg
is 100. One pixel corresponds to a distance dimension of 0.4 m and a time dimension of 0.2
s in the generated spatio-temporal vibration image. Different threshold adjustment factors
and K values were set at different monitoring areas of the security perimeter of the HSR
station to reduce the effect of coherent noise.

The system collected vibration data images of different classes at four ground detection
areas and multiple razor barbed wire detection areas in 30 consecutive days, and vibration
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data images of changes over the spatio-temporal domain were generated in real-time after
signal pre-processing and image processing. The fence climbing and airflow activities
were sensed by monitoring the optical fiber cable hung on razor barbed wire. Three kinds
of activities nearby the fence, namely construction machinery, manual excavation, and
walking, were sensed by monitoring the optical fiber cable laid about 20 cm underground
and parallel to the fence at a distance of 0–1 km from the starting position of the fiber
optic. The experimenter collected data images by walking within the warning area directly
above the buried optical fiber cable nearby the fence, and also simulated construction
machinery and manual excavation activities by compacting the ground using a pneumatic
hammer and hitting the ground using a shovel at a distance of about 0.4 m perpendicular
to the buried optical fiber cable laying direction, respectively. Vibration data for the above
3 types of activities were collected by the real activities of the experimenters. Razor barbed
wire binding optical fiber cable was shaken with a wooden stick to simulate climbing
over the fence. The experimenters used a larger force with a wooden stick in the actual
data collection to simulate a real climbing event in order to try to achieve a more realistic
simulation. Considering the real-time requirement of the alarm and the authenticity of
vibration activities, the duration of a construction simulation activity is 3–6 s, the duration
of a person walking simulation activity is 3–15 s, and the duration of a simulation activity
of climbing over the fence is 5–18 s. Furthermore, the razor barbed wire vibration data
caused by the airflow of the natural wind or HSR passing by was recorded continuously by
the system for a variable duration.

Figure 3 shows the grayscale image of the vibration signal generated by the signal
matrix after median filtering. The seven grayscale images show the seven typical event
manifestations of the five classes of vibration activities. It can be visualized that the
spatio-temporal images can well illustrate the vibration events. The width and height
pixel values of the images are marked sequentially, where width indicates the vibration
distribution along the fiber distance dimension and height represents the vibration duration.
Figure 4 shows the pseudo-color images of the grayscale photographs of the seven different
vibrational events after image enhancement processing to visually highlight the effect of
pseudo-color processing.
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4. Experimental Image Dataset and Methodology

The data pre-processing procedure can reduce the false-alarm rate and detect the
location and time of vibration occurrence. However, in the actual detection environment
of HSR perimeter security, there will still be vibrations from the natural wind or from the
HSR passing by, thus resulting in false alarms. Such vibrations not within the alarm classes
require an improved YOLO target detection model training with the customized dataset to
recognize different patterns and remove non-essential alarms.

4.1. Image Data Augmentation

Convolutional neural network target detection systems have superior performance
compared to traditional computer vision algorithms. However, overfitting problems can
lead to performance degradation, which can typically be avoided by regularization meth-
ods [34] or increasing the amount of data. Data augmentation methods can increase the
number of additional samples in the dataset, thus improving the generalization ability
of the system, and effectively enhancing its performance for small target detection [35],
including rotation, horizontal flipping, resizing, hue, saturation alteration, etc.

4.2. Dataset Generation

Four thousand three hundred eighty-one vibration data of 5 classes at different times
and locations were collected by the method in Section 3.4.

The image dataset size was increased using the image data augmentation techniques
in Section 4.1 to improve the robustness and generalization ability of the system, and each
spatio-temporal domain vibration image generated a corresponding dataset image of size
608 pixels × 608 pixels to finally build a dataset of HSR perimeter security fiber optic
sensing vibration images and generate the corresponding YOLO format annotation files. A
total of 8069 images were eventually used for the experiments, as shown in Table 1, and the
dataset was randomly assigned into a training set, test set, and validation set in accordance
with the ratio of 8:1:1. In addition, the five vibration activities are divided into three alarm
event types according to the practical application. Vibrations caused by airflow are natural
phenomena and occur frequently, and such events do not require an alarm. When there is
human activity or mechanical activity in the monitoring area near the fence, the detection
system needs to send an early warning message to alert security personnel to the vibration
changes in the area. As a critical monitoring vibration activity, climbing over the fence



Sensors 2022, 22, 1127 11 of 23

activities need the real-time alarm to inform personnel to rush to the scene to deal with
such violations.

Table 1. Distribution of each vibration pattern in the described dataset.

