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Abstract
Hexameric helicases control both the initiation and the elongation phase of
DNA replication. The toroidal structure of these enzymes provides an inherent
challenge in the opening and loading onto DNA at origins, as well as the
conformational changes required to exclude one strand from the central
channel and activate DNA unwinding. Recently, high-resolution structures have
not only revealed the architecture of various hexameric helicases but also
detailed the interactions of DNA within the central channel, as well as
conformational changes that occur during loading. This structural information
coupled with advanced biochemical reconstitutions and biophysical methods
have transformed our understanding of the dynamics of both the helicase
structure and the DNA interactions required for efficient unwinding at the
replisome.
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Introduction and context
Cell proliferation relies on the exact replication of an organism’s 
genetic material in a rapid but precisely controlled and efficient 
manner. The process and mechanism of DNA replication directs 
targeted and repetitive enzymatic activities towards long linear 
polymers of DNA. Interestingly, organisms have evolved a number 
of toroidal DNA replication and repair protein complexes that 
can maintain repetitive catalysis by encircling the DNA substrate. 
These protein-DNA rotaxane-like systems have the intrinsic ability 
to be processive enzymes due to their topological linkage with the 
substrate. As such, they provide inherent challenges to the load-
ing and encircling of DNA. The steps required for the loading and 
encircling of circular protein complexes onto DNA provides for a 
higher level of regulation, which is required to restrict cell cycle 
progression and control DNA replication initiation. Because of this, 
the most highly regulated component within the DNA replisome is 
the loading and activation of the hexameric helicase, which dictates 
both the initiation steps and the elongation rate of DNA replica-
tion. Even though the general toroidal hexameric helicase structure 
has been known for more than two decades, the mechanisms for 
loading, encircling, activating, and unwinding are only just being 
discovered. These recent advances have been primarily aided by 
higher resolution structures that include DNA, better mechanistic 
descriptions of the interactions of the helicase with each separated 
strand of single-stranded DNA (ssDNA), and higher order in vitro 
reconstitution of DNA replication systems. It is an exciting time to 
be a part of the hexameric helicase field as big questions regarding 
dynamic structure-function relationships with DNA are poised to 
be revealed.

Hexameric helicase architectural conservation
Although the general architecture of hexameric DNA replication 
helicases is shared across organismal domains, there is strong evi-
dence that classes of these enzymes have evolved independently 
for a role in DNA replication1. Although all hexameric helicases 
are members of the broader P-loop family of ATPases2, indi-
vidual evolution of RecA domains gave rise to the superfamily 
(SF) 4 helicases including T4 gp41, T7 gp4, bacterial DnaB, and 
mitochondrial Twinkle3, while SF3, including SV40 Large T antigen 
(SV40 L-Tag) and papilloma virus E1, and SF6, including archaeal 
and eukaryotic minichromosome maintenance proteins (MCM), 
helicases came from an ATPases associated with a variety of cel-
lular activities (AAA+) clade (Figure 1 & Table 1)4,5. Regardless 
of the origin, these systems have all converged on a common ring-
shaped architecture wherein a central channel is used to repetitively 
engage and translocate along ssDNA during unwinding. Bacterial 
and phage SF4 helicases are perhaps the best studied and have con-
tributed most to our understanding of DNA unwinding, but more 
recent emphases on SF3 and SF6 helicases are providing insight 
into structure-function relationships across SFs.

Helicase activity requires the presence of both nucleotide triphos-
phates (NTPs)6 and Mg2+ for unwinding7–9. Although it is not known 
exactly how ATP hydrolysis directly drives DNA unwinding, it is 
likely to progress in a sequential manner, with each subunit driv-
ing conformational changes throughout the hexamer that contribute 
to unwinding polarity4,10–14. RecA-like helicases (SF4) translocate 
along ssDNA in the 5’ → 3’ direction, while AAA+ enzymes (SF3 
and SF6) translocate in the 3’ → 5’ direction13,15–18. The core ATP 

Figure 1. Structural conservation of hexameric helicases. Hexameric helicases are shown from different domains (RecA or AAA+) and 
superfamilies (SFs) with associated unwinding polarity and references. View from the N-terminal domain (NTD) rotated 90° to visualize the 
lateral length from the C-terminal domain (CTD) to the NTD.
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binding and hydrolysis domains consist of conserved RecA-like or 
AAA+ folds that exist within a single subunit or between adjacent 
subunits that include “Walker A and B motifs” for ATP binding 
and hydrolysis and a basic “arginine finger” residue for nucleotide 
turnover and conformational coupling3,19–22. Conserved β-hairpin 
structures in AAA+ helicases contribute differentially to DNA bind-
ing and unwinding to direct DNA through the channel11,16,22–26, 
although additional interactions with DNA have also been detected 
on the exterior surface of helicases15,27,28.

