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In everyday life, we rely on human experts to make a variety of complex decisions,
such as medical diagnoses. These decisions are typically made through some form of
weakly guided learning, a form of learning in which decision expertise is gained through
labeled examples rather than explicit instructions. Expert decisions can significantly
affect people other than the decision-maker (for example, teammates, clients, or
patients), but may seem cryptic and mysterious to them. It is therefore desirable for
the decision-maker to explain the rationale behind these decisions to others. This,
however, can be difficult to do. Often, the expert has a “gut feeling” for what the correct
decision is, but may have difficulty giving an objective set of criteria for arriving at it.
Explainability of human expert decisions, i.e., the extent to which experts can make
their decisions understandable to others, has not been studied systematically. Here,
we characterize the explainability of human decision-making, using binary categorical
decisions about visual objects as an illustrative example. We trained a group of “expert”
subjects to categorize novel, naturalistic 3-D objects called “digital embryos” into one of
two hitherto unknown categories, using a weakly guided learning paradigm. We then
asked the expert subjects to provide a written explanation for each binary decision
they made. These experiments generated several intriguing findings. First, the expert’s
explanations modestly improve the categorization performance of naïve users (paired
t-tests, p < 0.05). Second, this improvement differed significantly between explanations.
In particular, explanations that pointed to a spatially localized region of the object
improved the user’s performance much better than explanations that referred to global
features. Third, neither experts nor naïve subjects were able to reliably predict the degree
of improvement for a given explanation. Finally, significant bias effects were observed,
where naïve subjects rated an explanation significantly higher when told it comes from
an expert user, compared to the rating of the same explanation when told it comes
from another non-expert, suggesting a variant of the Asch conformity effect. Together,
our results characterize, for the first time, the various issues, both methodological and
conceptual, underlying the explainability of human decisions.
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subjective explainability
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INTRODUCTION

One of the great successes of machine learning has been that
intelligent machines can now accomplish highly complex tasks
that once required highly trained, highly skilled human experts
(Seger, 1994; LeCun et al., 2015; Goodfellow et al., 2016; Kim
et al., 2016; Li et al., 2016; Hegdé and Bart, 2017). To cite but
one instance, ‘expert’ machines can accurately predict which loan
applicants are likely to pay back the loan, and which applicants
are likely to default. Machine learning deals with instances of such
astonishing feats of decision-making under real-world situations
(Goodfellow et al., 2016; Kim et al., 2016).

Quite recently, however, a problem associated with these
success stories has come to the fore: the process by which the
machine arrived at the decision is abstract and complex enough
that it can be often impossible to fathom how the machine arrived
at the given decision. This makes it harder for the human ‘clients’
of these ‘server’ machines to have confidence in the server’s
decision and to rely on it (de Visser, 2012; Ribeiro et al., 2016c).
The extent to which a machine’s decision can be accounted for
has come to be referred to as the ‘explainability’ of the decision
(Einstein, 1985; Dale et al., 2010; Van Belle et al., 2016).

Explainability issues are especially common in a style of
machine learning called deep learning. In deep learning, a
multi-layered artificial neural network solves a given real-world
decision task by learning from a large number of labeled
examples, without being explicitly directed as to what to learn
(LeCun et al., 2015; Kooi et al., 2017; Cao et al., 2018). For
instance, in the aforementioned example of bank loans, the
machine would be given a large number of actual client profiles,
loan information that are appropriately annotated, or ‘labeled,’
as whether the given client defaulted on the given loan or not
(Buyya et al., 2016; Crosman, 2016). Similarly, self-driving cars
learn from a large number of suitably labeled pictures, videos and
other driving-related data.

It is easy enough to intuit why learning (especially deep
learning) and explainability are closely related. If a given task can
be based on some type of straight-forward decision rule (e.g., if
A, then B), then the task can be performed without resorting
to training examples. Explainability is a moot issue in such
cases, because the decision-maker (or the server, in the present
context) need only cite the rule to explain his/her decision. On the
other hand, when the underlying data are complex and variable
enough, they tend to defy simple rule-based decisions, so that the
task must be learned based on sufficiently large number of labeled
examples. That is, absence of a readily specifiable decision rule is
typically what makes learned decisions necessary in the first place.
When deep learning is used to learn these decisions, explaining
them becomes even harder, because deep learning often involves
a very large number of parameters (millions or billions) that are
organized purely for the efficiency of learning and not to be easily
understood by humans. Thus, explainability is intricately related
to deep learning, and vice versa.

There are notable parallels between decision-making by
machine experts and by human experts. Many human experts
also learn from labeled examples. For instance, an expert
radiologist who learns to look for diagnostic patterns of breast

cancer in mammograms cannot be explicitly taught exact rules
as to what to look for. While radiological trainees are typically
told where to look and what to look for (Homer, 1980;
Nodine and Krupinski, 1998; Drew et al., 2013; Grimm et al.,
2014), the underlying diagnostic image patterns are too abstract
and variable, and the similarity between cancerous and non-
cancerous image patterns are too subtle, for rule-based decision-
making. Instead, the radiologist must learn from a sufficiently
large number of labeled examples as to what constitutes possible
cancer and what does not. But expert radiologists typically find it
all but impossible to put into words, or explain, to their patients,
insurance companies or even fellow experts, exactly how they
arrived at the decision in precise enough terms so that another
person can arrive at the same conclusion based on the same
underlying data (Sevilla and Hegde, 2017).

