
nanomaterials

Article

Large Optical Nonlinearity of the Activated Carbon
Nanoparticles Prepared by Laser Ablation

Yasin Orooji 1,* , Hamed Ghanbari Gol 2, Babak Jaleh 2,* , Mohammad Reza Rashidian Vaziri 3,*
and Mahtab Eslamipanah 2

����������
�������

Citation: Orooji, Y.; Ghanbari Gol,

H.; Jaleh, B.; Rashidian Vaziri, M.R.;

Eslamipanah, M. Large Optical

Nonlinearity of the Activated Carbon

Nanoparticles Prepared by Laser

Ablation. Nanomaterials 2021, 11, 737.

https://doi.org/10.3390/

nano11030737

Academic Editor: Giuliana Faggio

Received: 17 February 2021

Accepted: 11 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2 Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran;

hamed.gh053@gmail.com (H.G.G.); mahtabes740@gmail.com (M.E.)
3 Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute,

Tehran P.O. Box 14399511-13, Iran
* Correspondence: yasin@njfu.edu.cn (Y.O.); jaleh@basu.ac.ir (B.J.); rezaeerv@gmail.com (M.R.R.V.);

Tel.: +86-2585428071 (Y.O.); +98-9122114707 (B.J.); Fax: +86-2585427653 (Y.O.); +98-8138381470 (B.J.)

Abstract: Carbon nanoparticles (CNPs) with high porosity and great optical features can be used
as a luminescent material. One year later, the same group investigated the NLO properties CNPs
and boron-doped CNPs by 532 nm and 1064 nm laser excitations to uncover the underlying physical
mechanisms in their NLO response. Hence, a facile approach, laser ablation technique, was employed
for carbon nanoparticles (CNPs) synthesis from suspended activated carbon (AC). Morphological
properties of the prepared CNPs were studied by transmission electron microscopy (TEM) and
scanning electron microscopy (SEM). UV-Vis and fluorescence (FL) spectra were used to optical
properties investigation of CNPs. The size distribution of nanoparticles was evaluated using dynamic
light scattering (DLS). The nonlinear optical (NLO) coefficients of the synthesized CNPs were
determined by the Z-scan method. As a result, strong reverse saturable absorption and self-defocusing
effects were observed at the excitation wavelength of 442 nm laser irradiation. These effects were
ascribed to the presence of delocalized π-electrons in AC CNPs. To the best of our knowledge, this is
the first study investigating the NLO properties of the AC CNPs.

Keywords: activated carbon; carbon nanoparticles; laser ablation; nonlinear optical material

1. Introduction

Carbon is one of the most standout elements on the earth and can be formed in dif-
ferent forms such as carbon nanoparticles, carbon nanotube, and graphene [1,2]. Recently,
carbon-based nanomaterials, including carbon nanotubes (CNTs), CNPs, and graphene,
have been noticed due to their superior properties like high porosity, high adsorption
capacity, nontoxicity, adjustable morphology, and simple preparation [3,4]. CNPs with
small size, good biocompatibility and chemical stability, high hydrophilicity, and great
flexibility show interesting optical properties known as luminescent materials [5,6]. Their
great conductivity and electrochemical activity and high surface area have caused to ap-
plication of them in energy devices like batteries and supercapacitors [7–10]. It is worth
mentioning that CNPs are more interested than other carbon nanostructures due to their
facile and low-cost synthetic approaches containing physical and chemical methods. Ther-
mal/hydrothermal [11], electrochemical synthesis [12], and acidic oxidation [13] are some
CNPs chemical synthesis methods. Since chemical methods may be damaging to environ-
mental, physical methods such as plasma treatment [14] and laser ablation [15] can be used
as a suitable alternative for chemical methods.

