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Abstract

Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract
dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among
pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome data-
bases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal
component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway
interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as
well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed
pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of
mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score
between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway.
Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve
score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum
genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these
dysregulated pathways might be used as biomarkers to diagnose CRC.
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Introduction

Colorectal cancer (CRC) affects millions of people in
the world, and is the second most common cause of
cancer-induced deaths in males and the third in females
(1). It is characterized by the accumulation of epigenetic
and genetic events, and is affected by lifestyle factors
(2,3). Despite the existence of screening and preventive
strategies, CRC remains a major public health problem. Of
note, approximately 102,480 people were affected by and
50,830 died of CRC in the United States in 2013 (4). Death
from CRC can be prevented by early stage detection, but it
is often found at an advanced stage (5). Thus, understand-
ing the pathogenic processes of CRC is essential for its
early detection and treatment.

Recently, high throughput microarray technology exert-
ed significant advances in the understanding of pathologi-
cal mechanism of various diseases. In recent years, studies
have created many microarray data associated with CRC;

for example, the GSE4183 pathway, published by Galamb
and colleagues (6), who evaluated the gene expression,
detected several important genes. Another former study
also used this microarray data to identify significant path-
ways using a subpathway-based method (7). However,
functional dependency among pathways was ignored.

As reported, signaling pathways rather than individual
genes govern the process of tumorigenesis and progres-
sion (8). With the goal of identifying signatures for early
detection, many studies have examined the relationship of
signaling pathways and CRC progression. For example,
CRC has been indicated to be mainly associated with chro-
mosome instability (9) and microsatellite instability path-
ways (10,11). However, there is a lack of understanding of
mechanisms underlying the progression of CRC. More than
one pathway might participate in a disease because of the
complicated feature of biological systems. Two or more
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pathways may have crosstalks to induce disease, since
functional proteins may participate in multiple pathways
(12). Thus, in addition to extracting concrete pathways,
detecting crosstalk between pathways that are associated
with CRC might be more efficient. Of note, network-based
methods are broadly employed to analyze interactions,
thereby further shedding light on molecular mechanisms
(13,14). Moreover, protein-protein interactions (PPIs) are
used to establish a global interaction network that exhaus-
tively describes the overall relationships among functional-
ities. Hence, we combined pathway data and PPI network
to build a pathway interaction network (PIN) and further
identify dysregulated pathways, a method which considers
the functional dependency between pathways (15). Collec-
tively, the dysregulated pathways will provide insight into
the pathogenetic mechanisms of CRC and provide clues for
disease therapy (16,17).

Material and Methods

Datasets
Microarray data. Gene expression profile for CRC with

the accession NO. GSE4183 were retrieved from GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/) (6). This dataset
compared various colorectal diseases (15 CRC samples,
15 inflammatory bowel diseases, 15 colon adenoma) with
normal controls (n=8). In the current study, to explore the
molecular mechanisms of CRC progression, we only selec-
ted 8 normal controls and 15 CRC samples for subsequent
analysis. After the probes were mapped to the gene sym-
bols, a total of 20,545 genes were identified. Then, the stand-
ardization of expression levels in all genes was implemented
based on the equation:

zmn ¼ gmn � aveðgmÞ
stdðgmÞ

In this equation, gmn stands for the expression level of
gene m in sample n, ave(gm) and std(gm) are the average
and standard deviation (SD) of the expression value of
gene m in all samples, respectively.

PPI network and pathway data. All PPI information,
about 16,730 proteins and 787,896 interactions, was
retrieved from the STRING database (http://string-db.org)
(18). STRING database applies confidence scores to
estimate the probability that an association really exists.
Thus, in an attempt to minimize the ambiguity, we only
selected the interactions with confidence scores greater
than 0.2 to establish the background PPI network. Next, the
intersection of the background PPI network and microarray
data were used to construct a targeted PPI network for
following analysis.

At the same time, all human pathways (1,675 path-
ways) were extracted from Reactome database (http://
www.reactome.org), which is an online curated resource
for human pathway data (19). As pathways with too few
genes might not have sufficient biological information, we

generated a set of pathways by discarding the ones with
less than 5 genes. Overall, we ended up with 1189 inform-
ative pathways.

Pathway activity and PIN construction
This method identified dysregulated pathways via

three steps. We first computed the activity of each path-
way based on gene expression information, and selected
a seed pathway. Then, we built a PIN relying on biological
pathways and PPIs. Finally, the dysregulated pathways
were extracted from the PIN according to classification
performance and the seed pathway. The specific condi-
tions were listed as follows.