In the context of biological systems, there are no broadly
accepted terminology or definitions of explainability or related
concepts. Therefore, we adopt in this study the following
functional definitions, informed by the corresponding antecedent
machine learning counterparts. We coined the term “weakly
guided learning” to refer to a type of perceptual (or sensory)
learning (Fahle and Tomaso, 2002), in which the subject learns to
perform statistical decision-making using implicitly or explicitly
labeled examples without being told what to learn or how to
decide. For example, rather than being instructed that “flowers
of the apple tree have five petals,” the learner is simply presented
with examples of flowers, some labeled “apple” or “not apple,” and
needs to learn without additional guidance. Thus, weak guidance
is provided in the form of labels, but no additional guidance is
given. In this sense, weakly guided learning is distinct from other
forms of biological learning, or the machine learning concepts
of both supervised and unsupervised learning. Similarly, we
define explainability as the extent to which the criteria underlying
a given decision can be stated in explicit, objective terms
so that another observer is likely to arrive at the same
decision by applying the same decision-making methodology
in the explanation to the same underlying data. Note that by
this operational definition, the notion of explainability of an
explanation is comparable to the notion of implementability (e.g.,
of guidelines) in fields such as medicine (Shiffman et al., 2005).

Given the underlying similarity of decision-making among
highly trained human experts in variety of fields, it is likely that
explainability is an issue of great import in a variety of fields
involving human experts, not just medicine. For one thing, it is
abundantly clear that weakly guided learning, sometimes referred
to as implicit learning in the cognitive psychological literature
(Seger, 1994; Forkstam and Petersson, 2005; Jiang and Leung,
2005; Bart et al., 2008; Hegdé et al., 2008; Chen and Hegdé, 2010;
Kromrey et al., 2010; Gao and Wilson, 2014), is a common mode
of human learning. However, while explainability of machine
decisions have recently received some attention (de Visser, 2012;
Goldstein et al., 2015; Gunning, 2016; Lipton, 2016; Ribeiro et al.,
2016a,b; Van Belle et al., 2016; Doshi-Velez and Kim, 2017;
Fernandes et al., 2017; Ferrante, 2017), explainability of human
decisions has not been systematically studied at all. Obviously,
our lack of understanding represents a major barrier to progress
in our understanding of human decision-making.
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The goal of the present study is to take the first necessary steps
to help overcome this barrier. To this end, we will use human
categorical decision-making as an illustrative case and utilize a
set of rigorous, machine learning-inspired methodological tools
we have previously described (Bart et al., 2008; Hegdé et al.,
2008; Kromrey et al., 2010; Hauffen et al., 2012). For clarity
and convenience, we designate the original decision-maker as
the ‘server’ and the subjects who subsequently utilize the servers’
decisions and explanations as the ‘clients.’ Note that, in principle,
servers and/or clients can be either experts or naïve subjects
themselves. Using this framework, we will illustrate some first-
order principles of human explainability, and the methodological
issues, that underlie human decision-making.

MATERIALS AND METHODS

Subjects
A total of 13 subjects participated in this study. All were
adult volunteers with normal or corrected-to-normal vision. All
subjects gave written informed consent prior to participating in
the study. All procedures related to study subjects were approved
in advance by the Institutional Review Board (IRB) of Augusta
University, where the experiments were carried out.

Stimuli
Stimuli consisted of two categories of novel, naturalistic 3-D
objects called ‘digital embryos.’ We have previously outlined the
usefulness of these objects as rigorous methodological tools for
studies involving recognition and learning of objects and object
categories (Bart et al., 2008; Hegdé et al., 2008; Kromrey et al.,
2010; Hauffen et al., 2012), which we will summarize here briefly.
First, this methodology allows the user to precisely specify all
aspects of object shape and category properties (Figure 1A),
so that the underlying categorical decision can be specified
and analyzed in precise, machine learning terms (Bart et al.,
2008; Hegdé et al., 2008; Kromrey et al., 2010; Hauffen et al.,
2012). This is especially useful in the present study, which
aims to ‘port’ the machine learning concept of explainability
to cognitive science. Second, this methodology also allows the
experimenter to systematically manipulate all aspects of the
underlying categorization task, including but not limited to object
appearance and task difficulty. We took advantage of this to
ensure that the categorization task was, on the one hand, difficult
enough so that it cannot be performed above chance levels
without first acquiring the requisite perceptual expertise. We also
ensured, on the other hand, that the task was easy enough that
sufficiently large number of healthy but naïve subjects could learn
the task to criterion within a few hundred trials spread over
several sessions (Bart et al., 2008; Hegdé et al., 2008). Third, as
we have also shown before, both humans and monkeys can learn
categories using a form of weakly guided learning (Bart et al.,
2008; Hegdé et al., 2008; Kromrey et al., 2010). This is especially
useful in the context of the present study because, as noted above,
explainability issues are particularly prominent in tasks learned
in a weakly guided manner.

We created two categories of digital embryos using principal
components analysis (PCA) of 400 randomly generated embryos
each with 1474 vertices, using the methodology described by us
previously (Hauffen et al., 2012) (also see Figure 1A). Briefly,
principal components (PCs) represent the eigenvectors of this
400× 1474 matrix. To create each given category, we used a 2-D
Gaussian point process whose mean and variance were specified
as 2-D coordinates of a PC space whose two axes were given
by PCs 2 and 3, i.e., eigenvectors with the second and third
highest eigenvalues. These two PCs were selected because, by
visual examination, they produced subtler shapes. Using pilot
experiments, we adjusted the F ratio of the two categories (i.e.,
between-category variance/within-category variance) so that, on
the one hand, the categorization task could not be performed
above chance levels without learning the categories, and, on the
other, the task was easy enough that the subjects were able to learn
it eventually. Individual embryos were rendered using programs
custom-written using the OpenGL graphics toolkit1 and written
to disk as standard BMP images.

General Procedures
Experiments were controlled and the data was collected using
scripts custom-written in the Presentation scripting language2.
All experiments were carried out using randomized blocks of
40 trials each. Individual trials, trial blocks and experimental
sessions were self-paced by the subject for maximum comfort.

