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Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation
process across the epithelial-mesenchymal axis, principally through their ability to bind
growth factors and modulate their downstream signaling. Malignant tumors have indi-
vidual proteoglycan profiles, which are closely associated with their differentiation and
biological behavior, mesenchymal tumors showing a different profile from that of epithelial
tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas
its expression level is generally low, in accordance with their mesenchymal phenotype and
highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma
cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4
more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes
the tumor cell morphology to an epithelioid direction whereas downregulation results in
a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays
major roles on the cell-surface, there are also intracellular functions, which are not very well
studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation,
adhesion, migration and motility, and the effect varies with the different domains of the core
protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concen-
tration of various mitogens, enzymes, and signaling molecules, the ratio between the shed
and membrane-associated syndecan-1 and histological grade of the tumour. Growth fac-
tor signaling seems to be delicately controlled by regulatory loops involving the syndecan
expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates
the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other
PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes
involved in regulation of cell growth

Keywords: syndecan-1, heparan sulfate, signaling, cancer, mesenchymal tumor

SYNDECAN STRUCTURE
Syndecans are transmembrane proteoglycans (PGs) composed of
a core protein to which growth factor binding glycosaminoglycan
(GAG) side chains are attached. The syndecan family consists of
four members. Syndecan-1 is the major syndecan of epithelial cells
(1), syndecan-2 is present mainly on cells of mesenchymal origin
(2), syndecan-3 is primarily found in neuronal tissue and cartilage
(3, 4), and syndecan-4 is ubiquitously expressed (5, 6). The pro-
tein cores of syndecans consist of a highly conserved C-terminal
cytoplasmic domain, a single-pass transmembrane domain and
a large N-terminal extracellular domain (7, 8) (Figure 1). The
ectodomain carries up to five GAG chains, and syndecan-1 from
different tissues display different GAG types comprising heparan
sulfate (HS) and chondroitin-sulfate (CS) of varying length and
fine structure (9) (Figure 2).

Both HS and CS are attached to serine residues via the
same linkage sequence (Xylose-Galactose-Galactose-Glucuronic
Acid). Following the synthesis of this sequence, the first hex-
osamine derivative – N -acetyl-glucosamine (GlcNac) or N -acetyl-
galactosamine (GalNac) – is added; this step being the decisive for
the type of GAG subsequently formed. The basic GAG chain for

both HS and CS then extends in the Golgi by further repetitive
addition of glucuronic acid (GlcA) and a hexosamine derivative,
which for HS is GlcNAc and for CS GalNAc. The resulting GAG
is thus built up of repeating disaccharide units, consisting of an
uronic acid and a hexosamine derivative (10).

Subsequently this basic structure is modified by a series of reac-
tions (epimerization, deacetylation, sulfation), which occur in a
tissue-specific manner. Particularly in HS, this generates a vast
diversity of the fine structure and hence alters the capacity of this
GAG to bind to other structures. These modification reactions
thus represent one way to regulate the protein binding capacity
of PGs.

SHEDDING OF SYNDECANS FROM THE CELL SURFACE
Syndecans are usually present on the cell surface (1, 7, 11), but
they can also be released by the action of sheddases or accumu-
late in the cell nucleus (12); in the tumor stroma (13), and in
body fluids (14–17). Shedding of the ectodomain is biologically
important, converting the cell-bound syndecan to a soluble active
ligand. Syndecan-1 shedding is regulated by matrix metallopro-
teinases (MMPs), including MMP-7, MMP-9, membrane-bound
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FIGURE 1 |The syndecan family. Schematic illustration of structurally related
syndecan genes, showing the two subfamilies of syndecans: syndecan-1 and
-3, and syndecans -2 and -4, respectively. The extracellular domain is highly

variable with the exception of the GAG attachment sites and the proteolytic
cleavage site near the plasma membrane. In contrast the endo- and
transmembrane domains are well preserved.