Calculation of pathway activity and selection of seed
pathway. In our study, we only reserved genes that were
mapped to the 1189 informative pathways for further anal-
ysis. After the genes were aligned to the informative path-
ways, we determined an activity score for each pathway as
the sum of the expression levels of all genes enriched in
this given pathway. Principal component analysis (PCA)
(20) was employed to obtain the summary of expression
scores of all genes of each pathway. The activity score of
pathway k in sample n was determined by the following
formula:

Pkn¼w1nkz1nk þw2nkz2nk :::þwmnkzmnk

in which, wmnk is the weight for zmnk, and zmnk and denotes
the standardized expression level of gene m from pathway
k in sample n. The first principal component obtained from
PCA was defined as the activity score for the appropriate
pathway. Thus, the pathways with different activity scores in
disease and normal samples were possibly connected with
disease progression. Thus, if the activity score for a defined
pathway is different between the CRC and control samples,
it indicates the relationship of CRC with this pathway. The
greater this difference, the more relevant the pathway is to
CRC progression. In the current study, the pathway with the
maximum change in activity score between disease and
control groups was defined as the seed pathway.

Construction of PIN. In order to determine whether a
gene was expressed in a differential way, Student’s t-test
was employed to compare gene expression between the
two conditions. We considered gene expressions signifi-
cantly different between disease and control conditions if
the P value was less than 0.05. Moreover, we calculated
the Pearson correlation coefficient (PCC) for all PPI inter-
actions between the two conditions, thereby having a
distribution of the PCC. We also computed the difference
in absolute values of the PCC for the PPI interactions in
CRC and normal groups.

Based on microarray profile, pathway information and
PPI data, we then established a PIN, where each node
denoted a pathway, and an edge was connected between
pathways if they met one of the two criteria. Otherwise, the
edges would be abandoned. One criterion was that two
pathways shared one or more common genes, and one or
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more of these genes between pathways were differentially
expressed in CRC and control groups. The other criterion
was that two genes that coded interacting proteins em-
ployed to connect an edge between pathways were highly
co-expressed (PCC, absolute value greater than 0.8).
Otherwise, the edges would be discarded. If a network is
too large, a certain number of significant genes and inter-
actions can be neglected (21). Thus, with the goal of reduc-
ing the intricate network, the score values of each pathway
pair in the PIN were calculated, defined as the summation
of the PCC absolute values for the PPIs in every two
pathways. Then, we selected the top 5% pathway interac-
tions to construct a targeted PIN for identifying dysregulated
pathways.

Identifying dysregulated pathways from the targeted
PIN. After computing the activity score for every pathway,
we extracted the dysregulated pathways using a machine-
learning framework, in which the minimum pathways that
could best distinguish between diseases and controls
were regarded to be potentially dysregulated pathways. For
this selection process, support vector machines (SVMs)
were utilized. An individual pathway, which best distin-
guished between disease and control, was first selected as
seed pathway. Then, other pathways that had crosstalks
with the seed pathway were combined with the seed path-
way to obtain better classification accuracy. New pathways
were selected when no pathways could be combined for
better classification results. The ultimate extracted pathway
set was kept as possibly dysregulated pathways of disease.
We adopted the area under the curve (AUC) score as a
measure of classification performance, and used five-fold
cross validation to test the performance ability. In the cross
validation, four of the five samples were employed as
training set and the other was used as test set to assess the
classification ability. With the goal of getting robust results,
five-fold cross-validation was repeated 100 times, and then
the mean level was used as the eventual result.

Results

Constructing the targeted PIN
With the P values set at 0.05, we obtained 6,201 dif-

ferentially expressed genes (DEGs) between CRC and
control groups. The top 20 DEGs are shown in Table 1.
These DEGs were applied to extract the interactions for
constructing the PINs, since only interactions in the back-
ground PPI network met at least one of the two criteria and
were kept to establish the PIN. After selecting edges, an
original PIN was constructed, which covered 239,216
interactions among pathways. Since an intricate network
easily ignores a few significant interactions (22), the com-
plicated network should be reduced. In our analysis, the
interactions with low |PCC| scores were discarded, and
only the top 5% pathway interactions were extracted to
construct a targeted PIN for selecting dysregulated path-
ways. In our analysis, as shown in Figure 1, the targeted

PIN included 11,960 interactions among 1189 informative
pathways. From this figure, we found that pathways inter-
acted with each other, but the weight values were different.
The weight value for a pathway-pathway interaction was
defined as the total |PCC| scores of all genes, and interac-
tions having higher weight values might be more important
than the others for CRC. The weight scores among 11,960
interactions ranged from 95 to 720. Interestingly, we ob-
served that 8 pathway interactions had the weight values
higher than 600, as shown in Figure 2. Among these 8
pathway interactions, the DNA replication pathway (ID: 281)
interacted with three pathways, i) APC/C-mediated degra-
dation of cell cycle proteins (ID: 77), ii) regulation of mitotic
cell cycle (ID: 850), and iii) mitotic prometaphase (ID: 602).
Moreover, the interaction of mRNA splicing (ID: 611) and
mRNA splicing-major pathways (ID: 612) had the highest
scores with weight value of 719.8167 among the 8 pathway
interactions.