Laser ablation in liquid (LAL) media is one of the simplest ecofriendly methods for
CNPs synthesis [15]. In the LAL process, size and morphology of the produced NPs depend
on both the laser parameters (wavelength, frequency, power, etc.) and the used liquid
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medium [16]. This promising method has a number of advantages such as decreasing the
effect of heat on the target, lowering the synthesis time, and using clean environments
without any chemical pollutions [17,18]. Furthermore, the synthesized NPs disperse in
the liquid media and produce colloidal suspensions during the LAL process, which can
simplify the utilization of the produced NPs for in vivo applications [17,19,20]. Some
researchers have reported the synthesis of CNPs using the LAL process of suspended
particles in liquid as targets. For example, Hu et al. synthesized luminescent CNPs by laser
ablation of dispersed carbon black in poly(ethylene glycol) solution [21].

Moreover, Małolepszy et al. used the laser ablation process for the synthesis of
fluorescent CNPs from suspended reduced graphene oxide in deionized water, isopropyl
alcohol (IPA), acetone, and PEG200 liquids [22]. Briefly speaking, there are three steps
in the LAL process of suspended particles in liquid as targets: first, when the pulsed
laser is focused and the radiation is started, it penetrates into the suspended particles [23].
In the second step, the laser-induced melting-evaporation occurs for the large particles
and produces atoms and molecules. Afterwards, atoms and molecules aggregate and
form nanostructures with different shapes and sizes [24]. In the third step, the thermal
ejection of electrons occurs from the nanostructure surface that leads to the formation of
positive charges which has as a result the laser-induced Coulomb explosion. Electrostatic
repulsion between different parts of the primary particles arises and causes the production
of finer particles due to the crushing of the larger ones [24]. AC is an ideal family of
carbon materials with porosity spaces which are surrounded with carbon atoms and has
special properties such as high surface area, large pore volumes, good thermostability at
high temperatures, and small pore sizes (<1 nm) properties [25–27]. Because of its unique
properties, AC can be used to CNPs preparation.

In semiconducting or insulating materials, single-photon linear absorption may occur
if the incident photon energy be of the bandgap energy order. This is a constant effect
independent of the incident light intensity. When this single-photon process becomes
intensity-dependent, two different effects of saturable absorption or reverse-saturable
absorption can occur. In the case of a two-level material, larger or smaller absorption
of the excited state concerning the ground state leads to reverse-saturable or saturable
absorption effects, respectively. In a saturable absorber, the absorption coefficient decreases
with increasing the light intensity; while in a reverse-saturable absorber, the situation is
exactly reverse because of the ground state depletion. At high-intensity optical fields, there
is also the possibility of bandgap bridging by synchronous absorption of more than one
photon, with the condition that sum of the photon energies exceeds the energy gap. These
kinds of NLO processes are called multiphoton absorption.

In the simplest case, just two photons are involved, and the process is known as two-
photon absorption. Materials with different dominant NLO processes have attracted a lot of
interest. For instance, saturable absorbers are used for Q-switching of high-power lasers [28].
Reverse-saturable absorbers and materials with two- and multi-photon absorptions are
also used as optical limiters and in nonlinear microscopy, 3D imaging, and nonlinear
spectroscopy [29]. In order to design and develop more efficient NLO devices, great
attention has turned to find materials with larger NLO response in recent years [30–32].

In quest of new nonlinear optical (NLO) materials besides graphenes, fullerenes, and
carbon nanotubes, little is known about the NLO properties of CNPs [33]. Recently, it was
noticed that CNPs possess comparable NLO properties to other types of NLO materials, such
as perovskites and antimonenes [34]. They can be easily and inexpensively synthesized and,
hence, are often regarded as favorable materials for NLO devices. Furthermore, they have
abundant delocalized-electrons that ensure their good NLO performance and make them
appropriate candidates in such applications [35]. In 2014, it was noticed that CNPs exhibit
negative nonlinear refractivity using a 532 nm laser source by the Z-scan method [33]. One
year later, the same group investigated the NLO properties CNPs and boron-doped CNPs by
532 nm and 1064 nm laser excitations to uncover the underlying physical mechanisms in their
NLO response [36]. Following these two pioneering works, subsequent studies in many other
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groups, especially in recent years, have focused on investigating the NLO properties of CNPs
and CNPs doped with other materials [34,35,37–41]. However, to the best of our knowledge,
there is no study on investigating the NLO properties of the AC CNPs, and much work is
required in this area.