FIGURE 2 | Biochemical structure of the repeating disaccharide units of
heparan sulfate and chondroitin-sulfate.

metalloproteinases (MT-MMP1), and a disintegrin and metallo-
proteases (ADAM10, ADAM17) (18–22). They act by proteolytical
cleavage of the juxtamembrane site of the core protein. The mecha-
nism of shedding is currently not completely understood (23), but
recently a new mechanism where MMP-9 enhances syndecan-1
shedding via suppression of miR-494 was described (24). Acceler-
ated shedding is mediated by MMPs (21), Rab-5 (25), growth fac-
tors (GFs) (26), heparanase, and HS (27, 28). It is also known that
FGF-2 activates MMP-7 mediated shedding (29) and heparanase
accelerate MMP-9 mediated shedding of syndecan-1 (27). Cell

surface HSPGs can themselves participate in regulation of met-
alloproteinases, anchoring them to the cell surface via the GAG
chains (23), and particularly for syndecan-1 it was demonstrated
that the HS chains on the core protein suppresses shedding (28),
giving an additional explanation on the above mentioned role of
heparanase in this process.

The released ectodomain carries intact GAG chains, thus it has
preserved ability to modulate growth factor responses and biolog-
ical processes. Experimental studies have shown that membrane-
bound and soluble forms of syndecan-1 have opposing effects on
cancer cell functions (19, 30–33). High level of shed syndecan-1
is associated with infection, inflammation, and cancer. Recently it
was found that chemotherapy can induce shedding of syndecan-1,
particularly via ADAMs and this shed syndecan-1 being function-
ally active, leads to establishment of a more aggressive phenotype
in case of relapse (34).

Soluble syndecan-1 binds pro-angiogenic factors like VEGF or
FGF, activates them, creating a chemotactic gradient, and by this
promotes endothelial cell’s invasion and angiogenesis. Besides, it
activates the integrins αVβ3 and αVβ5 (35), which are also impor-
tant for angiogenesis (36) and regulates the association of IGF1R
to αVβ3 integrin, essential in endothelial cell migration (37). The
pro-angiogenic effect of syndecan-1 was shown in myeloma (27),
medulloblastoma (24), and in a variety of tumors of epithelial ori-
gin like endometrial cancer (38), breast cancer (39), and in stromal
fibroblasts of breast cancer (32), but the effects of syndecan-1 in
the angiogenesis of mesenchymal tumors is largely unknown.

Understanding of the importance of syndecan-1 shedding
might help to resolve the seemingly contradictory expression levels
documented in various malignancies.

SUB-CELLULAR LOCALIZATION OF SYNDECAN-1 IN THE CELL NUCLEUS
Syndecan-1 translocates to the cell nucleus of various tumor cells,
including malignant mesothelioma, fibrosarcoma, neuroblastoma,
breast- and lung adenocarcinoma, and multiple myeloma (12,
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40–42). This translocation is tubulin dependent and the same
transport route operates also for FGF-2 but not for the FGF Recep-
tor. The minimal structural requirement for nuclear translocation
is the RMKKK sequence at the cytoplasmic tail of syndecan-1
serving as a nuclear localization signal (NLS) (43). The nuclear
translocation correlates to the differentiation and proliferation of
certain tumor cells. One compound that seems to modulate the
level of nuclear syndecan-1 in several tumor types is heparanase
when simultaneously present in the nucleus (41, 44). High level of
heparanase implies low levels of nuclear syndecan-1 and increased
histon acetyl transferase (HAT) activity leading to enhanced tran-
scription of VEGF and MMP-9, both known to drive an aggres-
sive tumor phenotype (42). Furthermore, syndecan-1 restoration
diminishes the nuclear HAT activity, providing a mechanistic link
and establishing syndecan-1 as a powerful inhibitor of HAT driven
gene transcription.

Accumulating evidences suggest that the localization of
syndecan-1 might be crucial for its function and the nuclear
translocation adds additional complexity which needs to be fur-
ther addressed in the context of variously differentiated tumor
components.