Several high-resolution X-ray and electron microscopy (EM) struc-
tures have been reported for the apo and nucleotide-bound forms of 
hexameric helicases (T7 gp429,30, DnaB31,32, Mito Twinkle33, SV40 
Large-T11,34, Sulfolobus solfataricus MCM [SsoMCM]23,35, and 
Saccharomyces cerevisiae MCM [ScMCM2-7]36). The global shared 
architecture of the ring-shaped helicases is generally composed 
of two tiers: an N-terminal DNA-binding domain (NTD) and a 
C-terminal AAA+ or RecA motor domain (CTD) (Figure 1). The ori-
entation of most helicases on DNA places the CTD toward the duplex 
double-stranded DNA (dsDNA) region and the NTD outwards22,37. 
The exception is E1, where the orientation is reversed, placing the 
NTD toward the duplex38. Thus, motor domains are often positioned 
close to the dsDNA duplex, which can leave the NTD regions free 
to bind, stabilize, or act on the resultant ssDNA.

Across species, hexameric helicase NTDs seem to have evolved 
differential functions. T7 gp4 can be expressed as either a 56 
kDa helicase only form or as a full-length two-domain 65 kDa 
helicase-primase39. The composition of the T7 gp4 helicase hexamer 
is thought to be a mixture of the two forms in vivo, controlling the 
number of primases present for faster replication and less paus-
ing. Other SF4 helicases, including T4 gp41 and Escherichia coli 

DnaB, interact with a separately encoded primase at the NTD in 
an analogous configuration. In those cases, the composition and 
ratio of helicase to primase is <1:1, and more often recognized as 
6:331,40. For DnaB, ATP binding by the motor domain can induce 
conformational changes within the NTD collar that can regulate 
partner protein (i.e. DnaC or DnaG) selection41. As can be seen in 
Figure 1, increasing organismal complexity through the SF3 and 
SF6 helicases (from left to right) generally increases the size of the 
NTD to where they have evolved additional β-hairpins and zinc-
finger motifs for more stabilized binding of the encircled strand and 
double hexamer formation42,43. The expanded NTD also provides a 
platform for control of activity through helicase accessory protein 
binding (in the case of Cdc45 and GINS44) or activation through 
phosphorylation by either cyclin-dependent kinase (CDK) or 
Dbf4-dependent Cdc7 kinase (DDK)45–47.

Helicase loading and the encircling of DNA
The loading of hexameric helicases at replication origins and the 
associated steps required for encircling only one strand have been 
the subject of much debate over the years. What is clear is that the 
loading of the hexameric helicase generally requires the concerted 
action of accessory initiator proteins to locally melt duplex DNA 
and facilitate encircling of DNA. However, phage T7, mitochondrial 
Twinkle, and SV40 L-Tag helicases can load onto circular dsDNA 
on their own48–50. Within the three domains of life, the core ATPase 
activity and ordered assembly of replication initiation factors seem 
to be preserved to control the start of DNA synthesis51,52 (Table 1). 
In bacteria, the initiator, DnaA, forms a multimeric right-hand fila-
ment at the replication origin, oriC, to induce unwinding or melting 
at an A-T rich DNA unwinding element (DUE) (Figure 2A)53–60.  
Afterwards, the DnaB helicase is loaded on the top and bottom 
strands by concerted activities of DnaC and DnaA61–66. Once loaded, 

Table 1. Model Replication Helicase Loading and Activation Components.