Table 1 summarizes the other reports based on the used synthesis method of CNPs, their
size range, and the corresponding possible applications or interesting optical properties.

Table 1. Comparison of the synthesized carbon nanoparticles (CNPs) size by different methods.

Nanostructure CNPs Synthesis
Method CNPs Size (nm) Properties and Application Ref.

Carbon nanoparticles LAL 4–20 -Good photoluminescence
-Can be used for bioimaging [42]

Nitrogen-doped carbon
nanodots (N-CND) and
Starch Derived Carbon

Nanodots (C-CND)

microwave-assisted
hydrothermal

precursor carbonization

2.0 ± 0.24 (C-CND) and
2.4 ± 0.25 (N-CND)

-High photoluminescence quantum
yield
-Long-term stability
-Having stable emission

[43]

Boron-doped carbon
dots Microwave heating 2–6

-Robust blue fluorescence under UV
excitation
-Large nonlinear optical

[36]

Nitrogen-doped carbon
nanoparticles Microwave oven 5.5 ± 1.5 -Highly fluorescent [44]

Carbon nanoparticles Thermal pyrolysis 20–50
-Highly fluorescent
-Excellent photoluminescent
-Used as a metal sensing probe

[45]

Carbon nanoparticles Thermal carbonization -

-Synthesized nanoscale particle size
-Used as a supercapacitor
-Highly specific capacitance and
excellent long-term cycle stability

[9]

Carbon nanoparticles Stirring and reflux
method 115 - Improved release of the drugs [46]

Carbon nanoparticles

Dehydration of
hyaluronic acid and

carbonized hyaluronic
acid

<20

-Flexibility
-Biocompatible and low cytotoxicity
-Used for in vitro and in vivo
bioimaging

[47]

Carbon Nanoparticles

Hydrothermal
carbonization and
high-temperature

annealing

120 -Used as an anode for lithium-ion
Battery [48]

Carbon Nanoparticles Thermally-assisted
carbonization -

-synthesized nanoparticles in small
size
-Strong blue luminescence
-Used for sensing of metal ions

[49]

Carbon dots Microwave oven <10
-Highly biocompatible
-Great fluorescent property
-Used for cell imaging

[50]

Carbon Nanoparticles

acid treatment of
naturally occurring

d-glucose followed by
heating

<5 -Used for sensing of metal ions
-Used for in vivo imaging [51]
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Table 1. Cont.

Nanostructure CNPs Synthesis
Method CNPs Size (nm) Properties and Application Ref.

Carbon Nanoparticles Hydrothermal
treatment 20–40

- Highly photoluminescent and
photo-stability
-Low toxicity and good
biocompatibility
-Used for in vitro and in vivo
imaging

[52]

Carbon Nanoparticles Light-induced process 40
-Used for sensing of metal ions
-Used as a photocatalyst for
hydrogen evolution

[53]

Nitrogen-doped carbon
quantum dots Microwave-assisted 2.47 ± 0.84

-Size and surface controllable of
synthesized NPs
-Fluorescent emission
-Excellent solubility in water

[54]

Carbon nanoparticles Laser ablation in
n-heptane 23.84 -Large optical nonlinearities with

442 nm laser radiation This work

Herein, CNPs were prepared by LAL on the suspended AC in heptane medium.
Structural, optical, and NLO properties of the prepared CNPs were studied. Employing
the Z-scan method, it is shown that CNPs exhibit large optical nonlinearities by excitation
with 442 nm laser radiation.