Subjects typically carried out multiple blocks during each
session, and participated in multiple sessions spread over several
days and weeks (see section “Results”). At the beginning of each
session, subjects carried out practice trials to help ensure that they
were thoroughly familiar with the task paradigm or, if the subjects
were continuing with a task paradigm they already knew, to help
ensure that they were adequately ‘warmed up.’ Data from practice
trials were discarded.

Experiment 1: Learning-Dependent
Changes in Categorization Performance
This experiment was carried out in three successive phases as
described below. Each phase used a slight variation of the trial
paradigm that we have described before (Bart et al., 2008; Hegdé
et al., 2008; Kromrey et al., 2010).

Pre-training Test Phase: Measuring the Baseline
Performance of the Servers
This phase consisted of two blocks of trials. Each trial began
with the presentation of a small ‘+’ sign (0.4◦ visual angle)
on a neutral gray background (not shown). When the subject
indicated readiness by pressing a designated key, the ‘+’ sign
was replaced by three digital embryos, each subtending about 6◦
(Figure 1B). The embryos on the left and right of center were
sample embryos, each randomly drawn from the corresponding
category P or Q, noted with the appropriate category label (white
letters in Figure 1B). The center embryo was the query (or test)
embryo, drawn randomly from category P or Q, depending on

1https://opengl.org/
2http://www.neurobs.com/
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FIGURE 1 | Stimuli and trial paradigm. (A) Digital embryo categories P and Q used in this study (blue and red symbols, respectively, in the scatterplot). Each plotting
symbol in the scatterplot represents an individual embryo. The x coordinate of each given embryo represents the loading of principal component 2 (PC2) in the
eigenspace (or shape space) of this set of embryos. Similarly, the y coordinate of the given embryo represents the loading for PC3. Thus, the 3D shape of a given
embryo is fully specified by specifying its coordinates, and the categories are fully specified by specifying the mean (i.e., 2D center) and the spread (i.e., 2D variance)
of the 2D Gaussian distribution. For visual clarity, the x- and the y-axes are plotted to different scales. Arrows denote individual embryos from each category selected
to help illustrate the variations in shape characteristics specified by either PC. See text for details. (B) Task paradigm during the training phase. During each trial,
subjects performed a binary categorization task. This panel illustrates a typical trial screen, in which the subjects were presented with three embryos. The left and
right embryos are sample embryos randomly drawn from the category denoted by the appropriate category label (white letters beneath the embryos). The center
embryo is the query (or test) embryo. The subject’s task was to classify the center embryo into either category. Subjects were allowed to view the embryos and
toggle their categorical report (yellow letter beneath the center embryo) ad libitum, and were required to finalize the reported category by pressing a separate key.
After the subjects finalized their report, they received feedback in the form of the actual category label of the query embryo (i.e., center embryo), which appeared
beneath the reported category label. The color of the feedback label denoted whether the subject’s response was correct, so that the feedback label was green or
red, depending on whether the response was correct (shown in this figure) or incorrect (not shown), respectively. The trial paradigm during the testing phase was
identical (not shown), except that no feedback was provided. See text for details.
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the trial. The spatial location of each embryo was jittered by up
to 0.8◦, so as to minimize the chance that the subject performed
the task by pixelwise comparison of the embryos. The left vs.
right location of the sample embryos from a given category, and
the category from which the query embryo was drawn, were
randomized from one trial to the next.

Task
Subjects were asked to view the embryos ad libitum and indicate,
using a toggle key, which of the two categories the query embryo
was drawn from. The subject’s response appeared as a yellow letter
beneath the query embryo (Figure 1B). After the subjects pressed
a separate key to finalize their categorical response, the next trial
started. That is, subjects received no feedback after their response.

Training Phase: Weakly Guided Learning of
Categories by Servers
This phase was identical to the pre-training test phase above,
except as follows: first, during each trial, after the subjects
finalized their categorical response, they received feedback in the
form of the actual category label of the query embryo (green
letter at bottom center, Figure 1B). Subjects were allowed to re-
examine the stimuli ad libitum in view of the feedback. Note that
this task paradigm fully meets the aforementioned operational
definition of weakly guided learning, because subjects are not told
what to learn, and had to learn the categories solely from labeled
examples.

Second, subjects carried out as many trial blocks as necessary
until they were trained to criterion. Subjects were considered
trained to criterion when they performed at least three
consecutive blocks at a d′ of ≥1.68 [which, for Gaussian data,
corresponds to hit- and false alarm rates of about ≥80% and
≤20%, respectively (Green and John, 1966; Macmillan and
Creelman, 2005)]. As an empirical matter, however, most servers
performed better than the minimum criterion (see section
“Results”).

Post-training Test Phase: Measuring the Performance
in the Absence of Feedback
The post-training test phase was identical to the pre-training test
phase in all respects.

Experiment 2: Explainability of Server’s
Categorical Decisions
This experiment was identical to pre-training and post-training
test phases of Experiment 1 above, except as follows. First, only
expert subjects, who had been trained to criterion in Experiment
1, participated in this experiment. For convenience, we will refer
to the subjects in this experiment as servers, because they ‘served
up’ the explanations for subsequent use by other subjects, or
clients.

Second, during this experiment, after finalizing the categorical
response during a given trial, subjects did not receive feedback.
Instead, they were required to provide a written explanation of
unlimited length that accounted for their decision as thoroughly
as possible. They were also informed that other subjects will
scrutinize and rate their explanations for both the extent to

which it is semantically understandable (understandability) and
the extent to which the explanation accounts for the decision
(explainability). They were told that a good explanation is
one which should enable another subject to perform the task
accurately based solely on the explanation, without having
encountered the categories beforehand or knowing the actual
decision. That is, we emphasized to the servers that the
explanations should be as self-explanatory as possible, i.e., they
should be stand-alone in nature.