TISSUE- AND TUMOR SPECIFIC EXPRESSION OF
SYNDECAN-1
Each syndecan is expressed in highly regulated cell-, tissue-, and
developmental stage specific manner (8, 45). The syndecan-profile
of different tissues, hence of different tumor types, differs greatly
between mesenchymal and epithelial tumors.

Similar to the normal epithelial cells, syndecan-1 is overex-
pressed in epithelial malignancies. In dedifferentiated tumor com-
ponents and mesenchymal tumors its expression is, however, lower
than in the parental tissue. Changes in syndecan-1 level can have
remarkable consequences for tumor cell behavior. The expression
of this PG can associate to disease stage, tumor differentiation
grade, and prognosis of the tumor, though the extent and even
the direction of the association varies from one tumor type to
another (46).

The mechanisms by which syndecan-1 regulates tumor cell
behavior are complex, and depend, at least partly, upon the inter-
play between tumors and the surrounding matrix. The expression
of syndecan-1 and its role as a stimulatory or inhibitory factor
probably depends upon the concentration of various mitogens,
enzymes, and signaling molecules that are specific for each cancer
type and histologic grade. By interacting with such factors, this
PG modulates cancer cell proliferation, adhesion, migration, and
angiogenesis.

SYNDECAN-1 AS DIAGNOSTIC AND PROGNOSTIC MARKER
Syndecan-1 is used as a standard diagnostic biomarker in mul-
tiple myeloma (47) and it is highly expressed in various human
cancers (48) comprising pancreatic (49) and breast cancer (50).
Hovewer, low cell surface syndecan-1 level is associated with a
poor prognosis as demonstrated by immunohistochemistry in
lung cancer (51), renal carcinomas (52), head and neck cancer
(53), and in colorectal cancer (54, 55). In squamous cell carci-
noma of the tonsil the level of syndecan-1 was found lower than in
the benign keratoacanthoma and it correlated inversely with the

proliferative index (56). In carcinoma of the uterine cervix expres-
sion of syndecan-1 is associated with histological differentiation
grade but not with clinical outcome (57). Thus, syndecan-1 seems
to have antithetic roles in different cancer types having inhibitory
role on tumor formation and progression in many different epithe-
lial malignancies but also promoting the growth of others (48, 58).
The shed syndecan-1 can act opposing compared to cell-surface
syndecan-1, since potentially it is able to sequester the GFs and
other HS-binding soluble factors from the microenvironment of
the tumor cell. Accordingly, the levels of shed syndecan-1 in serum
correlate with a less favorable prognosis in lung cancer (16), lym-
phoma (59), myeloma (15), hepatocellular carcinoma (60), and
glioma (61).

The tumor stroma has an important role in mediating tumor
cell proliferation and invasiveness, leading to formation of metas-
tases. In most tumor types the tumor stroma is abundant in
matrix PGs, particularly versican, lumican, and fibromodulin,
and this suggests an important role of stromal PGs in control-
ling tumor progression (58). The effects of shed syndecan-1 in
the stroma is in majority of tumor types in contrast to those
of cell-surface syndecan-1, the abundance of syndecan-1 in the
tumor stroma being a negative prognostic factor (58) and it
correlates to a more aggressive phenotype (33, 50, 62). Conse-
quently, stromal syndecan-1 promotes breast epithelial cell pro-
liferation (13); and in gastric cancer, ovarian cancer (63), and
oral carcinoma (64) was associated with poor outcome (65).
Similarly, in colorectal cancer immunoreactivity to syndecan-1
could be seen in both the tumor epithelium and stroma, whereas
the normal colonic mucosa was negative for syndecan-1 (55).
In basal cell carcinoma the opposite effect could be observed,
where the stromal immunoreactivity of syndecan-1 inversely cor-
related to aggressiveness (66). Taken together, syndecan-1 seems
to have an important role for epithelial-stromal interactions
and a syndecan-1 dependent reciprocal feedback-loop has been
proposed (67).