2. Materials and Methods
2.1. Materials and Instruments

Commercial granular AC (Merck, Germany) with a mean diameter of 1.5 mm and-
specific surface area of 961.1 m2/g was utilized in this work [55]. A fiber laser (RFL-P30Q,
China) with the wavelength of 1064 nm, maximum power of 30 W, and frequency of 20 kHz
was used for the LAL process. To obtain homogenous suspension of AC and n-heptane,
the ultrasonic bath (DSA100-SK2-4.0L, China) with voltage of 220 V, power of 100 W, and
frequency of 40 kHz was utilized. The fabricated colloidal samples’ optical properties
were perused using ultraviolet-visible spectroscopy (UV-Vis, JASCO V-630, Japan) and
fluorescence spectroscopy (Perkin Elmer LS50B, United Kingdom) techniques. DLS (Ze-
tasize Nano ZS, Malvern) technique was used to determine the size distribution profile
of CNPs. SEM (TESCAN MIRA3-XMU, Brno-Kohoutovice, Czech Republic) and TEM
(CM120, Netherlands) images were used for morphological investigation of nanoparticles.
Energy-dispersive X-ray spectroscopy (EDX) assay was used to determine the presence
of elements in CNPs. NLO coefficients of the fabricated samples were measured by the
Z-scan method.

2.2. Laser Ablation of Suspended AC

The laser ablation was carried out in n-heptane medium. To this aim, 5 mg of AC
was dispersed in 10 mL of n-heptane solvent using 20 min ultrasonication. Afterwards,
the dispersion was exposed to laser irradiation for 130 min. The color of suspension was
changed to yellowish during the laser irradiation, which confirmed the CNPs formation.
Finally, the irradiated sample was filtered and dried. Figure 1 illustrates the schematic
representation of the synthesis process.
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Figure 1. Schematic representation of the adopted experimental procedure for preparation of CNPs.

2.3. Z-Scan Measurements

The well-known Z-scan method was used for measuring the NLO coefficients. Z-scan is
a rapid, easy, and sensitive method for measuring the NLO coefficients of materials [56,57].
This method has attracted much interest and is being extensively used to determine the NLO
coefficients of materials [58]. Figure 2 depicts the scheme of the used experimental Z-scan
setup in this study. The beam splitter divides the emitted laser beam (CW He-Cd, 442 nm,
150 mW). The first power meter (power meter 1) measures the power of the first half as
the reference power. A converging lens (f = 25 cm) focuses the other half of the laser beam
(spot size ~20 µm at focus). This divided part of the laser beam passes respectively through
the sample and the aperture and reaches the second power meter (power meter 2), which
measures its power as the signal power. The diameter of the used aperture was 1.5 mm in the
acceptable range for diameter of apertures in Z-scan measurements [59]. The one-dimensional
translation stage moves the position of the sample along the optical axis (the Z-axis). The
normalized transmittance T was continuously measured by calculating the ratio of signal
to reference beam powers. The Z-scan measurement system components were placed on a
firm optical bench to reduce the adverse vibration noise effects. The measurements were also
made in the dark environment to minimize the noise from the interference of extraneous light.
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Theoretically, at high-intensity fields near the focal point of the converging lens, the
sample behaves like a feeble lens whose focal length is proportional to the nonlinear
refractive index n2 of the sample and the position along the Z axis [60]. In the so-called
closed-aperture Z-scan, the presence of the far-field aperture enables the setup to analyze
the tiny distortions induced by this weak n2–dependent lens in the signal beam [61]. By
lateral displacement of the aperture from the beam propagation axis, the open-aperture
configuration, the nonlinear absorption coefficient will be measured by recording the entire
signal beam. Without the aperture, the induced tiny distortions by the feeble n2–dependent
lens are insignificant and the changes of the signal beam power are only due to the NLO
absorption of the sample [62]. The required curve equations for fitting on the normalized
transmittance data and finding the NLO constants [63] can be theoretically obtained by
describing the propagation of laser beam in the lens-like media by a suitable model [64].