Our pilot experiments revealed the potential for subject fatigue
(and the associated confounds) resulting from the server having
to type similar explanations multiple times (data not shown).
Therefore, in the actual experiments, we allowed servers to re-
use, with or without additional editing, one of their previous
explanations.

Third, after the subjects finalized their explanation, they were
required to rate the explainability of their own explanation, using
an on-screen sliding scale of 0 (the explanation does not account
for the decision at all) to 100 (the explanation fully accounts
for the decision). We will refer to this rating as the subjective
explainability rating of the server (SERS).

Experiment 3: Evaluation of Server’s
Decisions and Explanations by Clients
This experiment was identical to Experiment 2 above, except as
follows. First, both naïve and expert subjects participated in this
study (as opposed to Experiment 2, in which all subjects were
trained experts). For convenience, we will refer to the subjects
in this experiment as clients, since they utilized the information
provided by the servers.

Second, the clients were either naïve or were experts,
depending on the particular variation of this experiment (see
section “Results”). Also depending on the given variation of this
experiment, clients were told that the server data came from
either naïve servers or expert servers.

Third, the clients did not have to generate explanations of
their own. Instead, during each trial, a categorical decision and/or
explanation for the decision from a server were provided to
the clients on the computer’s screen below query and sample
embryos. All the stimuli provided to the client during a given trial
were drawn from a single corresponding trial from Experiment
2 (i.e., the same set of individual embryos that the given server
based his/her decision and explanation in Experiment 2 were also
presented to the client in this experiment without any shuffling).
Based on this information and on the embryos, the subjects had
to categorize the query embryo.

Fourth, after the clients finalized their categorical decision,
they had to rate the given explanation as to the extent to which
it was semantically understandable (‘objective’ understandability
rating, or OUR), and as to the extent to which it accounted for the
given decision (‘objective’ explainability rating, or OER).

Experiment 4: Characterizing How
Clients Evaluated the Server Data
This experiment was identical to Experiment 3 above, except
we varied the quality of information provided to the subjects.
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In one variation of the experiment (Experiment 4A), the given
server’s categorical decisions during various trials were randomly
shuffled with respect to the same server’s explanations. The aim
of this experiment was to determine the extent to which the
clients jointly evaluated the given server-decision and server-
explanation.

In the second variation of this experiment (Experiment 4B),
we further scrambled the server data (i.e., in addition to the
scrambling in Experiment 4A) to randomly shuffle the category
labels of the sample stimuli with respect to the stimuli themselves.

In neither Experiment 4A nor 4B were the subjects told that
the server data were being scrambled in any way. This may have
misled subjects to incorrectly believe at the beginning of the
experiment that the data provided were reliable (as in previous
experiments), and may therefore have caused confusion–for
example, when the server’s explanation clearly suggests one
category, but a (scrambled) expert’s label suggests a different
category. Eventually, this may have also caused subjects to doubt
the accuracy of the experimenters’ instructions. To minimize the
possible influence of these factors, both Experiments 4A and
4B were only performed after a subject has already completed
Experiments 1–3. Thus, any perceptions of unreliability of server
data formed as a direct result of participating in Experiments 4A
and 4B could not have influenced the results of Experiments 1–
3. Note that misleading subjects in this manner may have had
implications outside the immediate Experiments 1–4 performed
in this paper, although the prevalence and effects of that are
disputed. Some authors (e.g., Ortmann and Hertwig, 1998) state
that it may contaminate the participant pool in the long run,
while others (e.g., Christensen, 1988, p. 668) note “that research
participants do not perceive that they are harmed and do not
seem to mind being misled.”.

Data Analysis
Data were analyzed using software custom-written in R (R
Core Team, 2015) or Matlab (Natick, MA, United States).
Subjects’ categorization performance was measured using the
standard signal detection theoretic measure d′ (Green and John,
1966; Macmillan and Creelman, 2005). For the purposes of
calculating the d′ values shown in this report, we arbitrarily
designated ‘hits’ and ‘false alarms’ as correct and incorrect
classification, respectively, of category P embryos. Using the
opposite designation, where hits and false alarms were defined as
the correct and incorrect classification, respectively, of category
Q, yielded qualitatively similar results (not shown). Where
appropriate, results of statistical tests were corrected for multiple
comparisons using Tukey’s Honestly Significant Difference Test
(Toothaker, 1993; Crawley, 2002; Hothorn and Brian, 2014).

RESULTS

Weakly Guided Learning of the
Categorization Task
All servers, and a subset of the clients who served as expert
clients, were trained in the categorization task using Experiment
1 (see section “Materials and Methods”). Figures 2A,B show

the categorization performance of two individual subjects before,
during and after the weakly guided learning of the categories (see
legend for details). Note that the number of trial blocks (of 40
trials each, see section “Materials and Methods”) needed to reach
the criterion level of performance differed slightly between the
subjects. On an average, subjects needed 19 trial blocks (range,
14–27 blocks; median, 19 blocks; SEM, 1.52; data not shown),
spread over an average of 4.8 sessions (range, 3–7 sessions), or
average of 15.6 calendar days (range, 8–24 calendar days).

Across all subjects, the performance was indistinguishable
from random before training (Figure 2C, left; p > 0.05). After
learning the categories, subjects were able to perform the task at
highly significant levels (Figure 2C, right; p < 0.05). Moreover,
the after-training performance was statistically significant in each
individual subject (p < 0.05; not shown).