SYNDECAN-1 IN MESENCHYMAL TUMORS
In mesenchymal cells the syndecan-1 level is usually low, but it
is elevated transiently during embryonal morphogenesis (68–72)
concomitant with a loss of syndecan-1 in the adjacent epithe-
lium. Given this low syndecan-1 level in mesenchymal tumors,
the expression, and function of syndecan-1 is far less studied
than in carcinomas. The most extensively studied mesenchymal
tumors addressing syndecan-1 expression are malignant mesothe-
lioma and fibrosarcoma. Tumor cells forming this PG, however,
have also been found in epithelioid components of biphasic sar-
coma, thymoma, synovial sarcoma, leiomyosarcoma, gastrointesti-
nal stromal tumors, and schwannomas (73, 74). Furthermore, a
recent study revealed that in bone metastasis of soft tissue sarcoma
syndecan-1 expression is elevated and it correlates to expression
of several growth signaling molecules (75).

MALIGNANT MESOTHELIOMA
Cell-surface expression of syndecan-1 is relatively low in malig-
nant mesothelioma compared to epithelial malignancies, how-
ever, its expression relates to epithelioid differentiation thus cor-
relating to better prognosis (76), and it is reduced or lost in
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the sarcomatoid phenotype. Malignant mesothelioma cells also
synthesize syndecan-2 and -4 and these syndecans, less often
expressed in carcinomas, are especially abundant in the epithe-
lioid phenotype (77). Thus syndecan-1 and syndecan-2 has been
proposed as biomarkers to distinguish malignant mesothelioma
from metastatic adenocarcinoma (78, 79).

Epithelial-mesenchymal transition is a characteristic feature of
malignant mesothelioma (80) and in vitro model systems can be
generated to mimic mesothelioma differentiation (81, 82). The
mesothelium itself has a remarkable plasticity and a potential
to generate other cell-types (83), whereas the mesothelioma has
the ability to trans-differentiate across the epithelial-mesenchymal
axis and this has prognostic significance (84, 85). This ability
to switch from epithelial to mesenchymal phenotype involves
a simultaneous downregulation of epithelial markers including
syndecan-1 and E-cadherin (46, 86, 87).

The tumor microenvironment and growth factor gradients
have a considerable effect on mesothelioma morphology and
by modulating the serum composition of cell cultures the mor-
phological changes of mesothelioma cells mimics various differ-
entiation states in vitro (82). Molecular characterization reveals
specific proteoglycan profiles and distinct molecular signatures
for the epithelioid and sarcomatoid phenotypes, respectively (77,
88, 89). Experimentally induced overexpression of syndecan-1 in
mesenchymal tumors changes the tumor cell morphology in an
epithelioid direction (90), whereas downregulation results in a
change in shape of cells from polygonal to spindle-like (77). At the
same time, such overexpression inhibits tumor growth (90) and
migration (43) of malignant mesothelioma cells simultaneously
with enhanced cell adhesion.

FIBROSARCOMA
Fibrosarcomas are relatively rare malignant mesenchymal tumors,
originating from fibroblasts, with an abundant extracellular
matrix, rich in PGs. Though the amount of syndecan-1 is usually
low in fibrosarcoma, some samples and cell lines can express also
this PG (73, 90). Different studies show that this expression can
modulate the proliferation, migration, and the malignant poten-
tial of tumor cells. Similar to carcinoma cells, however, the effects
are cell-type dependent and seem to be governed by the spatio-
temporal expression of syndecan-1. Variously differentiated tumor
components behave differently: the proliferation and migration of
a sarcomatoid fibrosarcoma cells is inhibited (43, 90) whereas in
an epithelioid fibrosarcoma cell line is enhanced upon syndecan-
1 overexpression (91, 92) in collaboration with syndecan-2 (92).
In fibrosarcoma cells the location of syndecan-1 seems to be cru-
cial. While cell-membrane-bound syndecan inhibited migration
on collagen, the membrane type 1 metalloprotease (MT1-MMP)
mediated shedding enhanced it (19).