3. Results and Discussion

For morphological characterization of the fabricated CNPs by SEM and TEM analyses,
NPs colloidal solution was dried on laboratory slides. As shown in Figure 3a–c, CNPs have
been successfully formed in irregular spherical shapes due to the LAL process. Furthermore,
the EDX spectra were utilized to analyze the presence of elements (Figure 4). As shown
in Figure 4a,b, the synthesized sample has more amount of C element compared with
laboratory slide.
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Figure 4. Energy-dispersive X-ray spectroscopy (EDX) spectra of (a) laboratory slide and (b) CNPs.

UV-Vis and fluorescence (FL) spectra were recorded to study the linear optical prop-
erties of the synthesized CNPs. Figure 5 demonstrates the UV-Vis spectrum of the CNPs
suspension. Generally, CNPs have absorption peaks in the range of 180–280 nm [5]. Ac-
cording to Figure 5, three absorption peaks appear at 227 nm, 252 nm, and 260 nm, which
are related to the π-π* transition of C=C bonds in CNPs [43]. The weak absorption peaks at
around 300 nm appear probably due to n-heptane molecules or their decomposition [12].
In addition, the obtained UV-Vis spectra of CNPs has more number of absorption peak
compared with UV-Vis spectra of the prepared CNPs by LAL method in water [65,66].
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The CNPs FL emission spectra at different excitation wavelengths were recorded. The
results are shown in Figure 6 and listed in Table 2. It is clear that the maximum FL emission
of CNPs is at 436 nm by exciting the sample at the wavelength of 360 nm. Moreover,
a red shift can be discerned in the maximum FL emission of the sample by increasing
the excitation wavelength. The peak intensity also decreases by increasing the excitation
wavelength. Therefore, the FL emission of CNPs depends on the excitation wavelength,
which is known to be due to the inherent size effect of CNPs [67].

Table 2. The fluorescence wavelength at different excitation wavelength.

Excitation Wavelength (nm) Fluorescence Wavelength (nm)

320 395
340 421
360 435
372 442
380 449
420 477
440 494
460 514

DLS measurements determined the size and size distribution of the fabricated CNPs.
As shown in Figure 7, the size of suspended CNPs in n-heptane is in the range of 2–4 nm
and 18–28 nm, and their average size is 23.84 nm.
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To study the structural properties, Raman characterization of the laboratory slide, AC,
and the fabricated sample were performed at room temperature. The obtained results are
shown in Figure 8. As can be verified, two peaks at approximately 1340 cm−1 and 1600 cm−1

are observable for AC spectrum, which are related to the D (the diamond) and the G (the
graphitic) bands, respectively [68]. The D band of CNPs appeared at about 1350 cm−1, and
the intensity of both D and G bands was reduced after laser irradiation. The D and the
G bands have appeared due to the Sp3-bonded structure and the Sp2 bonds vibrations,
respectively [68,69]. Compared with the synthesized CNPs in water, the intensity difference
between D and G bands is lower [69], suggesting that the decomposition of n-heptane as
an organic solvent may be enhanced which lead to carbon species fabrication [70].
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The Z-scan technique determined NLO coefficients of the CNPs. Figure 9 shows the
results of open- and closed-aperture Z-scan measurements. The next equation was used
for fitting the open-aperture data and finding the value of β [71,72]:

Topen(z) =
ln(1 + q0)

q0
(1)

With
q0 =

βI0Leff

1 + x2 (2)

where x = z/z0 and Leff = (1 − exp(−α0L))/α0 is the effective thickness, with α0 and L
being the linear absorption coefficient and the sample real thickness, respectively. z0 and I0
are also the Rayleigh length and the on-axis intensity at the focus of the converging lens.