Fiber Optic
Laying Method Activity Activity Simulation Amount of

Collected Data
Collection
Location

Duration of
a Collection

Total Data
Amount with Data

Augmentation
Alarm Type

Optical fiber cable
buried

underground

Construction
machinery Pneumatic hammer 1357 0–1 km 3–6 s 2714 Early

Warning
Manual

excavation Shovel type construction 1051 0–1 km 3–6 s 2102 Early
Warning

Walking
People walking within the

warning area nearby
the fence

137 0–1 km 3–15 s 819 Early
Warning

Optical fiber cable
hung on razor
barbed wire

Climbing over
fence Shaking Razor Barbed Wire 200 1–5 km 5–18 s 798 Real-time

alarm

Airflow Natural wind or high-speed
rail passing by 1636 1–5 km Variable 1636 False

alarm

4.3. Target Detection Meta-Architecture Analysis

The target detection module is an important and integral part of the entire system.
Its primary accomplishments include detection of target number in spatio-temporal data
images, recognition of vibration pattern, and annotation of the corresponding bounding
box, i.e., the position of the target in the image. This subsection focuses on the training
process of the YOLO target detection model and the factors affecting the recognition results
to provide a basis for the improvement of the multi-target detection model.

The YOLO target detection meta-architecture training process can be divided into
three parts:

1. Backbone and Neck are the most dominant feature extraction networks of the model,
and these parts extract feature maps at different scales by linear and nonlinear operations;

2. The detection Head contains multiple scales to be detected, the number of which
depends on the number of different scales of the feature map after the aforementioned
downsampling feature extraction, and the feature map width and height on each
scale depends on the number of times the original spatio-temporal image has been
downsampled;

3. The loss function defined by the YOLO detector includes three types of loss values:
target confidence loss, localization loss [36,37], and classification loss. The differ-
ence between system detection results and prior knowledge in target detection and
localization can be judged by these three types of loss scores.

As illustrated in Figure 5, the spatio-temporal vibration data images in the training
set are fed into the Backbone. The feature maps at different scales are extracted from the
Backbone and Neck sections by the convolutional unit to complete the downsampling.
It is worth mentioning that the activation function in the convolutional unit allows the
convolutional network to extract nonlinear features while avoiding the vanishing gradient
problem. Currently, three activation functions are used in typical convolutional units fre-
quently. Leaky-ReLU is simple and easy to implement with low computational cost. Unlike
the Leaky-ReLU function, the non-monotonic and smooth nature of Swish [38], which
is defined as f (x) = x · sigmoid(x), provides some robustness to different initialization
and learning rates, and it is beneficial for model optimization and generalization ability,
further improving the classification accuracy. Similar to Swish, Mish [39] is a smooth and
non-monotonic activation function. Although Mish can improve the detection accuracy of
neural networks, it increases the training time. Feature maps at different scales will enhance
the discriminability and robustness of target features in the Neck section by expanding
the receptive field. Furthermore, this part will accomplish feature propagation at different
scales through a path aggregation network consisting of several bottom-up paths and
several top-down paths to achieve feature enhancement [40,41]. In addition, CSPNet [42],
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Focus module, and Spatial Pyramid Pooling (SPP) network [43] are among the feature
extraction network optional modules for feature enhancement.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 24 
 

 

is defined as 𝑓𝑓(𝑒𝑒) = 𝑒𝑒 ⋅ 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑒𝑒), provides some robustness to different initialization 
and learning rates, and it is beneficial for model optimization and generalization ability, 
further improving the classification accuracy. Similar to Swish, Mish [39] is a smooth and 
non-monotonic activation function. Although Mish can improve the detection accuracy of 
neural networks, it increases the training time. Feature maps at different scales will en-
hance the discriminability and robustness of target features in the Neck section by ex-
panding the receptive field. Furthermore, this part will accomplish feature propagation at 
different scales through a path aggregation network consisting of several bottom-up paths 
and several top-down paths to achieve feature enhancement [40,41]. In addition, CSPNet 
[42], Focus module, and Spatial Pyramid Pooling (SPP) network [43] are among the fea-
ture extraction network optional modules for feature enhancement. 

 
Figure 5. YOLO target detection meta-architecture training process. 

The detection Head subsequent to the feature extraction network maps the depth of 
the feature map at different scales to (𝑇𝑇𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 + 5) × 3, where 𝑇𝑇𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 indicates the num-
ber of types to be detected, 5 refers to an object confidence value and four values represent 
the location of the bounding box, and 3 denotes the number of prior anchor boxes at each 
scale. In this paper, the depth of the feature map is 30 for each scale. 

The target confidence loss, localization loss, and classification loss are obtained by 
calculating the difference between the results of the detection system and the prior 
knowledge, updating the sensitivity map and the parameters of each convolutional layer 
of the detector using the sum of these three types of losses and the backpropagation algo-
rithm, iterating the above steps until convergence, and until the detector can meet the 
detection requirements on the test set, thus completing the entire training process. 