THE ROLE OF SYNDECAN-1 IN SIGNALING
Syndecan-1 exerts mainly its functions via the HS chains, which
ligate to a wide range of proteins, including heparin-binding GFs
and their corresponding receptors, comprising FGFs, VEGF, Wnt,
and HGF (27, 33, 93, 94). This ability to bind GFs is dependent
on the steric orientation of the sulfate and carboxyl groups in the
GAG chains. When simultaneously binding to both the growth

factor and its receptor, HS stabilizes the complex, thus acting as a
signaling co-receptor (11, 95). Most studies dealing with the effect
of syndecans on signaling, have been performed in carcinomas
or hematological malignancies (33, 96–98); thus the function of
syndecan-1 is less studied in mesenchymal cells.

We have recently shown that overexpression of syndecan-1
in a malignant mesothelioma cell line influences a multitude of
signaling pathways. These effects are not limited to cell-surface
receptors but also influence their downstream effectors (99). The
PDGF and FGF family members were downregulated, while their
receptors were upregulated, whereas both the growth factor and
its receptor were enhanced in EGF signaling. These changes in
growth factor expression were accompanied by a deregulation of
kinase cascade (ERK/MAPK, JNK, and p38/MAPK) and down-
stream transcription factors comprising MYC, FOS, JNK, and JUN
which all were inhibited. On the other hand ETS-1 was upregulated
due to syndecan-1 overexpression and inhibited when this PG was
silenced. The direction or the magnitude of the effect seem to be
cell-type specific, and does not allow direct extrapolation to other
cells. Thus, ETS-1 was reported in colon carcinoma as inversely
correlated to the level of syndecan-1 (100). Hence, growth fac-
tor signaling seems to be delicately controlled by the syndecan
expression level, probably involving autoregulatory loops.

SYNDECAN-1 REGULATES THE EXPRESSION OF ENZYMES
INVOLVED IN HEPARAN SULFATE BIOSYNTHESIS AND THE
PROTEOGLYCAN PROFILE
The HS chains are important in regulation of cancer cell behav-
ior, different studies reported modified sulfation pattern of HS
chains during cancer progression (101). Already 20 years ago it was
assumed that the HS and PGs of a cell are subject of a coordinated
regulation, and this regulation is critical for controlling cell behav-
ior (102). Accumulating data support this, indicating a complex
interplay between different proteins involved in the synthesis and
turnover of heparan sulfate proteoglycans (HSPGs) (103, 104).

The original concept about HS biosynthesis highlights its speci-
ficity, proposing that it is a regulated, hierarchical process, com-
prising steps in a defined order, depending on each other. The
enzymes N -deacetylase/N -sulfotransferase (NDST) replace the
acetyl group of GlcNac with a sulfate group. As the substrate for
NDSTs are the chains polymerized by exostosins (EXT), to which
NDSTs add sulfate groups deriving from 3′-Phosphoadenosine-5′-
phosphosulfate (PAPS), their activity depends on PAPS synthases
and on EXTs as well. This N-sulfation is a key step for the con-
secutive 2-, 6-, and 3-O-sulfations, as the 2-O, 6-O, and 3-O
sulfotransferases (2-OST, 6-OST, and 3-OST, respectively) add sul-
fate groups to the respective positions of disaccharide units in a
strictly regulated order. This succession of events can explain why
some of the HS chains are extensively modified, while others could
remain totally unprocessed (10). The fact that the structure of HS
chains correlates to the cell-type from where they are originated,
rather than the core proteins which they bind, also points to a
controlled expression of the HS biosynthetic enzymes. The mech-
anism behind synthesis of defined non-random HS sequences, so
important for specific interactions, is still much of a mystery.