Visual inspection of Figure 9b indicates the asymmetric shape of the Z-scan curve,
which implies the large NLO response of the prepared CNPs. When this is the case, the
general Z-scan theory based on the small phase shift approximation [57] cannot well fit the
measured data, and an extended Z-scan theory should be used instead [72]. Therefore, the
next equation was applied as the fitting function for determining the value of n2 [72]:

Tclosed(z) =
1

1 − (4x−η)

(1+x2)
2
(1+q0)

∆Φ0 +
(4+η2)

(1+x2)
3
(1+q0)

2 ∆Φ02
(3)

where η = β/(2kn2) and ∆Φ0 = kn2 I0Leff. Hence, after extracting the value of β by fitting
Equation (1) on the open-aperture data, the value of n2 was obtained using Equation
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(3) as the fitting function for closed-aperture results Z-scan measurements. Nonlinear
least-squares analysis was implemented in MATLAB for fitting these two equations on the
z-scan experimental data. The extracted values of β and n2 for the synthesized CNPs are
listed in Table 3.

Table 3. The NLO constants n2 and β of the synthesized CNPs.

n2 (cm2/W) β (cm/W)

−1.15 ± 0.09 × 10−9 1.49 ± 0.11 × 10−4
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The positive value of β is compatible with the observable valley in the open-aperture
signal in Figure 9a and indicates that reverse saturable absorption is the dominant non-
linear absorption mechanism in CNPs, which is consistent with a number of previous
reports [33–35,38,40,73]. The observed strong reverse saturable absorption response of
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the synthesized AC CNPs in this work elucidates how they can be promising candidates
for optical limiting applications. The negative value of the nonlinear refractive index in
Table 2 is also compatible with the discernible peak-valley configuration (i.e., a pre-focal
transmission maximum followed by the post-focal transmission minimum) in Figure 9b,
which is also consistent with some previous studies [33,40].

The presence of π-electrons that can delocalize within the backbone of the organic
compounds is considered the major reason for observation of NLO properties in these
materials [74,75]. NLO properties that originate from π-electrons of sp2 hybridized carbon
in graphene and its derivatives have also attracted great interest [76,77]. Regarding the
CNPs, it is recently shown that their NLO properties are caused by induction of higher
absorption cross sections of the excited-states by π-conjugated structure [35] and the ratio
of sp2 and sp3 bonded carbon atoms [33]. As it is indicated before, the D and the G bands in
Figure 8 are due to the Sp3 and the Sp2 bond vibrations, respectively. As can be verified in
this figure, the Sp2 carbon atoms are dominant in the laser fabricated AC CNPs, explaining
the large optical nonlinearities observed in this material.

4. Conclusions

Due to their favorable characteristics, CNPs are now widely used in various fields
such as biological imaging, drug delivery, fluorescent sensor design, multicolor LED
production, energy conversion, and storage, etc. [78]. Indeed, the low cost and synthesis
facility of CNPs have made them promising nanomaterials for optoelectronic and photonic
applications. In this paper, for the first time to our knowledge, it is shown that the
synthesized AC CNPs exhibit large NLO refractivity and absorption by excitation with
442 nm laser radiation. The present results indicate that AC CNPs are also very promising
candidates for designing NLO devices and for various other photonic applications. We
expect this first study on the NLO properties of the AC CNPs to foster several other groups
investigating the NLO properties of AC CNPs with other laser excitation characteristics.
Uncovering the underlying physical mechanisms in the NLO response with more details
and functionalization of the AC CNPs in NLO devices are the other directions that can be
followed up in future studies.
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54. Arcudi, F.; Ðord̄ević, L.; Prato, M. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped
Carbon NanoDots. Angew. Chem. 2016, 128, 2147–2152. [CrossRef]

55. Jaleh, B.; Rouzbahani, M.G.; Abedi, K.; Azizian, S.; Ebrahimi, H.; Nasrollahzadeh, M.; Varma, R.S. Photocatalytic decomposition
of VOCs by AC–TiO2 and EG–TiO2 nanocomposites. Clean Technol. Environ. Policy 2019, 21, 1259–1268. [CrossRef]

56. Sheik-Bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n2 measurements. Opt. Lett. 1989, 14, 955–957.
[CrossRef]

57. Sheik-Bahae, M.; Said, A.A.; Wei, T.-H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a
single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [CrossRef]

58. Van Stryland, E.W.; Sheik-Bahae, M. Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, 1st ed.;
Routledge: London, UK, 2018; pp. 671–708.