Key Characteristics of Explanations
Provided by Servers
Servers trained to criterion performed Experiment 2, in which
they not only classified a given embryo during each given trial,
but also provided a written explanation for their classification
decision, and provided a rating, SERS, of the extent to which the
given explanation accounted for the given decision (see section
“Materials and Methods” for details). Representative explanations
that elicited relatively high levels of performance in subsequent
experiments with naïve clients are summarized in Table 1A.
Similarly, representative explanations that elicited relatively poor
performance are shown in Table 1B.

The explanations shown in these tables help illustrate some
of the salient empirical properties of the servers’ explanations at
large. First, even though all servers were highly trained experts in
the task, they provided effective explanations in some trials and
ineffective explanations in some others (see, e.g., explanations
provided by Server #11–58 in both tables). This suggests not only
that the ability to provide effective explanations was not limited
to any individual server, and there was considerable within-
and between-server variability in this regard, a fact confirmed
by 1-way ANOVA of the performance elicited by the clients
(p < 0.05 for server factor). Second, servers tended to rate their
explanations well regardless of their own performance (e.g., SERS
values on lines 3 through 5 in Table 1B), as confirmed a 2-way
ANCOVA (SERS values × servers; p > 0.05 for SERS values).
This suggests that servers tended to overestimate the efficacy of
their explanations. Finally, explanations that pointed to a spatially
localized region of the image (e.g., lines 1–5 in Table 1A) tended
to be more effective than explanations that referred to global
features (e.g., lines 2, 4, and 5 in Table 1B). This is important,
because it suggests that one potential strategy for improving the
efficacy of explanations in this task is to train the servers to refer
to specific, localized regions of the object. We will revisit this
notion in the section “Discussion.”

Explanations Can Enhance Clients’
Performance
We measured the performance of the clients using expert
servers’ decisions, explanations, both or neither (Experiment
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FIGURE 2 | Learning-dependent improvement in categorization performance in Experiment 1. This figure shows the data from the different phases of Experiment 1.
(A,B) Categorization performance of two individual subjects during pre-training test and post-training test phases (gray rectangles on left and right, respectively), and
the training phase (intervening blocks). Note that the data are plotted to different x- and y- scales for the two subjects. (C) Average performance across all subjects
before and after learning (pre-training test and post-training test phases, respectively). In each panel, the dashed line denotes the level at which the performance is
statistically significant at p < 0.05, subject to Gaussian assumptions. Throughout this report, error bars denote SEMs, calculated across all relevant blocks and
subjects. Error bars are not shown in (A,B) of this figure, because each data point therein represents the performance during a single given block.

3; see section “Materials and Methods”). When clients were
naïve and were provided neither the server’s decision nor the
server’s explanation during a given trial, they performed as
chance levels, as expected (Figure 3A, far left bar). When
naïve clients were provided the expert server’s explanation for
the decision but not the decision itself, the performance did
improve, and reached significant levels (second bar from left
in Figure 3A; p < 0.05). Interestingly, naïve clients performed
even better when they were provided only the decisions, but not
the explanations, of the servers (third bar from left), suggesting
that when naïve clients had access to the decisions of servers
that they understood to be experts, they may have simply
followed the expert opinions. The fact that providing additional
information in the form of explanations for the decisions did not
further improve the performance (far right bar in Figure 3A)
lends support to the notion that when expert opinions were
available, clients simply conformed to the expert opinions, and
did not make the extra effort it arguably takes to utilize the
explanations.

The above results raise the possibility that naïve clients attach
considerable importance to the perceived expertise of the servers.
To test this possibility, we repeated this experiment in the
same naïve clients and using the same underlying server data,
except that the clients were told that the data came from naïve
servers. In this experiment, clients reverted to their chance-level
performance, regardless of whether or not they had access to
server decisions, explanations, or both (p > 0.05; Figure 3B).
It also suggests that clients may use different decision strategies
based on the type of server data (decisions, explanations, or both)
and/or the perceived level of server expertise.

When the clients were experts themselves, their performance
levels were not significantly affected by information from the
servers (one-way ANOVA, p > 0.05; Figure 3C). This result,
however, may be at least in part because the clients’ performances
were already near asymptotic levels (i.e., at performance ceiling),
and cannot be solely because that the clients ignored the server
data. These results are also consistent with our findings when
expert clients were provided the same underlying server data but

were told the data came from naïve servers (p > 0.05; data not
shown).

Explainability Is Different Than
Understandability
It is evident from Tables 1A,B above that clients often rated
the explainability of an explanation poorly even when they
semantically understood the explanation, and vice versa (cf.
OURNC and OERNC values). This helps underscore a potentially
important principle that while providing understandable
explanations is evidently necessary, it is not sufficient for
generating effective explanations.

To help examine this principle more quantitatively, we
compared OURNC vs. OERNC values from individual trials of
naïve subjects in Experiment 3 (Figure 4A). Across all clients,
OURNC values tended to be significantly higher than the OERNC
values (paired t-test, p < 0.05). This was true regardless of the
outcome of the individual trial (see inset in Figure 4A; ANCOVA,
p > 0.05). Moreover, OURNC values were uncorrelated with the
OERNC values across all clients (r = 0.07, df = 432, p > 0.05).
Together, these results indicate that understandability of an
explanation is different from its explainability.

The above results from naïve clients raise the possibility that at
least part of the reason why naïve clients performed poorly using
expert servers’ explanations is that the clients did not have the
expertise to fully grasp what the explanations were referring to.
That is, it is possible that it takes an expert to fully understand an
expert.

If this is true, training a client in the task should improve
the perceived explainability of the explanations. To test this
hypothesis, we compared the OUR and OER values from three
of the clients who participated in Experiment 3 before and after
learning, i.e., as naïve and expert clients, respectively. Indeed,
these clients showed a statistically significant, training-dependent
improvement in OER values (yellow triangles in Figure 4B; paired
t-test, p < 0.05). However, OUR values showed no significant
training-dependent changes (blue circles; paired t-test, p > 0.05).
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TABLE 1A | Examples of effective explanations: selected explanations by expert servers that led to relatively high classification performance by naïve clients∗.