Proteoglycan and heparan sulfate biosynthesis are critical for
development, morphogenesis, and organogenesis. Studies using
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different model organisms with one or more HS biosynthetical
genes knocked out, show distinct severe developmental disorders
and phenotypic deficiencies (105). The absence of any of these
enzymes has serious implications in the morphogenesis and devel-
opment of these organisms. Despite the tight regulation, there is
a high degree of plasticity in the sulfation pattern, as a result of
this flexible HS biosynthesis (106). Some observations does not
support the model for HS biosynthesis where one enzyme creates
the substrate for the next step, indicating that this order is not so
strict, exemplified by the presence of 6-O-sulfation in HS lacking
N -sulfate groups (107). These enzymes may interact as evidenced
by studies in different model organisms (fruit fly, nematode, zebra
fish, mouse) where knockdown of one of these enzymes is fol-
lowed by direct and indirect effects, affecting the other enzymes
from the HS biosynthetic machinery [for review see (108)]. Exper-
iments with mice lacking NDST1 and/or NDST2 has shown that
the HS N-sulfation is not limited by the total amount of active
NDST enzymes (109); in mice deficient in C5 epimerase the HS
N-sulfation is increased (110); and compensatory effects of 6-
O-sulfation for 2-O sulfation were noticed (111, 112). Another
study points out that 6-OST acts at the internal N /sulfoglcosamine
and non-reducing terminal N -sulfoglucosamine but not N -
acetylglucosamine in vitro, while in vivo all these residues are
sulfated, indicating a coupled reaction of the enzymes (105).

Recently, it was hypothesized that instead of the total amount of
an enzyme in one stage of the HS synthesis the critical step of the
regulation may be the assembly of enzyme complexes of the cell
(109). The idea was raised that the different biosynthetic enzymes
form also physical complexes (10). Indeed, several studies have
shown physical interactions of these enzymes: polymerases EXT1
and EXT2 (113, 114) as well as NDST1 and EXT2 (109, 115) form
a complex and similarly, 2-OST and the epimerase co-localize in
Golgi and interact physically (116), although this regulation is not
always coordinated (117).

When trying to disclose the regulation of HS biosynthesis,
we have to consider also the fact that in mammals almost all
biosynthetic enzymes have more than one isoforms and the sub-
strate specificities of different isoforms largely overlap. Moreover
some of the genes encoding HS biosynthetic enzymes are regu-
lated posttranslationally (10, 118), giving further complexity to
the process.

Beside the above mentioned dynamic co-operativity of the HS
biosynthetic enzymes in the Golgi, the interplay between the sulfa-
tases (SULF-1 and SULF-2) and the synthesizing enzymes also play
a role in the formation and function of the complex heparanome
(108). The cell surface associated extracellular sulfatases remove
6-O sulfate groups from well-defined regions of the mature HS
chains (119, 120). Loss of SULF-1 and/or SULF-2 results in dif-
ferent HS chain composition in vivo. In SULF-1 knockout cells,
in addition to the increase in 6-O sulfated disaccharides, 2-O
sulfation, and N-O sulfation decreased in small, but significant
extent (121). Moreover, upon SULF-2 knockdown, SULF-1 is able
to compensate its effect, while double knockouts showed synergis-
tic co-operativity, resulting in a supraadditive effect and increased
amount of 6-O disaccharides (108).

There are also evidences that HS and CS biosynthesis affects
each other, possibly by sharing the same linkage regions; the

absence of one allowing the other to substitute. Furthermore, they
share the common PAPS pool for sulfation (117).

The regulation of these enzymes implies a “balanced hierarchy”
between their activity and expression, finally resulting in a com-
plex, cell-type specific sulfation pattern (108). Many pieces of this
puzzle and the dynamic interplay still remain to be elucidated. The
picture is complex, as the interactions are built up by both negative
and positive feedback loops which can be depicted in a network
(122), where each member reciprocally affects multiple actions of
the other members of the network. Thus changes in the expres-
sion of one gene will affect the whole HS biosynthetic machinery
of the cell.

A threefold overexpression of syndecan-1 in malignant
mesothelioma largely influenced the whole transcriptome often
with a much higher deregulation of individual genes than the
syndecan-1 itself (99). Thus it seems that also other, post transcrip-
tional or epigenetic mechanisms might contribute to these effects.
One way of this regulation seems to involve the sulfation pattern
of the HS chains. Syndecan-1 overexpression caused a significant
alteration in the expression level of several enzymes involved in HS
biosynthesis, metabolism, and turnover. In this setting EXT1 and
NDST1 were downregulated along with deregulation of 2-O, 6-O
sulfotransferases and the two PAPS synthases, responsible for the
synthesis of the sulfate donor PAPS (99) (Table 1). Furthermore,

Table 1 | List of genes encoding proteoglycans and heparan sulfate

biosynthetic enzymes affected by syndecan-1 overexpression in a

mesothelioma cell line.