59. MR, R.V. Role of the aperture in Z-scan experiments: A parametric study. Chin. Phys. B 2015, 24, 114206.
60. Vaziri, M.R. Comment on “Nonlinear refraction measurements of materials using the moiré deflectometry”. Opt. Commun. 2015,

357, 200–201. [CrossRef]

http://doi.org/10.1039/C4RA04714A
http://doi.org/10.1039/D0MA00106F
http://doi.org/10.1039/D0TC01867H
http://doi.org/10.1016/j.carbon.2014.11.032
http://doi.org/10.1016/j.dyepig.2016.01.005
http://doi.org/10.1016/j.optlastec.2019.105776
http://doi.org/10.1016/j.optmat.2019.109216
http://doi.org/10.1039/C6RA18837K
http://doi.org/10.1016/j.optlastec.2015.05.010
http://doi.org/10.1038/srep28557
http://doi.org/10.1039/C5TA10027E
http://doi.org/10.1016/j.jlumin.2014.12.048
http://doi.org/10.1016/j.carbon.2016.01.094
http://doi.org/10.1039/C4NR07422J
http://www.ncbi.nlm.nih.gov/pubmed/25732701
http://doi.org/10.1039/C5RA03482E
http://doi.org/10.1016/S1872-5805(16)60008-2
http://doi.org/10.1186/s12951-015-0148-7
http://doi.org/10.1016/j.snb.2015.12.071
http://doi.org/10.1039/C5TC02057C
http://doi.org/10.1039/C4TA05155F
http://doi.org/10.1002/ange.201510158
http://doi.org/10.1007/s10098-019-01702-3
http://doi.org/10.1364/OL.14.000955
http://doi.org/10.1109/3.53394
http://doi.org/10.1016/j.optcom.2014.09.017


Nanomaterials 2021, 11, 737 15 of 15

61. Omidvar, A.; RashidianVaziri, M.; Jaleh, B. Enhancing the nonlinear optical properties of graphene oxide by repairing with
palladium nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 2018, 103, 239–245. [CrossRef]

62. Fakhri, P.; Vaziri, M.R.; Jaleh, B.; Shabestari, N.P. Nonlocal nonlinear optical response of graphene oxide-Au nanoparticles
dispersed in different solvents. J. Opt. 2015, 18, 015502. [CrossRef]

63. Vaziri, M.R.R. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.
Appl. Opt. 2013, 52, 4843–4848. [CrossRef] [PubMed]

64. Vaziri, M.R. Describing the propagation of intense laser pulses in nonlinear Kerr media using the ducting model. Laser Phys 2013,
23, 105401. [CrossRef]

65. Ismail, R.A.; Mohsin, M.H.; Ali, A.K.; Hassoon, K.I.; Erten-Ela, S. Preparation and characterization of carbon nanotubes by pulsed
laser ablation in water for optoelectronic application. Phys. E Low Dimens. Syst. Nanostruct. 2020, 119, 113997. [CrossRef]

66. Ganash, E.A.; Al-Jabarti, G.A.; Altuwirqi, R.M. The synthesis of carbon-based nanomaterials by pulsed laser ablation in water.
Mater. Res. Express 2019, 7, 015002. [CrossRef]

67. Huang, H.; Lv, J.-J.; Zhou, D.-L.; Bao, N.; Xu, Y.; Wang, A.-J.; Feng, J.-J. One-pot green synthesis of nitrogen-doped carbon
nanoparticles as fluorescent probes for mercury ions. RSC Adv. 2013, 3, 21691–21696. [CrossRef]

68. Le, K.C.; Lefumeux, C.; Pino, T. Differential Raman backscattering cross sections of black carbon nanoparticles. Sci Rep. 2017, 7,
1–9. [CrossRef]

69. Cárdenas, J.F.; Cadenbach, T.; Zhang, Z.-B.; Costa-Vera, C.; Debut, A.; Vaca, A.; Zhang, S.-L.; Paz, J. Raman spectroscopy of carbon
nano-particles synthesized by laser ablation of graphite in water. Rev. Mex. Fis. 2017, 63, 71–75.