Line # Query embryo Servers Clients

Image Category Server ID Reported
category

Explanation¶ %
Correct§

SERS %
Correct§

Mean
OURNC†

Mean
OERNC†

1 Q 11-58 Q Triangle at the end of
the neck vein is
shadowy for Q

100 52 77.7 100 57.8

2 Q 11-07 Q Shadow on right side of
neck is dark for P and
light for Q.

100 98 58.9 100 81.2

3 P 00-17 P Shading on right side
P’s neck is not very
sharp nor dark.

100 100 70.0 90.9 70.2

4 P 00-02 P Shading of P is lighter
and less sharp on right
side of neck than
shading on Q, more
similar to P

100 100 58.2 69.5 66.0

5 P 11-58 P P has lighter shading
around neck and Q had
darker shading around
neck

100 66.2 67.7 100 75.5

∗All data in this table were collected from naïve clients who were informed that the explanations came from expert servers. See text for additional details.
¶ Each explanation shown in this column was provided by a single server because, as an empirical matter, different servers never provided mutually identical explanations.
†Data shown in the sub-columns of this column are aggregate data pooled across multiple trials and multiple clients.
§ Performance is reported here as percent of correct trials rather than d′ value, because in many cases there were zero trials corresponding to false alarms (in case of
servers) or hits (in case of clients), which is problematic in calculating d′ (Green and John, 1966; Macmillan and Creelman, 2005).

These observations and the aforementioned fact that expert
clients tended to perform the task at highly significant levels
using the same underlying explanations (Figure 3C) are mutually
consistent with each other, and suggest that expertise with the
underlying decisions does indeed make it easier to enhance their
explainability.

These findings are important, for two main reasons.
First, they indicate the improvement in explainability is not
attributable to an improvement in the understandability of
the explanation at the semantic level. Second, explainability
of a decision depends, among other things, on the level of
expertise of the client. That is, explainability of decisions
can be improved, at least in part, by training the clients
appropriately. We will revisit this notion in the Section
“Discussion” below.

Perceived Expertise of the Servers
Affects Clients’ Ratings of the Server
Data
A line of social psychology studies pioneered by Solomon Asch
and others has revealed a class of effects, often referred to as the
Asch Conformity Effect, in which subjects attach much higher
value to a set of data (such as, say, external opinions) if the
subjects value the source of the data in some respect (Asch, 1956;
Schulman, 1967; Mertesdorf et al., 1969; Stamps and Teevan,
1974; Bond and Smith, 1996; Walker and Andrade, 1996). We
have described a variant of this effect above (Figures 3A,B) in
which the same underlying server data led to better performance
if the clients perceived the data to come from expert servers.

We directly measured whether the naïve clients’ perception of
the level of the server’s expertise also affected their perception
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TABLE 1B | Selected examples of ineffective explanations: explanations by expert servers that led to relatively low classification performance by naïve clients∗.

Line # Query embryo Servers Clients

Image Category Server ID Reported
category

Explanation¶ %
Correct§

SERS %
Correct§

Mean
OURNC†

Mean
OERNC†

1 P 11-16 P P has light and straight
nerve tail

100 93 0 91.3 6.9

2 P 11-58 P Q has harsher shading.
Q has harsher shading
than P

100 100 0 99.2 11.2

3 P 00-17 Q Top right groove in P
matches in length but
not fully in shape

0 91 0 89.1 23.5

4 Q 11-16 P P is smooth, dark and
curvy

0 84 0 99.4 17.2

5 Q 00-02 P Shading is pretty mild,
more similar to P than
Q

0 99 2.5 96.6 2.4

∗All data in this table were collected from naïve clients who were informed that the explanations came from expert servers. See text for additional details.
¶ Each explanation shown in this column was provided by a single server because, as an empirical matter, different servers never provided mutually identical explanations.
†Data shown in the sub-columns of this column are aggregate data pooled across multiple trials and multiple clients.
§ Performance is reported here as percent of correct trials rather than d′ value, because in many cases there were zero trials corresponding to false alarms (in case of
servers) or hits (in case of clients), which is problematic in calculating d′ (Green and John, 1966; Macmillan and Creelman, 2005).

of the extent to which the server data are understandable and
explainable. We found that this was indeed the case (Figure 5).
OURNC and OERNC values were significantly higher for server
explanation from nominal experts than for the same explanations
when they were perceived to come from naïve servers (2-way
ANOVA, server expertise level × server data type; p < 0.05
for server expertise level and server data type, and p > 0.05
for interaction). Not surprisingly, comparable conformity effects
were not evident at statistically significant levels in expert clients
(N = 2; p > 0.05; data not shown).

Taken together with the results in Figure 3, these results
demonstrate a potential variant of the Asch Conformity Effect in
the context of decision explainability.

Clients’ Decision Strategy Depends on
the Reliability of the Server Data
The aforementioned result that the performance of naïve clients
remains about the same when the clients are provided server
explanations in addition to server decisions (Figure 3A) raises

the possibility that the clients simply ignore subject explanations
when subject decision information is available, but not when it is
not.

To help characterize the clients’ decision strategy, we
scrambled the decisions with respect to the explanations, so
that the server explanations and visual stimuli, but not the
server decisions, remained identical to with those encountered
or reported by the given server (Experiment 4A; see section
“Materials and Methods”). We hypothesized that the clients’
explanations should deteriorate to the extent to which the client
down-weights the server explanation, visual stimuli, or both.