Gene Protein name FC

PROTEOGLYCANS

SDC2 Syndecan-2 −3.0

GPC3 Glypican-3 1.8

GPC6 Glypican-6 −9.3

HSPG2 Perlecan (heparan sulfate pg2) −1.6

SRGN Serglycin 52.9

BGN Biglycan −6.2

EPYC Epiphycan −8.9

LUM Lumican −16.5

DCN Decorin −6.8

PRG4 Proteoglycan 4 7.4

PRG2 Proteoglycan 2, bone marrow 2.0

CSPG4 Chondroitin-sulfate pg4 3.2

DAG1 Dystroglycan 1 −1.6

HS BIOSYNTHETIC/MODIFYING ENZYMES

EXT1 Exostosin-1 −2.8

HS2ST1 Heparan sulfate 2-O-sulfotransferase-1 1.5

HS6ST1 Heparan sulfate-6-O-sulfotransferase-1 −3.5

NDST1 N -Deacetylase/N -sulfotransferase −2.1

SULF-1 Sulfatase-1 −52.3

PAPSS1 3′-phosphoadenosine 5′-phosphosulfate synthase 1 −1.9

PAPSS2 3′-phosphoadenosine 5′-phosphosulfate synthase 2 1.7

FC represents fold changes at q≤0.05 of a gene following syndecan-1 overex-

pression compared to cells transfected with the corresponding vector control.
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SULF-1 was highly downregulated, though, the level of SULF-2
was not affected.

The massive downregulation of SULF-1 after syndecan-1 over-
expression in malignant mesothelioma may constitute one mech-
anism by which syndecan-1 regulates cell growth, by modulating
the growth factor binding properties of HSPGs (123) (Figure 3).
Similarly,SULF-1 has a dual role in enhancing or inhibiting various
growth factor signaling pathways and by that tumor cell prolifer-
ation: as it has a tumor suppressor role in the majority of carcino-
mas. SULF-1 is downregulated in many tumor types (124, 125),
whereas in malignant mesothelioma and some other tumors it is
overexpressed (124, 126). The mechanism of this dual effect has
been ascribed to inhibition of the activity of FGF (127–129), HB-
EGF (130), ERK-MAP, and AKT signaling pathways (131, 132).
At the same time SULF-1 is known to promote WNT signaling

(133, 134) and activates BMP/Noggin signaling (135). Currently
it is hypothesized that cancers driven by WNT-1 signaling would
likely be stimulated by SULF-1, whereas tumors depending on
FGF-2 or HGF signaling as the most significant driving mech-
anism are inhibited (125, 136). In malignant mesothelioma the
level of SULF-1 is elevated compared to the normal mesothe-
lium and the Wnt pathway is also altered (137–139), thus we can
hypothesize that SULF-1 downregulation contributes to inhibi-
tion of proliferation, however, the functional significance of these
findings necessitates further investigations.

Syndecan-1 not only regulates multiple levels of HS biosynthe-
sis, but also coordinates the expression of various PGs and fine
tunes their regulatory pathways. Experimental data suggest also a
cooperation between the different members of the syndecan family
(92). Syndecan-1 seems to control the expression of other HSPGs