It should be remarked that the localization loss can be chosen from different Intersec-
tion over Unions (IoUs): Generalized IoU (GIoU) [36], Distance-IoU, and Complete IoU 
(CIoU) loss [37]. Among them, the CIoU loss considers the three geometric factors of over-
lap area, central point distance, and aspect ratio, thereby leading to faster convergence 
and better performance. 

Based on the above analysis, the application of different feature extractors is based 
mainly on the complexity of the detection problem itself. The feature extraction network 
structure affects the final detection performance during the training process. The long-
distance fiber optic vibration monitoring system needs to monitor the abnormal vibration 
at each region in real-time and reduce the false-alarm rate of the system at the same time. 
Therefore, it is required to consider both the real-time ability of system inference and the 

Figure 5. YOLO target detection meta-architecture training process.

The detection Head subsequent to the feature extraction network maps the depth of
the feature map at different scales to (classes + 5)× 3, where classes indicates the number
of types to be detected, 5 refers to an object confidence value and four values represent the
location of the bounding box, and 3 denotes the number of prior anchor boxes at each scale.
In this paper, the depth of the feature map is 30 for each scale.

The target confidence loss, localization loss, and classification loss are obtained by
calculating the difference between the results of the detection system and the prior knowl-
edge, updating the sensitivity map and the parameters of each convolutional layer of the
detector using the sum of these three types of losses and the backpropagation algorithm,
iterating the above steps until convergence, and until the detector can meet the detection
requirements on the test set, thus completing the entire training process.

It should be remarked that the localization loss can be chosen from different Inter-
section over Unions (IoUs): Generalized IoU (GIoU) [36], Distance-IoU, and Complete
IoU (CIoU) loss [37]. Among them, the CIoU loss considers the three geometric factors of
overlap area, central point distance, and aspect ratio, thereby leading to faster convergence
and better performance.

Based on the above analysis, the application of different feature extractors is based
mainly on the complexity of the detection problem itself. The feature extraction network
structure affects the final detection performance during the training process. The long-
distance fiber optic vibration monitoring system needs to monitor the abnormal vibration
at each region in real-time and reduce the false-alarm rate of the system at the same time.
Therefore, it is required to consider both the real-time ability of system inference and the
requirement of multi-target detection accuracy in designing the feature extraction network
of the system.

4.4. Network Construction

In order to achieve high-precision detection of vibration activity in real-time using Φ-
OTDR, four different types of feature extraction networks designed for fiber optic vibration
images were implemented based on the analysis of the feature extraction network in
Section 4.3, as presented in Table 2. The improved models were trained and tested in
experiments using the image dataset in Section 4.2.
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Table 2. Six types of feature extraction networks composed of different network components.

Model
Backbone Neck Head Number of

Convolutional LayersFocus ResBlock CSPNet SPP block FPN PANet YOLO

YOLOV3-tiny
√ √

13
YOLOV3

√ √ √
52

YOLO-RP
√ √ √

30
YOLO-RCP

√ √ √ √
30

YOLO-A30
√ √ √ √ √ √

30
YOLO-A78

√ √ √ √ √ √
78

The design of the feature extraction network depends mainly on the complexity of
the detection problem itself, and the main factors to be considered in the design include
the type and number of feature extraction layers. Generally, the deeper the network is,
the easier it is to obtain more abstract features. Yet, at the same time, it will increase
model complexity and the number of parameters, which will affect the computational
speed and real-time recognition ability of the system. The relationship between detection
accuracy and model complexity can be analyzed by choosing different feature extraction
components and different combinations of approaches in the feature extraction networks
described above, and a suitable improved model can be selected using the evaluation
metrics specified in Section 4.5. The feature extraction network consists of a combination
of different feature extraction modules in the Backbone and Neck, where the CBA block
contains a convolutional layer, a batch normalization layer, and an activation function, and
the CSPNet block consists of two paths that are connected together by a concat layer to
form a feature map after the features are extracted by the CBA block and several ResBlocks.

The improved YOLO-A30 network architecture is shown in Figure 6. YOLOv3-tiny
and YOLOv3 [18] were trained as control groups to compare the prediction performance of
different feature extraction networks using the YOLO meta-architecture.
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4.5. Evaluation Metrics

Precision, recall, F1 score, mean average precision (mAP), inference time, and param-
eters (M) were used as the evaluation metrics to evaluate the detection effectiveness of
different networks in a comprehensive manner.