Two aspects of the results from this experiment are notable
(Figure 6, left bar). First, the client performance based on
scrambled server data significantly deteriorated compared to the
performance elicited by unscrambled server data (cf. horizontal
lines in Figure 6; t-test, p < 0.05), confirming the aforementioned
result (Figure 3) that naïve subjects attach substantial weight
to server decisions. Second, performance still remained at
statistically significant levels (t-test, p < 0.05), suggesting that
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FIGURE 3 | Performance of clients when provided with the servers’ decisions, explanations, both, or neither (Experiment 3). In this figure and Figure 5, the ‘+ sign
means that given piece of information was provided, ‘–’ means it was not. (A,B) Performance of naïve clients (N = 4). (C) Performance of expert clients (N = 3). The
underlying server data were identical in all three panels, and were obtained from Experiment 2. (A,C) Clients were told that the server data came from expert servers.
(B) Clients were told that the server data came from naïve servers. In each panel, the dashed line denotes the level at which the performance is statistically significant
at p < 0.05, subject to Gaussian assumptions. The performance of expert clients when they were told that the server data came from naïve servers, the client was
performance was somewhat lower, but not significantly so (not shown). See text for details.

FIGURE 4 | Understandability of explanations is differentiable from their explainability. (A) This panel summarizes a key result from Experiment 3, in which naïve
clients (N = 5) were given the explanations provided by expert servers during individual trials, along with the stimuli on which the servers based their decision, but not
the decision itself. The clients rated the explanations with respect to their understandability and explainability (OURS and OERS, respectively). The OURS and OERS

values are plotted in this figure against each other. Each plotting symbol represents a single pair of ratings of the client during a single trial, broken down according to
the outcome of the trial as denoted in the legend (inset at upper left). The diagonal represents the line of equality between the two indices. (B) Learning-dependent
changes in the understandability ratings (blue circles) and explainability ratings (yellow circles). See text for details.

the clients were still utilizing the explanations, which remained
unscrambled, and therefore reliable. Under this scenario, clients
evaluate the server explanations in light of the visual stimuli in
order to make the best decision possible in light of the available
data.

To test this possibility, we carried out Experiment 4B, in
which we further scrambled the server data (i.e., in addition
to the scrambling in Experiment 4A) to randomly shuffle
the category labels of the query stimuli with respect to the

sample stimuli. We hypothesized that if the subjects use the
aforementioned strategy of evaluating the explanation in light of
visual evidence, the scrambling of server data in Experiment 4B
should deteriorate the performance back to chance levels. This
is indeed what we found (Figure 6, right bar). This suggests,
albeit by no means proves, that the clients do indeed use a
fairly rational strategy wherein they evaluate all available server
data against each other before making their own categorical
decision.
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FIGURE 5 | Naïve clients (N = 4) show conformity to the explanations of
expert servers, but not naïve servers. Naïve clients rated the understandability
(A) and explainability (B) of the same underlying server data under two
different conditions, wherein they were told that the server data were from
expert servers (green bars) or from naïve servers (red bars).

FIGURE 6 | Performance of naïve clients when the data from nominal expert
servers are scrambled. Performances from four subjects each in Experiments
4A and 4B are shown. See text for details. Horizontal lines denote the
corresponding unscrambled server data from Figure 3A, far right bar (labeled
“Server Decisions+, Server Explanations+), redrawn here for reference (mean,
solid line; SEMs, dashed lines).

DISCUSSION

Importance of Explaining Expert
Decisions
When a human expert’s decision significantly affects other people,
it is desirable to have an explanation for why the decision was
made. Such explanations serve several purposes:

• They allow clients or patients to understand the rationale
behind the expert’s decision, making it seem less like
a sleight of hand and more like a principled, objective
procedure. In a medical context, this may improve patient
compliance, leading to improved outcomes.
• They allow the expert’s teammates to build a model of

the expert’s behavior (for example, understanding the
conditions under which the expert is particularly prone to
errors or may require longer than average time to make a
decision). This, in turn, can lead to improved trust between
team members.
• They make it easier for others to review the expert’s work.

For example, explanations can be useful for determining
whether a decision subsequently determined to be incorrect
was reasonable under the circumstances when it was
made, or identifying conditions where the expert makes
systematic errors for potential additional training.
• They make it easier for trainees undergoing expertise

training (e.g., medical residents) to acquire the decision-
making expertise.

Explanations are particularly useful when the underlying
expertise was acquired through some form of weakly guided
learning. In those cases, decisions made by the expert may seem
almost “magical” to naïve users, since naïve users (and often the
experts themselves) do not have an explicit understanding of how
they are in fact made. This effect is significantly reduced when the
expert performs the task by following an algorithm (such as when
solving a quadratic equation via the quadratic formula method),
because the individual steps can be readily traced by other users.

It is therefore desirable to study explainability of human expert
decisions, particularly in the context of weakly guided learning.
Of particular interest would be understanding what makes an
explanation useful to its intended audience, how to improve the
explainability of expert decisions, and the relationship between
the explainability and the performance of the experts and their
teammates and clients. The current study is a first step toward
this goal.

We obtained several interesting results in this study. First, the
experts’ explanations improved the categorization performance
of naïve users, but this effect differs significantly between
explanations. In particular, explanations that pointed to a
spatially localized region of the image improved the user’s
performance much better than explanations that referred to
global features. This suggests that it may be possible to improve
the explanations by encouraging experts to formulate them in
ways that other users typically find most helpful. Note, however,
that it must be done carefully, since altering the expert’s workflow
in this manner has the potential to also affect the expert’s
performance. For example, if global features provide more
reliable information about the correct category label, then asking
the expert to focus on local feature may reduce their accuracy
and/or make explanations misleading (in that an explanation in
terms of local features will not reflect the true process of arriving
at the decision via global features). Further studies are necessary
to understand the relationship between the explanations the
expert produces and their performance in the main task.
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Second, we found that neither experts themselves nor the
naïve users were able to predict how useful a given explanation
will be. Since the ultimate goal is to have useful explanations, the
ability to evaluate them ahead of the actual task is desirable. It is
therefore useful to investigate how this ability may be improved.