70. Zhang, D.; Zhang, C.; Liu, J.; Chen, Q.; Zhu, X.; Liang, C. Carbon-encapsulated metal/metal carbide/metal oxide core–shell
nanostructures generated by laser ablation of metals in organic solvents. ACS Appl. Nano Mater. 2018, 2, 28–39. [CrossRef]

71. Zeinali, M.; Jaleh, B.; Vaziri, M.R.; Omidvar, A. Study of nonlinear optical properties of TiO2–polystyrene nanocomposite films.
Quantum Electron. 2019, 49, 951. [CrossRef]

72. Kwak, C.H.; Lee, Y.L.; Kim, S.G. Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous
As2S3 thin film. JOSA B 1999, 16, 600–604. [CrossRef]

73. Belousova, I.M.; Videnichev, D.A.; Kislyakov, I.M.; Krisko, T.K.; Rozhkova, N.N.; Rozhkov, S.S. Comparative studies of optical
limiting in fullerene and shungite nanocarbon aqueous dispersions. Opt. Mater. Express 2015, 5, 169–175. [CrossRef]

74. De La Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Role of structural factors in the nonlinear optical properties of
phthalocyanines and related compounds. Chem. Rev. 2004, 104, 3723–3750. [CrossRef]

75. Barlow, S.; Marder, S.R. Nonlinear Optical Properties of Organic Materials; Wiley-VCH Verlag GmbH and Co. KGaA: Hoboken, NJ,
USA, 2007.

76. Cao, L.; Sahu, S.; Anilkumar, P.; Kong, C.Y.; Sun, Y.-P. Linear and nonlinear optical properties of modified graphene-based
materials. MRS Bull. 2012, 37, 1283. [CrossRef]

77. Wang, J.; Chen, Y.; Li, R.; Dong, H.; Ju, Y.; He, J.; Fan, J.; Wang, K.; Liao, K.-S.; Zhang, L. Graphene and carbon nanotube polymer
composites for laser protection. J. Inorg. Organomet. Polym. Mater. 2011, 21, 736–746. [CrossRef]

78. Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020,
10, 2316. [CrossRef] [PubMed]

http://doi.org/10.1016/j.physe.2018.06.013
http://doi.org/10.1088/2040-8978/18/1/015502
http://doi.org/10.1364/AO.52.004843
http://www.ncbi.nlm.nih.gov/pubmed/23852196
http://doi.org/10.1088/1054-660X/23/10/105401
http://doi.org/10.1016/j.physe.2020.113997
http://doi.org/10.1088/2053-1591/ab572b
http://doi.org/10.1039/c3ra43452d
http://doi.org/10.1038/s41598-017-17300-6
http://doi.org/10.1021/acsanm.8b01541
http://doi.org/10.1070/QEL16923
http://doi.org/10.1364/JOSAB.16.000600
http://doi.org/10.1364/OME.5.000169
http://doi.org/10.1021/cr030206t
http://doi.org/10.1557/mrs.2012.178
http://doi.org/10.1007/s10904-011-9581-8
http://doi.org/10.3390/nano10112316
http://www.ncbi.nlm.nih.gov/pubmed/33238367

	Introduction 
	Materials and Methods 
	Materials and Instruments 
	Laser Ablation of Suspended AC 
	Z-Scan Measurements 

	Results and Discussion 
	Conclusions 
	References