The definitions of precision, recall, F1 score, average precision (AP), and mean average
precision (mAP) are expressed by Equations (8)–(12). True positive (TP) indicates the
amount of target data where the positive class of the outcome of the model detection is
consistent with the actual class in the dataset. False positive (FP) represents the amount of
data where the positive class of the outcome of the model detection is inconsistent with
the actual class in the dataset, i.e., the number of false detections. False negative (FN) then
denotes the number of target data in the dataset with actual classes but detected by the
model as other classes, i.e., the number of missed detections. Precision and recall indicate
the confidence of the model in target detection and the ability of the model to detect all
targets, respectively. The precision and recall metrics of the model can be comprehensively
evaluated using F1. Under a fixed IoU, the given target will get different precision and
recall values according to different confidence, and the continuous curve generated by
interpolating the precision and recall values is the precision-recall (PR) curve. Average
precision (AP) shows the comprehensive performance of the model at different confidences
by the area under the curve (AUC) on the PR curve for a given target class, and a higher AP
value represents better model detection performance. Each IoU corresponds to a different
AP, and the AP@.5 corresponds to the AP when IoU takes 0.5, AP@[.5:.95] corresponds to
the average AP for IoU from 0.5 to 0.95 with a step size of 0.05. The mean average precision
(mAP) evaluates the mean of the average precision of the model on all detection classes.
Eventually, the inference time describes the time required by the model for single image
detection. Usually, the fewer model parameters, the smaller the GPU memory consumption,
the shorter the inference time, and the more it can be implemented on embedded devices.

precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2× Precision × Recall
Precision + Recall

(10)

AP[class] = ∑i ∈ confidence precisioni[recall, class, iou] (11)

mAP =
1
N ∑ APi (12)

5. Experimental Procedure
5.1. Experimental Setup

The phase-sensitive optical time-domain reflectometer is used as a vibration signal
collector in the monitoring area, as described in Section 2.1. The pulsed light is amplified
by EDFA and injected into the fiber through an isolator and circulator. The backscattered
light is detected by a photodetector, and the collected raw data is formed into spatio-
temporal images after signal pre-processing, median filtering, and pseudo-color technique.
The data images of different vibration events are collected, and the ultimate dataset is
formed through data augmentation. The parameters for equipment data acquisition and
pre-processing, the method of single-mode fiber deployment, and the method of data
acquisition are specified in Section 3.4.

This study combines different network modules based on the YOLO algorithm frame-
work to implement four feature extraction networks, using the customized dataset to train
the models. The specifics of the feature extraction networks are elaborated in Section 4.4.
The prediction performance of the improved models is compared comprehensively using
the previously described evaluation metrics. The experimental procedure is shown in
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Figure 7. Considering the practicality and computational complexity, the feature extrac-
tion networks in this paper use the Swish activation function, CIoU localization loss and
YOLOv3 detection Head, and combine different feature extraction components to achieve
YOLO model improvement. The experimental contents of the fiber optic sensing vibration
recognition system contain the following:
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1. The YOLO target detection models composed of different feature extraction networks
are trained using the training set, the training effect is tested using the validation set,
and the optimal model in each type is selected; the performance metrics of the selected
models in each type as described in Section 4.5 are measured using the test set, and
the one with a better balance of various metrics is chosen as the final improved model;

2. Various combinations of vibration type data in the test set are selected to simulate
different mixed vibration activities to test and discuss the qualitative detection results
of the final improved model;

3. The metrics of the final improved model and other SOTA models arere counted using
the test set and comparisons are made.

5.2. Network Training

Using YOLOv3-tiny and YOLOv3 as control groups, the corresponding performance
metrics are obtained by varying the feature extraction network of the YOLO meta-architecture.
The training set is used for model parameter updates, the sum of the three types of losses
described in Section 4.3 is calculated for each iteration of the optimization process during
the experimental training, which in turn updates the model parameters by the back-
propagation algorithm, and the model performance metrics are counted using the validation
set at the end of each epoch during the training process, while the system hyperparameters
are kept consistent. Considering the model generalization ability and overfitting problem,
each feature extraction network is trained at least three times and 100 epochs are run
each time, from which the model with the best-combined performance of AP@.50 and
AP@[.5:.95] in the validation set is selected, and the model performance is tested by the
test set. The model training process was run on an Ubuntu 18.04 operating system with an
NVIDIA GTX 3090 GPU with 24-GB onboard memory, accelerated by CUDA (version 11.1)
and cuDNN (version 8.0). YOLO meta-architecture is based on Python (version 3.8) and
the PyTorch library (version 1.8.0) released by Facebook AI.