Initiator Helicase SF 
(Polarity) Loader Activator Accessory

Eukaryotes

Sce/Hsa Orc1-6 MCM2-7 SF6 (3’-5’) Cdt1/Cdc6 CDK/DDK GINS/Cdc45

Archaea

Sso/Mth Orc1-2(3) MCM SF6 (3’-5’) Cdt1 - GINS/RecJ

Bacteria

Eco/Bsu DnaA DnaB SF4 (5’-3’) DnaC (DnaI) - Rep

Mitochondria

Hsa - Twinkle SF4 (5’-3’) - - -

Viral

papilloma E1 - E1 SF3 (3’-5’) - - -

polyoma SV40 - Large T-ag SF3 (3’-5’) - - -

Bacteriophage

T4 - gp41 SF4 (5’-3’) gp59 - -

T7 - gp4 SF4 (5’-3’) - - -
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the primase, DnaG, interacts with DnaB, displaces DnaC40,67, and 
activates unwinding68. The association of an accessory helicase, 
Rep, with DnaB may aid in replication fork progression69–71.

In archaea and eukaryotes, the binding of the origin recognition 
complex (ORC1-6) and Cdc6 to origins of replication is necessary 
for loading MCM2-7/Cdt1 complexes onto dsDNA to generate a 
pre-replication complex (Pre-RC) (Figure 2B)72–76. The precise  
structural conformations and dynamics of MCM loading are not 
fully known, but the steps and components for assembly and acti-
vation of the eukaryotic MCM2-7 complex have been recently 
biochemically reconstituted in vitro, providing significant insight 
into the process77,78. In archaea, the homohexameric MCM complex 
exists as a closed ring in solution and would require initiation fac-
tors to stimulate opening into a helical conformation onto DNA79. 
Alternatively, increases in temperature for these model hyperther-
mophilic archaeal MCMs may provide the thermal energy required 

for the destabilization of a subunit interface required for loading. 
The eukaryotic MCM2-7 helicase appears to be naturally open, 
with a labile 2-5 interface that can be trapped by ORC/Cdc680–82. 
The ORC1-6 complex is arranged in a two-layered cracked ring 
that encircles DNA and uses the helix-turn-helix domains to engage 
the MCM2-7 hexamer in a proposed ring-ring interaction83,84, in a 
manner similar to the loading mechanism of clamp/clamp-loader 
complexes onto dsDNA85. The organization of the ORC complex 
also appears to be regulated and exists in either an autoinhibited 
ATP-bound form that precludes DNA binding or a proposed active 
form that requires a large conformational change in ORC1 that 
makes the complex competent for encircling DNA83. Afterwards, 
the first MCM2-7 hexamer is loaded through direct interactions 
of MCM6-Cdt1 with the ORC1-6/Cdc6 complex86,87. The second 
MCM2-7 hexamer is loaded through contacts between the NTDs of 
the first loaded MCM2-7 hexamer, rather than through interactions 
with the ORC1-6/Cdc6 complex78,84,88,89. This generated the double 

Figure 2. Assembly of Hexameric Replication Helicase at Origins. A) Loading of the bacterial DnaB helicase by the loader, DnaC, requires 
the destabilization of a DNA unwinding element (DUE) by the initiator protein DnaA. DnaB complexes with the primase, DnaG, to translocate 
along the lagging strand unwinding DNA ahead of the replication fork. B) Loading of the eukaryotic MCM2-7/Cdt1 complex requires the initial 
binding of the ORC complex (ORC1-6) and Cdc6. Interactions with Cdc6 and ORC with the CTD of MCM2-7 directs the adjacent loading 
of the first hexamer and dissociation of Cdc6 and Cdt1. Subsequent loading of the second hexamer is thought to proceed through direct 
interactions between the NTD of MCM2-7 to form the double hexamer. Activation of the helicase includes CDK phosphorylation of Sld2 and 
Sld3 to promote interaction with Dpb11 and stimulate DDK phosphorylation of MCM2/4/6 and recruitment of GINS and Cdc45 to form the 
CMG complex. Opening of the CMG complex and exclusion of the nontranslocating strand from the central channel activates unwinding 
and translocation on the leading strand. Gray and black boxes represent major and the foremost, respectively, queries remaining regarding 
structural conversions of helicases at origins.
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hexamer complex, which has been known for years for MCM (and 
SV40 L-Tag)42,90–92, but whether the double hexamer represents an 
active unwinding unit or an intermediate in the loading process was 
not known.