FIGURE 3 | Syndecan-1 turnover and its effect on HS modifications
in malignant mesothelioma. Syndecan-1 (Syn-1) is synthesized in Golgi
and it is transported to cell-membrane where it acts as a co-receptor for
various growth factors (GFs) and growth factor receptors (GFRs). The
ectodomain is released from the cell-surface by the action of various
enzymatic reactions collectively called sheddases, and the heparan
sulfate can be further fragmented by the action of heparanases. The
shedding results in a soluble molecule, which is still active and thereby
can bind and sequester GFs. Syndecan-1 is also internalized and
translocates to the nucleus in a tubulin dependent manner, but the

function of this translocation is still incompletely understood. Upon
syndecan-1 overexpression, several biosynthetic enzymes are modified
including, EXT, exostosin; NDST, N -deacetylase/N -sulfotransferase; OST,
O-sulfotransferase; HS-EPI, C5 epimerase; and they collectively lead to
altered HS synthesis and sulfation pattern (Colors represent:
red=upregulated and green=downregulated). The endosulfatase
SULF-1, specifically removes the 6-O-sulfate groups from the HS chains,
and thereby may inhibit growth factor signaling. Downregulation of
SULF-1 by syndecan-1, detected at transcriptional level, may lead to
modulation of downstream growth factor signaling.
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in mesenchymal tumors, although the effect varies in different
cell-types and also in the same tumor with various differenti-
ation. Overexpression of syndecan-1 resulted in a downregula-
tion of syndecan-2 and upregulation of syndecan-4 in epithelioid
mesothelioma cells (90, 99), whereas in epithelioid fibrosarcoma
cell line syndecan-2 was upregulated (92), and in a sarcomatoid
fibrosarcoma cell line syndecan-4 was downregulated (90).

This overexpression of syndecan-1 in malignant mesothelioma
cells was also associated with considerable changes in expression
of other HSPGs: glypican-3 was upregulated whereas glypican-6
and perlecan both were downregulated.

The fact that the expression of syndecan-1 can influence the
whole proteoglycan pool is further supported by several indepen-
dent studies, where a higher level of syndecan-1 is accompanied
by perturbations in the proteoglycan profile and in the HS biosyn-
thetic machinery. The cell-type specific nature of this process,
however, has to be emphasized as shown also in breast cancer
cells and glioblastoma (140, 141). Similar to malignant mesothe-
lioma there seem to be a phenotype specific HSPG distribution
in glioblastoma, the mesenchymal subgroup of glioblastomas
typically having a worse prognosis (141).

Taken together, growth factor signaling seems to be deli-
cately controlled by regulatory loops involving the syndecan-1
expression levels, its cellular localization and the sulfation pat-
tern. Syndecan-1 itself regulates the expression of multiple PGs
and coordinates the HS biosynthesis. Furthermore, modulation
of syndecan-1 affects the biological behavior of mesenchymal
tumor cells and this involves genes regulating cell growth, cell
cycle progression, adhesion, migration, and extracellular matrix
organization; orchestrated in a complex network of signaling
pathways (99).

TARGETING SYNDECAN-1 IN CANCER
Syndecan-1 offers a multitude of possibilities for novel thera-
peutic approaches and targeted therapies. Therapeutic options
should, however, consider that the syndecan-1 expression dif-
fers significantly from one tumor type to another and its effect
is highly divergent comprising both anti-proliferative and pro-
tumorigenic effects. Thus, in tumors with elevated syndecan-1
level such as multiple myeloma or breast adenocarcinoma, applica-
ble approaches comprise anti-syndecan-1 antibodies, knockdown
of syndecan-1, competitive inhibitors or anti-angiogenic agents
(142–145). Synstatin, a short peptide that mimics a sequence
of syndecan-1 extracellular domain seems to be a promising
anti-angiogenic agent (35).

In contrast, in tumors of mesenchymal origin, and generally
in tumors where syndecan-1 is downregulated, other approaches
should apply. One interesting concept concerns possible growth
inhibition by using soluble HS oligosaccharides or overexpression
of syndecan-1 in mesenchymal tumors to hamper crucial biolog-
ical responses including proliferation and migration (12, 43, 90,
146–148).

Cell surface HSPGs are also promising for efficient intracel-
lular delivery of macromolecules across biological membranes
(149–157) and offer encouraging possibilities of developing novel
targeted treatments (158–161). The design of intracellular drug
delivery, however, requires an increased understanding of the

physiological processes that mediate cellular communication and
transport across the plasma membrane.
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