Figure 8 shows the training loss and validation loss of different feature extraction
networks after 100 epochs of training. The training losses decrease gradually during
the training process, which indicates that the networks learn model parameters from the
training set effectively without overfitting. YOLOv3 and the four types of improved models
each have significantly lower losses than YOLOv3-tiny, with the training loss ranging
around 0.03 and the validation loss ranging around 0.025. It is observed that although the
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difference in training loss between YOLO-A30, YOLO-A78, and YOLOv3 is slight, YOLO-
A30 validation loss is much lower than the other models, which reveals that YOLO-A30
performs better than the other models in the validation set.
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Figure 9 shows the PR curves for YOLOv3-tiny and YOLO-A30 with an IoU threshold
of 0.5. The AP@.5 values for the five detection events are represented by the area under the
corresponding curves. It can be found from the PR curves that the detection performance
gap between the improved YOLO-A30 and the control YOLOv3-tiny on airflow events is
significantly larger than for the other activities. Other performance metrics of the models
can be compared in Table 3.
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Table 3. Models performance metrics statistics.

Model Class Precision
(%)

Recall without
Airflow

(%)

F1
(%)

mAP@.5
(%)

mAP@[.5:.95]
(%)

Parameters
(MB)

Inference
(ms)

YOLOV3-tiny

All 91.6 99.6 95.1 95.4 59.9

17.4 1.3

Construction machinery 98.2 99.0 98.6 99.4 58.1
Manual excavation 99.0 99.2 99.1 99.6 58.1

Walking 99.4 100.0 99.7 99.5 75.2
Climbing fence 99.5 100.0 99.7 99.6 69.4

Airflow 62.0 95.7 75.2 78.8 38.9

YOLOV3

All 98.6 99.7 99.1 99.4 68.3

123.5 6.2

Construction machinery 97.2 99.0 98.1 99.3 62.8
Manual excavation 98.9 99.6 99.2 99.6 58.5

Walking 99.4 100.0 99.7 99.5 81.4
Climbing fence 99.3 100.0 99.6 99.5 71.1

Airflow 98.2 100.0 99.1 99.2 67.4

YOLO-RP

All 96.7 99.7 98.0 98.8 68.6

20 1.8

Construction machinery 97.8 99.0 98.4 99.5 64.0
Manual excavation 100.0 99.8 99.9 99.6 59.8

Walking 99.4 100.0 99.7 99.5 82.3
Climbing fence 99.9 100.0 99.9 99.6 73.2

Airflow 86.4 98.1 91.9 95.8 63.5

YOLO-RCP

All 97.0 99.8 98.1 98.9 68.2

17.8 1.7

Construction machinery 97.6 99.4 98.5 99.5 63.5
Manual excavation 99.6 99.8 99.7 99.5 60.5

Walking 99.4 100.0 99.7 99.5 82.2
Climbing fence 98.8 100.0 99.4 99.5 71.7

Airflow 89.7 96.9 93.2 96.1 63.3

YOLO-A30

All 99.2 99.8 99.2 99.5 69.3

14.4 1.8

Construction machinery 98.8 99.4 99.1 99.5 62.5
Manual excavation 99.5 99.6 99.5 99.4 59.3

Walking 99.6 100.0 99.8 99.5 83.5
Climbing fence 99.6 100.0 99.8 99.6 71.7

Airflow 98.7 96.9 97.8 99.4 69.6

YOLO-A78

All 98.8 99.7 99.1 99.5 69.4

16.4 2.3

Construction machinery 98.6 99.7 99.1 99.6 61.6
Manual excavation 99.0 99.2 99.1 99.5 59.6

Walking 99.5 100.0 99.7 99.5 82.3
Climbing fence 99.5 100.0 99.7 99.5 73.4

Airflow 97.6 98.8 98.2 99.2 70.2

The key performance metrics with the best results are highlighted.

Table 3 evaluates the prediction performance, the number of parameters, and the
inference time of each model from seven metrics. For HSR perimeter abnormal vibration
monitoring, fence climbing is the primary monitoring activity, which requires no missing
alarms and high confidence of alarm. Vibration caused by airflow does not need to be
alarmed, whereas due to the frequent commuting of high-speed rail and the windy field
environment in which the high-speed rail line is located, the false-alarm rate of the system
will be too high if the airflow cannot be identified precisely. However, the low recall of
airflow can instead be considered automatic filtering of such events. Accordingly, while
evaluating the overall performance, the F1 score of the fence climbing activity and the
precision of the airflow event should be highlighted.

In the precision column, YOLO-A30 has the highest precision of 99.2%, which is 0.4%
and 0.6% higher than YOLO-A78 and YOLOv3, which have more parameters, respectively.
Its precision is the highest in the events of construction machinery, walking, and especially
airflow, which is 0.5% and 36.7% higher than YOLOv3 and YOLOv3-tiny, respectively.
Although YOLO-RP achieves 100.0% and 99.9% precision for manual excavation and fence
climbing, its precision for airflow is only 86.4%.