After loading of the MCMs, a series of steps are required to 
form the active unwinding complex (Figure 2B). ATP hydrolysis 
by Cdc6 and ORC1 causes the dissociation of Cdc6 and Cdt193. 
Subsequent phosphorylation of Sld2 and Sld3 by CDK promotes 
Dpb11 (DNA polymerase B-associated protein) to interact with 
MCM2-794–96. Phosphorylation of Sld3, in particular, recruits 
Cdc45 and GINS (Sld5, Psf1, Psf2, Psf3) to MCM2-7 and stimu-
lates the DDK-dependent phosphorylation of MCM297, as well as 
MCM4/698,99. These phosphorylation events allow opening of the 
MCM2/5 interface to extrude ssDNA that remains bound to Sld2/
Sld3/Dpb11100,101. The active unwinding CMG complex or “unwin-
dosome” is formed through the association of Cdc45 and GINS with 
MCM2-7 at the labile MCM2-MCM5 interface80,81 along the waist 
between the NTD and the CTD44,80,102. Cdc45 in particular blocks 
the MCM2-5 gate and prevents the loss of DNA from the central 
channel103. In the reverse mechanism, Cdc45 may also be impor-
tant for converting MCM2-7 encircled on dsDNA to encircling 
only a single DNA strand while excluding the other. Formation of 
the CMG complex widens the gap between the NTD and CTD at 
MCM2 and MCM5 while concomitantly narrowing the interface at 
the opposite MCM4 and MCM6 subunits. This induced spiral con-
figuration may contribute to coupled ATP hydrolysis, propagating 
a conformational change through the MCM2-7 complex to translo-
cate along and unwind duplex DNA44,103.

Interactions with DNA: views of the encircled strand
X-ray structures of hexameric helicases with oligonucleotides 
bound in the central channel (E1, E. coli Rho [EcRho], Bacillus 
stearothermophilus [Bst] DnaB, and Pyrococcus furiosus MCM 
[PfuMCM]) have informed our understanding of the contacts and 
conformations required for translocation along ssDNA. In these 
co-crystal structures, ssDNA is bound in a helical conformation 
in the central channel making direct contacts with each subunit  
(Figure 3). For E1 and Rho, the hexameric ring is proposed to 
remain closed, but conformational changes between subunits, cou-
pled with sequential ATP binding and hydrolysis around the ring, 
direct ssDNA through the central channel through contact with DNA 
binding loops in a staircase motion13,38,104. Each hexamer subunit 
interacts with one nucleotide of the oligo, predicating a step-size 
of one nucleotide per ATP hydrolyzed. This is consistent with the 
measured step-size of T7 gp4 of one base-pair unwound per dTTP 
hydrolyzed105. For DnaB, the crystal structure resembles more of 
a lock washer, where similar conformational changes throughout 
the quaternary structure facilitate movement, with a step-size of 
two nucleotides per ATP hydrolyzed, maintaining a cracked ring 
structure106. The ssDNA bound to the archaeal MCM seems to be 
trapped in a lateral orientation around the interior of the NTD, pos-
sibly identifying specific contacts during activation or unwinding, 
implying a step-size greater than one nucleotide per ATP hydro-
lyzed during translocation107. The EM structure of the intact eukary-
otic CMG complex bound to DNA is in a spiral or lock washer 
conformation44, more similar to the DnaB/ssDNA complex. The 
crack in the ring between the MCM2 and 5 subunits is again held 
in check by the Cdc45 and GINS subunits and helps to stabilize 