Third, we observed significant bias effects, where naïve
subjects rated an explanation significantly higher when told
it came from an expert user, compared to the rating of the
same explanation when told it came from another non-expert,
suggesting a variant of the Asch conformity effect. Again, this
requires further study to allow for controlling or eliminating this
bias.

Limitations
Several limitations of the current study need to be pointed out.
First, we chose to study explainability in the context of a visual
task (namely, visual object categorization). The reason was that
in this context explainability effects are often most apparent: the
expert will “just see” the correct category, but will often struggle
to explain how they see it. However, one important caveat to keep
in mind is the distinction between the expert not knowing why
they made a decision and the expert knowing but being unable to
verbalize the reasons. This is particularly important since in our
experiments we used novel “digital embryo” objects which the
subjects do not have standard, accepted terminology to describe.
Of course, sensory expertise can involve senses other than vision
(e.g., auditory sense for music critics, or the senses of taste and
smell for wine tasters). In addition, many expert decisions are
not sensory, but cognitive (for example, decisions to invest in a
company or underwrite a mortgage) or a combination thereof
(for example, the decision to appraise a given house at a certain
value). Studying such tasks is a subject of future work.

Second, it is possible that one or more of our results are
idiosyncratic to the particular objects we used. For instance, prior
semantic or perceptual knowledge of natural object categories is
of little or no use in case of digital embryo objects – indeed, these
are among these reasons why digital embryos are so useful in the
research on weakly guided learning (Bart et al., 2008; Hegdé et al.,
2008; Kromrey et al., 2010; Hauffen et al., 2012). Also by design,
our images each contained a single untextured, grayscale object,
rather than, say a colorful visual scene with multiple natural
objects. Therefore, it is possible that principles of explainability
for complex natural images, where knowledge plays a greater role,
may be different.

Third, for practical reasons, our study used one of the simplest
possible client–server scenario. For instance, unlike in the real
world, our clients and servers did not interact with each other, nor
did the servers have an opportunity to revise their explanations,
e.g., based on the clients’ queries, perhaps in an iterative and
interactive fashion. Whether or to what extent our results will
generalize to such complex scenarios remains to be determined
(also see below).

Relation to Explainability in Machine
Learning
The need for AI systems to explain their decisions in a
manner understandable to the system’s human operators became

apparent quite early in the history of AI (Shortliffe and Buchanan,
1975; Fagan et al., 1980). Modern research in XAI (explainable
AI) covers several broad areas. Some approaches focus on
generating human-understandable explanations for an AI system
that has already been constructed (for example, a pre-trained
deep network). This is challenging because AI systems often
involve complicated math and millions of individual parameters.
Therefore, simply dumping the system’s internal state would not
facilitate understanding, and creative approaches are needed to
present that state in a useful manner. Methods such as those
of Bojarski et al. (2017), who highlight image locations where
the feature maps of a deep network have highest activations,
and Kulesza et al. (2015), where the underlying conditional
probabilities of a Naïve Bayes model are explained through user-
friendly terminology and visualization, fall under this category.
Other approaches aim to adjust a given AI system specifically so
as to improve the quality of these explanations. Examples of such
methods include Abdollahi and Nasraoui (2016), who introduce a
problem-specific “explainability” term into the objective function
their system optimizes, and Ribeiro et al. (2016c), who derive
an easily explainable local linear approximation to a potentially
complex non-linear decision boundary. Some methods also
attempt to incorporate feedback from the users into the AI system
(e.g., Kulesza et al., 2015).

While some of the same classifications are applicable to
research in human expert explainability, the focus of research
in each area is somewhat different. For example, in machine
learning, the underlying mechanism by which the system
performs its task is known to system designers; the challenge is
just explaining it succinctly and to non-expert users. In contrast,
the mechanisms by which human experts perform their tasks are
not always known to experts themselves or even to researchers.
As another example, an AI system can always be safely adjusted
to improve its explanations, because it is possible to roll it back to
any desired state if needed. In contrast, any changes to an expert’s
workflow must be carefully monitored, because training an expert
to produce better explanations (or even simply asking the expert
to produce any explanations) may affect their performance at the
main task of making decisions in the first place.

Future Directions
The results obtained here suggest several interesting directions
for future work. For example, we found significant differences in
clients’ ability to use different explanations. This suggests it may
be possible to train servers to produce explanations of the more
useful kind with the needs and abilities of the clientele in mind.
One possibility of accomplishing this is through an iterative
process, where the server receives feedback and possibly requests
clarification from the clients. A countervailing consideration in
this regard is the necessity to balance producing more useful
explanations against the causing unintentional changes to the
server’s performance in the main task.

We have also observed significant bias effects; therefore,
researching ways to control or eliminate this bias is another
possible direction for future research.

Finally, we note that in the current study, each trial involved
presenting a client with a single explanation from a single server.

Frontiers in Neuroscience | www.frontiersin.org 12 October 2018 | Volume 12 | Article 670

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00670 October 10, 2018 Time: 16:48 # 13

Hegdé and Bart Explainability of Expert Decisions

Since different servers may use different techniques for solving
the same task, it may be of interest to develop automated methods
for combining explanations from multiple servers to improve
their usefulness.

CONCLUSION

We establish a methodology for performing research in
explainability of human decisions, provide promising initial
results, and outline directions for future research.
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