The recall represents the probability that the model does not have missed detection,
and all models achieve 100.0% in walking and fence climbing; for the crucial monitoring
of fence climbing, especially, it is essential to achieve low missed-detection rate for the
practical application of the model. For airflow events that do not require an alarm, the
recall rate does not affect the system performance, so the effect of airflow recall should
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be removed when discussing the recall metrics. After removing the effect of airflow, the
average recall of YOLO-A30 is 99.8%, reaching the highest value along with YOLO-RCP,
which is higher than YOLOv3-tiny and YOLOv3 by 0.2% and 0.1%, respectively.

The F1 score can comprehensively evaluate the precision and recall of the model for
detection activities, and the F1 score of YOLO-A30 is the highest at 99.2%. The F1 scores for
construction machinery and walking activities are 99.1% and 99.8%, respectively. The F1
score for fence climbing is obtained in YOLO-RP with a maximum of 99.9%, which is 0.1%
higher than that of YOLO-A30.

Focusing on the columns mAP@0.5 and AP@[.5:.95] with reference to YOLO-RP, YOLO-
RCP, and YOLO-A30, although the number of parameters decreases in sequence, the mAP
can be significantly improved with the addition of different components of the feature
extraction network. The mAP@0.5 of YOLO-A30 is 0.1% and 4.1% higher than that of
YOLOv3 and YOLOv3-tiny, and the AP@[.5:.95] is 1% and 9.4% higher, respectively, while
the number of YOLOv3 parameters is 8.58 and 7.10 times greater than that of YOLO-A30
and YOLOv3-tiny. It can be noticed that using the same network components, increasing
the number of parameters can improve the mAP value of the model by comparing YOLOV3
and YOLOV3-tiny performance metrics. However, there is a limit to the mAP gain from the
increase in the number of parameters. YOLO-A30 and YOLO-A78 use the same network
components, but with the increase in the number of parameters, mAP@.5 stays the same,
and AP@[.5:.95] only increases by 0.1%. On balance, the YOLO-A30 with the fewest number
of parameters performs better on the mAP metric.

When the system monitors abnormal vibration, the image target detection needs to
achieve long-distance detection range and high timeliness, which is strongly related to the
size of the spatio-temporal image to be detected and the inference speed. In this experiment,
the length of the single image to be detected is 608 pixels, corresponding to the actual fiber
distance of 243.2 m. Taking the YOLO-A30 with an inference speed of 1.8 ms as an example,
the maximum multi-vibration events within 135.1 km can be detected in 1 s.

Comparing the inference speed of each model, it can be realized that the types of
network components and the number of parameters used in the feature extraction network
have an impact on the inference speed of the network. When designing a feature extraction
network, one cannot just increase the number of network modules and parameters to
improve detection performance while neglecting its impact on detection speed.

5.3. Qualitative Results

The above metrics illustrate the performance of YOLO-A30 on the test set. Benefiting
from the distributed nature of fiber optic sensing, the vibration signals generated by
different activities occurring simultaneously at different locations of the fiber do not affect
each other. The combinations for different vibration classes in the test set are picked to
simulate six different kinds of mixed vibration events to visualize the results of multi-
target detection of YOLO-A30 in specific scenarios. The test parameters are IoU > 0.5,
Confidence > 0.4, as depicted in Figure 10. The image width represents the range of
influence in the fiber distance dimension corresponding to the multi-vibration event in
meters. The image height indicates the duration of the multi-vibration event in seconds.
Although repeated detection occurs when the vibration signal is too dense in the buried
fiber state, the system can effectively distinguish multiple vibration classes in the same
detection range.



Sensors 2022, 22, 1127 19 of 23

Sensors 2022, 22, x FOR PEER REVIEW 19 of 24 
 

 

F1 score for fence climbing is obtained in YOLO-RP with a maximum of 99.9%, which is 
0.1% higher than that of YOLO-A30. 

Focusing on the columns mAP@0.5 and AP@[.5:.95] with reference to YOLO-RP, 
YOLO-RCP, and YOLO-A30, although the number of parameters decreases in sequence, 
the mAP can be significantly improved with the addition of different components of the 
feature extraction network. The mAP@0.5 of YOLO-A30 is 0.1% and 4.1% higher than that 
of YOLOv3 and YOLOv3-tiny, and the AP@[.5:.95] is 1% and 9.4% higher, respectively, 
while the number of YOLOv3 parameters is 8.58 and 7.10 times greater than that of YOLO-
A30 and YOLOv3-tiny. It can be noticed that using the same network components, in-
creasing the number of parameters can improve the mAP value of the model by compar-
ing YOLOV3 and YOLOV3-tiny performance metrics. However, there is a limit to the 
mAP gain from the increase in the number of parameters. YOLO-A30 and YOLO-A78 use 
the same network components, but with the increase in the number of parameters, 
mAP@.5 stays the same, and AP@[.5:.95] only increases by 0.1%. On balance, the YOLO-
A30 with the fewest number of parameters performs better on the mAP metric. 