Figure 3. Conformational States of Hexameric Helicases Bound to the Encircled Strand. Space-filling representation of the C-terminal 
domain (E1 [SF3, 3’-5’] and DnaB [SF4, 5’-3’]) or N-terminal domain (Sso-Pfu hybrid [SF6, 3’-5’]) interacting with the encircled strand (purple). 
Also shown is the electron microscopy structure of the Drosophila Cdc45/MCM2-7/GINS complex (CMG) (SF6, 3’-5’) with color-coded subunits. 
The conformational states of the active translocating hexamers representing rings with subtle rises (E1) or obvious spirals (DnaB and CMG) 
in the structures as well as helical single-stranded DNA (ssDNA) are indicated in the schematics. The flat Sso-Pfu hybrid structure represents 
a nontranslocating state used to identify a novel lateral DNA binding site. The orange box arrow indicates the translocation direction of the 
hexamer relative to the encircled ssDNA.
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the spiral configuration (Figure 3). Of course, the impact and abso-
lute degree of spiraling, wrapping, or compaction of the encircled 
strand will need to be validated experimentally, most likely using 
single-molecule approaches to measure end-to-end distances dur-
ing loading and unwinding. Almost certainly the flat ring, the asym-
metrical spiral, and the cracked lock washer structures represent 
intermediates during helicase activation and unwinding, but both 
conformations will also need to be validated further with additional 
high-resolution structural studies or rigorous biophysical charac-
terizations to monitor the changes in the conformations.

Interactions with DNA: Impact of the excluded strand
Based on the structures and associated biochemical data, the steric 
exclusion (SE) model, where one strand is encircled and the other 
is physically excluded, has become the consensus opinion for 
unwinding for hexameric replication helicases (Figure 4)108. One 
caveat to this model is that it generally ignores any contributions 
of the excluded strand to unwinding. Electrostatic interactions with 
the excluded strand on the external surface of hexameric helicases 
have been noted for archaeal MCM and shown to be important for 
unwinding, contributing to the development of the steric exclusion 
and wrapping (SEW) model (Figure 4)17,109. Others have also noted 
that both ssDNA and dsDNA have a binding site on the external sur-
face of other helicases15,27,28. The dynamic and somewhat stochastic 
nature of unwinding has been attributed to interactions of ssDNA 
on the external surface of hexameric helicases E138, T4 gp41110, and 
DnaB111. In addition, subunits within the unwindosome complexes 

of SV40 L-Tag112 and CMG113 have been shown to interact with the 
excluded strand for loading and activation of unwinding. Intrigu-
ingly, DNA repair helicases have also been shown to sense damage 
or modifications on the excluded strand and stall unwinding114–117.

For SV40 L-Tag, initial binding to the origin may be directed by 
internal β-hairpins making direct contacts with the minor groove49 
and specific contacts of the origin binding domain (OBD) to the 
major groove118. It is not currently understood how this initial dimer 
contact nucleates assembly of a double hexamer around dsDNA. 
Once loaded, SV40 L-Tag is proposed to convert from encircling 
duplex DNA to encircling ssDNA by pumping and extruding one 
strand out through side-channels11,119. Conformational changes 
within internal β-hairpins may direct the translocating strand 
through the central channel, while extruding the opposing strand. 
Using single-molecule experiments, researchers have shown that 
DNA unwinding proceeds with a single hexamer of L-Tag in a steric 
exclusion mechanism that is somewhat conformational mobile and 
able to bypass bulky adducts during translocation120. In comparison, 
a novel mechanism has recently been proposed for E1 where duplex 
DNA enters the hexamer before being separated internally and 
forcing individual strands out through separate exits channels121. 
Of course, the steps and dynamics for how these hexameric heli-
cases convert from encircling duplex DNA to single strand sep-
arases by pumping DNA out through side-channels, opening of a 
gate, or through another unknown mechanism need to be visualized 
directly with high resolution. A recent EM structure shows the lead-
ing strand Pol ε ahead of the yeast CMG complex (at the CTD) and 
suggests a possible model where the encircled leading strand bends 
back and threads through a side-channel via the MCM2-5/Cdc45/
GINS gate to enter the polymerase active site122. Alternative models 
of replisome-DNA interactions were also proposed in this study.