Identifying dysregulated pathways
In this analysis, with the goal of evaluating the

significance of pathways, the activity score for the 1189
pathways was calculated using the PCA method. The
pathway with the maximum change of activity score
between CRC and normal samples was defined as seed
pathway. Of note, we found that the DNA replication
pathway (ID: 281; statistic value=28.0527) showed the
maximum change in the activity score between CRC and
normal groups, and was selected as the seed pathway.

Table 1. List of the top 20 differentially expressed
genes (DEGs).

Genes P value

COL4A1 3.17E-08
PCDH17 7.47E-08
PECAM1 2.07E-07

IGFBP5 2.73E-07
CAV1 2.75E-07
KCNJ8 3.49E-07
PIK3R3 3.53E-07

LCN2 3.77E-07
COL6A3 4.13E-07
COL4A2 4.78E-07

HEG1 5.51E-07
CD93 6.32E-07
ADAM9 6.36E-07

RIPK2 9.92E-07
AMN 1.11E-06
ACVR1 1.11E-06
CALU 1.17E-06

CXCL6 1.32E-06
TMEM158 1.63E-06
TIMP3 1.70E-06
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Beginning with this seed pathway, the selection of dysreg-
ulated pathways was implemented according to the
classification accuracy. This procedure stopped when
classification accuracy did not increase. In our study, with
"DNA replication" as initial, one pathway set containing
30 dysregulated pathways was obtained with AUC score
of 0.8598, which indicated that these selected dysregu-
lated pathways can be utilized as robust bio-signatures.
The specific data is shown in Table 2. The mRNA splicing
pathway (ID: 611), mRNA splicing-major pathway (ID:
612), and RNA polymerase I (ID: 905) owned the maxi-
mum of 107 genes. DNA replication (ID: 281) had a maxi-
mum number of 102 genes.

In order to better present the relationship among these
30 identified dysregulated pathways in the PIN, we further
explored their relationship and found that these pathways

were assembled into a PIN network based on interactions.
Figure 3 exhibits these interactions and their crosstalks.

Discussion

Currently, pathway analysis has become the first
choice to elaborate the biological functions of genes,
since it increases explanatory power (22). Traditionally,
pathway analysis mainly paid attention to single dysregu-
lated pathways, and interactions among pathways were
not considered (23). Broadly speaking, different pathways
act synergistically to participate in many biological proces-
ses. Detecting pathway crosstalk is beneficial for studying
pathway functions (24). Moreover, network biology offers
new chances to analyze the interaction data and shed
light into mechanisms by which cellular systems operate

Figure 1. Pathway interaction network for colorectal cancer samples. Nodes represent pathways, and edges represent the interaction
between any two pathways.
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(25). Analyzing disease-associated interaction networks
will be helpful for understanding the complicated cellular
pathways and reveal disease progression processes. As
a consequence, PIN was used in our study to extract
dysregulated pathways relying on the pathway crosstalks
via integrating PPI data and pathway information. One
merit of this method is that when pathways have marginal
P values, they still might carry a strong signal if they can
develop a cluster in the PIN.

CRC is the third main cause of cancer-related-deaths in
developed countries. Thus, it is understandable that major
efforts have been done for dissecting the potential mecha-
nisms underlying this disease. In our study, in order to
expound the molecular mechanisms of CRC, we extracted
the dysregulated pathways able to distinguish CRC from
normal control samples, based on the constructed PIN that
presented the functional dependency among pathways. We
observed 1 pathway set with AUC of 0.8598 between CRC
and normal samples, which demonstrated a good perfor-
mance and the ability of this method to select dysregulated
pathways in CRC. Of note, in this pathway set, there were
30 dysregulated pathways, such as mRNA splicing, mRNA
splicing-major, RNA polymerase I, and DNA replication
pathways, that owned a high number of pathway genes,
and these pathways had crosstalks with each other. These
results suggest that these dysregulated pathways might be
useful as biomarkers to diagnose CRC.