When the system monitors abnormal vibration, the image target detection needs to 
achieve long-distance detection range and high timeliness, which is strongly related to the 
size of the spatio-temporal image to be detected and the inference speed. In this experi-
ment, the length of the single image to be detected is 608 pixels, corresponding to the actual 
fiber distance of 243.2 m. Taking the YOLO-A30 with an inference speed of 1.8 ms as an 
example, the maximum multi-vibration events within 135.1 km can be detected in 1 s. 

Comparing the inference speed of each model, it can be realized that the types of 
network components and the number of parameters used in the feature extraction net-
work have an impact on the inference speed of the network. When designing a feature 
extraction network, one cannot just increase the number of network modules and param-
eters to improve detection performance while neglecting its impact on detection speed. 

5.3. Qualitative Results 
The above metrics illustrate the performance of YOLO-A30 on the test set. Benefiting 

from the distributed nature of fiber optic sensing, the vibration signals generated by dif-
ferent activities occurring simultaneously at different locations of the fiber do not affect 
each other. The combinations for different vibration classes in the test set are picked to 
simulate six different kinds of mixed vibration events to visualize the results of multi-
target detection of YOLO-A30 in specific scenarios. The test parameters are IoU > 0.5, Con-
fidence > 0.4, as depicted in Figure 10. The image width represents the range of influence 
in the fiber distance dimension corresponding to the multi-vibration event in meters. The 
image height indicates the duration of the multi-vibration event in seconds. Although re-
peated detection occurs when the vibration signal is too dense in the buried fiber state, 
the system can effectively distinguish multiple vibration classes in the same detection 
range. 

   
(a) (b) (c) 

Sensors 2022, 22, x FOR PEER REVIEW 20 of 24 
 

 

   
(d) (e) (f) 

Figure 10. Effectiveness of six different mixed vibration events identification: (a) Multiple construc-
tion machines; (b) Multiple construction machines and manual excavation; (c) Airflow interference 
exists nearby the buried fiber optic site where the early warning activities occurred; (d) Climbing 
over the fence behavior and construction machinery activities occur in the same monitoring area; 
(e) People walking in the buried fiber optic area and climbing over the fence; (f) Person climbing 
over the fence during airflow interference. 

Figure 10a,b separately depict the two construction early warning activities detected 
by the system in the buried fiber state and their respective detection confidence. When 
multiple mechanical construction events occur in the monitoring area, YOLO-A30 can ef-
fectively identify the vibration activity class of the event and divide the multiple vibration 
activities. When two classes of construction activities occur simultaneously at different 
locations, the system will automatically distinguish the different classes of activities and 
label them by the bounding box. 

Figure 10c–e display three scenarios where vibration is detected simultaneously in 
the two cases of fiber buried underground and hung on razor barbed wire. Due to the 
distributed nature of the fiber optic sensor, the system can still accurately detect construc-
tion events in the buried fiber state in the presence of airflow interference. Whether there 
is a continuous behavior such as people walking and climbing over the fence or construc-
tion vibration disturbances, the model can identify such a crucial monitoring activity as 
climbing over the fence. 

Figure 10f illustrates the extreme case when airflow interference and fence climbing 
occur under the fiber optic hanging condition in the same area. The system can eliminate 
the interference and identify fence climbing activity to improve the overall detection per-
formance. 

5.4. Comparison With Other State-of-the-Art Models 
The performance of YOLO-A30 is compared with other SOTA models on the dataset 

described in Section 4.2. The mAP@.5, F1 score, airflow precision, climbing fence F1 score, 
and inference time of 6 models, Faster R-CNN [14], SSD [17], YOLOv3-tiny, YOLOv3 [18], 
YOLOv4 [19], and the improved YOLO-A30, are shown in Figure 11, considering the high-
speed rail application environment. 

Figure 10. Effectiveness of six different mixed vibration events identification: (a) Multiple construc-
tion machines; (b) Multiple construction machines and manual excavation; (c) Airflow interference
exists nearby the buried fiber optic site where the early warning activities occurred; (d) Climbing
over the fence behavior and construction machinery activities occur in the same monitoring area;
(e) People walking in the buried fiber optic area and climbing over the fence; (f) Person climbing over
the fence during airflow interference.

Figure 10a,b separately depict the two construction early warning activities detected
by the system in the buried fiber state and their respective detection confidence. When
multiple mechanical construction events occur in the monitoring area, YOLO-A30 can
effectively identify the vibration activity class of the event and divide the multiple vibration
activities. When two classes of construction activities occur simultaneously at different
locations, the system will automatically distinguish the different classes of activities and
label them by the bounding box.