With this emerging information, excluded or opposing strand inter-
actions shown in the SEW model (Figure 4) are poised to play 
multifaceted roles in loading, encircling, unwinding, and sensing 
of DNA. In the case of archaeal MCM, the external ssDNA binding 
path in the SEW model serpentines along the lateral length of the 
homohexamer, spanning the CTD and NTD, and even crossing and 
wrapping across multiple subunits (Graham & Trakselis, unpub-
lished data)17. The SEW model for archaeal MCM is analogous to 
a socket wrench, whereby the encircling of one strand represents 
the socket and external interactions with the excluded strand rep-
resent the directional ratchet controlling the speed and stabilization 
of unwinding. Whether the SEW model is conserved in all or most 
hexameric helicases and/or at what stages of helicase assembly it 
may occur remains to be determined. Currently, we have found that 
external interactions and dynamics with the excluded strand in the 
E. coli DnaB helicase are practically identical to that of SsoMCM, 
despite their opposing polarities (Carney & Trakselis, unpublished). 
On the other hand, for T7 gp4 the excluded ssDNA interacts with T7 
DNA polymerase to generate a replisome complex, where the heli-
case and polymerases are within one nucleotide of the fork junction 
and the helicase can make no external contact with the excluded 
strand105,123. Next, it will be important to determine which of the 
eukaryotic MCM subunits (MCM2–7) interact specifically with the 

Figure 4. DNA Unwinding Models for Hexameric Replication 
Helicases. Steric exclusion (SE) model encircles the translocating 
strand and physically separates the nontranslocating strand outside 
of the central channel. The steric exclusion and wrapping (SEW) 
model takes into account specific interactions within the central 
channel (compaction or spiraling) as well as external interactions 
(binding or wrapping) with the excluded strand. Blue arrows indicate 
the direction of movement of the DNA strands with respect to the 
hexamer.

15p1.801
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excluded strand or whether uniform binding sites have evolved on 
all subunits. It is intriguing that this external contact may help fill 
in some of the missing steps highlighted in the gray or black boxes 
depicted in Figure 2.

Although the structural features of the SEW model may be con-
served with various hexameric helicases, both the mechanistic 
roles and molecular interaction sites may be different. In the case 
of SsoMCM, disruption of external interactions through mutagen-
esis reduced unwinding efficiency (3’-5’)17, but analogous external 
mutations on DnaB show a stimulation in unwinding (5’-3’) (Carney 
& Trakselis, unpublished). Modification of the excluded strand 
to a morpholino oligo similarly stimulates the unwinding rate of 
T7 gp4124. Whether these effects result from opposite unwinding 
polarities or finely tuned control of unwinding rates and maintenance 
of the excluded strand requires further testing. However, detection 
and identification of these novel external interactions may provide 
a unique opportunity to target specific helicases for inhibition. As 
none of the different hexameric helicase families exhibit significant 
sequence homology outside of the center P-loop NTPase fold, novel 
exterior patches (e.g. between the CTD and the NTD) may provide 
idealized locations for specific targeting of small molecules that 
perturb unwinding through disruption of excluded strand contacts 
and avoid direct inhibition of the internal conserved ATPase site.

Future directions
Although significant advances in our understanding of hexameric 
helicase assembly, loading, and unwinding have been made over the 
past few years from quantitative biophysical characterizations and 
various high-resolution structures, more work is required to reveal 
specific mechanistic steps and transitions. For example, the essential 
components for the initial loading of hexameric helicases onto DNA 
are well described, but the conformational changes that occur within 
the hexamers during the encircling of ssDNA are still unknown. 
After all these years, the black box in the whole mechanism is still 
the structural conversion of the helicase from encircling dsDNA 
to the encircled ssDNA directing the polarity of translocation and 
unwinding, primarily for SF3 and SF6 enzymes. Although much is 
known about the loading and activation mechanism in the Gram-
negative E. coli system, far less is known about SF4 helicases in the 
Gram-positive organisms where DnaI acts as the loader65,125,126 or in 
bacteria which lack DnaC/DnaI loader homologs altogether127,128.

Although there is a wealth of structural information on the static 
hexameric helicases themselves, there is still much debate on the 

mechanics of helicase action. No longer is the focus directly on 
the structure of the helicase protein itself. Instead, it has switched 
from identifying conformational changes, transacting proteins, and 
post-translational modifications that reveal how duplex DNA is 
destabilized and the path it takes to be excluded. Finally, although 
the unwinding mechanism of hexameric helicases was thought to 
be as simple as excluding one strand from the central channel, new 
information highlighting the specificity and importance of interac-
tions with the nontranslocating strand have central implications on 
loading and unwinding mechanisms. It is these dynamic conforma-
tional steps from the viewpoint of both the helicase and the duplex 
DNA that will lead to the next transformational leap in replication 
helicase discovery.
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