In our study, maximum change of the activity score
between CRC and normal groups occurred in the pathway
of DNA replication, which was selected as the seed
pathway. In the eukaryotic cell, DNA is replicated only
once every cell cycle. The regulation of DNA replication is

very important since loss of DNA replication control could
threaten genome stability (26), a feature in most human
cancers (27,28). In addition, chromosomal instability, as
one form of genomic instability, is induced by defects in
chromosomal segregation, DNA damage response, as well
as telomere instability, which is a prominent pathway in
CRC development and progression (9). Moreover, Pillaire
and colleagues have indicated that DNA replication might
be a new prognostic marker in CRC (29). Approximately
90% of genes in humans have been demonstrated to
undergo alternative pre-mRNA splicing (30,31), which has
been suggested to play important roles in a large number of
human diseases (32). Spliceosome assembly appears co-
transcriptionally, increasing the probability that DNA struc-
ture might affect alternative splicing (33). More crucially, it is
evident that mRNA splicing is needed to promote transcript
maturation and stability (34). In addition, the regulation of
splicing has been indicated to be important in the response
to DNA damage (34). DNA damage results in further ge-
nomic instability. Hence, the crosstalk between DNA replica-
tion and mRNA splicing might offer molecular basis for the
occurrence and progression of CRC.

RNA polymerase I pathway is denoted uniquely to
transcribe the copies of genes coding the pre-rRNA pre-
cursor, which is processed into 5.8S, 18S, and 28S rRNAs.
Williamson et al. (35) reported that over-expression of rRNAs
and pre-rRNAs is a characteristic of cancer. Bernstein et al.
(36) suggested that there is a link between rRNA and cell
proliferation. Of note, cancer is generally characterized by
uncontrolled cell proliferation (37). Moreover, a former study
has demonstrated that selective suppression of rRNA tran-
scription hinders growth and proliferation of cancer cells (38).
As demonstrated here, we infer that RNA polymerase I might
be a useful target for CRC therapeutic strategy.

In conclusion, this integration-based analysis has seve-
ral advantages. Unlike previous publications, we focused
on the functional dependency between pathways by con-
structing a PIN, thereby indicating the robustness of our
extracted pathway bio-signatures. Our findings suggest that
dysregulated pathways, especially DNA replication and
mRNA splicing, are important in CRC initiation, develop-
ment and progression. However, several limitations must
be taken into consideration. First, our sample size was
very small. Second, the current study was analyzed based
on existing data through bioinformatics methods, and the
findings lacked experimental verifications. Thus, further
investigations are warranted to verify the alterations of
these pathways in animal experiments or patient tissues.
Lastly, comparison between this novel method and other
methods on multiple cancer datasets was not implemented
to further demonstrate the effectiveness of our method.
Thus, we expect our research to provoke further investiga-
tion into the potential roles of these dysregulated pathways
in CRC. Despite these limitations, our results provided
some preliminary evidence to uncover alterative candidate
therapeutic strategies for CRC.

Figure 2. Score distribution of the top 8 pathway interactions with
scores higher than 600; 77, APC/C-mediated degradation of cell
cycle proteins; 281, DNA replication; 602, mitotic prometaphase;
611, mRNA splicing; 612, mRNA splicing-major pathway; 850,
regulation of mitotic cell cycle; 909, RNA polymerase II transcrip-
tion; 1037, synthesis of DNA. The numbers represent the pathway
IDs, which were defined based on alphabetical order.
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Table 2. Dysregulated pathways extracted from the pathway interaction network (PIN).

ID Pathways Gene No. in pathway

281 DNA replication 102
611 mRNA splicing 107
612 mRNA splicing-major pathway 107

1014 SRP-dependent cotranslational protein targeting to membrane 90
603 Mitotic prophase 100
597 Mitochondrial translation 88
905 RNA polymerase I 107

836 Regulation of DNA replication 72
360 Formation of a pool of free 40S subunits 77
332 Eukaryotic translation termination 67

693 Orc1 removal from chromatin 67
219 Cyclin A:Cdk2-associated events at S phase entry 64
564 Meiosis 79

830 Regulation of APC/C activators between G1/S and early anaphase 73
16 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 69
1021 SUMO E3 ligases SUMOylate target proteins 71

454 Hh mutants that don’t undergo autocatalytic processing are degraded by ERAD 51
170 Circadian clock 59
1155 Unfolded Protein Response (UPR) 81
904 RNA Polymerase I Transcription Termination 29

770 Post-Elongation Processing of Intronless pre-mRNA 23
790 Processing of Capped Intronless Pre-mRNA 23
769 Post-Elongation Processing of Intron-Containing pre-mRNA 31

917 RNA Polymerase III Transcription 40
920 RNA Polymerase III Transcription Initiation From Type 2 Promoter 26
927 RORA activates gene expression 25

757 Platelet degranulation 76
776 POU5F1 (OCT4) 20
877 Response to elevated platelet cytosolic Ca2+ 81

Pathway IDs are defined based on alphabetical order.

Figure 3. Dysregulated pathway interaction net-
work in colorectal cancer. The 30 dysregulated
pathways were assembled into a network accord-
ing to the interactions. Each node represents a
pathway. The orange node represents the seed
pathway. Blue nodes are the dysregulated path-
ways interacted with the seed pathway. The num-
bers represent the pathway IDs defined based on
alphabetical order.
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