Figure 10c–e display three scenarios where vibration is detected simultaneously in
the two cases of fiber buried underground and hung on razor barbed wire. Due to the
distributed nature of the fiber optic sensor, the system can still accurately detect construction
events in the buried fiber state in the presence of airflow interference. Whether there is a
continuous behavior such as people walking and climbing over the fence or construction
vibration disturbances, the model can identify such a crucial monitoring activity as climbing
over the fence.

Figure 10f illustrates the extreme case when airflow interference and fence climb-
ing occur under the fiber optic hanging condition in the same area. The system can
eliminate the interference and identify fence climbing activity to improve the overall
detection performance.

5.4. Comparison with Other State-of-the-Art Models

The performance of YOLO-A30 is compared with other SOTA models on the dataset
described in Section 4.2. The mAP@.5, F1 score, airflow precision, climbing fence F1 score,
and inference time of 6 models, Faster R-CNN [14], SSD [17], YOLOv3-tiny, YOLOv3 [18],
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YOLOv4 [19], and the improved YOLO-A30, are shown in Figure 11, considering the
high-speed rail application environment.
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YOLO-A30 has the highest F1 score of 99.2%, indicating that it can detect the five
classes of abnormal vibration activities in the dataset relatively accurately with a low
missed-detection rate. F1 scores of YOLOv3 and SSD are only lower than YOLO-A30, each
reaching 99.1% and 98.7%, both with excellent performance, but both are more than three
times slower than YOLO-A30 in terms of detection speed, which means the longest distance
these two models can monitor is much shorter than the monitoring distance of YOLO-A30.
Over 95% mAP@0.5 are achieved for all models, with YOLO-A30 and SSD both reaching a
maximum of 99.5%, 4.1% higher than the lowest, YOLOv3-tiny. The precision of airflow
detection, which is the most frequent vibration interference event in the actual application
environment for high-speed rail, is also noticed separately in the figure, and the precision
of this event monitoring will directly affect the final false-alarm rate of the system. One
explanation for the considerable variation in airflow precision across models is that airflow
events do not have a fixed shape and aspect ratio in the spatio-temporal data image, which
leads to particular difficulty in detection and requires a high feature extraction capability
for the model network, which makes this metric a critical factor in differentiating model
performance. The airflow precision of YOLO-A30 is 98.7%, which is 0.5% higher than
YOLOv3 and significantly higher than other target detection models. The SSD reaches 100%
in the fence climbing F1 score, which is 0.2% higher than the YOLO-A30, but it lags behind
the YOLO-A30 in all other metrics; in particular, the differences in airflow precision and
inference time are 7.2% and 4.3 ms, respectively. The inference time of Faster R-CNN [14]
as a two-stage detection is 30.1 ms, which is much longer than other single-stage detection
models, which also shows from one side that the single-stage detection model is more
appropriate for long-distance monitoring requirements.

Overall, YOLO-A30 performs excellently in the main metrics compared to other SOTA
models. It can avoid false alarms of fiber optic sensors due to airflow to a certain extent
and detect five key monitoring events simultaneously, providing a possible solution for
high-speed rail perimeter security automation.

6. Conclusions

In this paper, a real-time multi-vibration events detection method based on an im-
proved YOLO model for Φ-OTDR optical fiber buried underground and hung on razor
barbed wire dual detection environments is proposed for high-speed railway perimeter ab-
normal vibration detection, aiming to realize long-distance perimeter security automation
and reduce system false-alarm rate and security cost. Based on the statistical characteristics
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of the acquired raw signals and the signal detection theory, it is shown how pulse accumu-
lation, pulse cancellers, and coincidence detection can improve the detection performance
of the system. Following this, the signal pre-processed data matrix is median filtered and
pseudo-color processed to achieve feature enhancement and generate a spatio-temporal
vibration image dataset with 8096 images of five vibration activities for training, validation,
and testing. Improving the feature extraction network of the YOLO target detection model,
specifically using different network components and network structures, aims to discover
a deep learning architecture more appropriate for fiber optic vibration monitoring tasks in
the application environment of the high-speed railway. The experimental results demon-
strate that the improved YOLO-A30 model achieves a satisfactory balance in precision
corresponding to the false-alarm rate of the system, recall related to the missed-detection
rate of the system, and inference speed, which exhibits a better detection performance
than other experimental models. This study illustrates that the method can automatically
perform Φ-OTDR acquisition signal pre-processing and effectively extract vibration event
features to identify abnormal vibration, which reduces the false-alarm rate in the practical
application of distributed fiber optic sensing system and makes it possible to apply this
method in high-speed railway perimeter security.

Future work will focus on increasing the detection distance of a single device through
multi-channel or other Φ-OTDR techniques and optimizing the existing results, including
validating model accuracy and performance in the actual scene, evaluating the feasibility,
mining for more possible vibration events, and verifying the adaptation of the model to
recognize similar events to improve the robustness and adaptability of the model, as well
as developing embedded devices for practical applications.
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