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Abstract: The ecological and economic importance of forest trees is evident and their survival is
necessary to provide the raw materials needed for wood and paper industries, to preserve the
diversity of associated animal and plant species, to protect water and soil, and to regulate climate.
Forest trees are threatened by anthropogenic factors and biotic and abiotic stresses. Various diseases,
including those caused by fungal pathogens, are one of the main threats to forest trees that lead
to their dieback. Genomics and transcriptomics studies using next-generation sequencing (NGS)
methods can help reveal the architecture of resistance to various diseases and exploit natural genetic
diversity to select elite genotypes with high resistance to diseases. In the last two decades, QTL
mapping studies led to the identification of QTLs related to disease resistance traits and gene families
and transcription factors involved in them, including NB-LRR, WRKY, bZIP and MYB. On the
other hand, due to the limitation of recombination events in traditional QTL mapping in families
derived from bi-parental crosses, genome-wide association studies (GWAS) that are based on linkage
disequilibrium (LD) in unstructured populations overcame these limitations and were able to narrow
down QTLs to single genes through genotyping of many individuals using high-throughput markers.
Association and QTL mapping studies, by identifying markers closely linked to the target trait, are
the prerequisite for marker-assisted selection (MAS) and reduce the breeding period in perennial
forest trees. The genomic selection (GS) method uses the information on all markers across the whole
genome, regardless of their significance for development of a predictive model for the performance
of individuals in relation to a specific trait. GS studies also increase gain per unit of time and
dramatically increase the speed of breeding programs. This review article is focused on the progress
achieved in the field of dissecting forest tree disease resistance architecture through GWAS and
QTL mapping studies. Finally, the merit of methods such as GS in accelerating forest tree breeding
programs is also discussed.

Keywords: disease resistance; QTL mapping; GWAS; genomic-wide selection

1. Introduction

Forests have provided a unique ecosystem for terrestrial life for millions of years and
inimitable resources for humans and other animals and microorganisms. The economic
importance of forests in most countries and regions of the world is undeniable, and many
industries, including wood, construction, paper and other industries, are dependent on
forest products. However, there are several factors that have disturbed the balance of this
ecosystem and the sustainable use of these resources in different parts of the world [1].
These catastrophic destructive changes are taking place with increasing intensity in devel-
oping countries and arid regions of the world with a prolonged drought stress, which have
also been affected by the negative effects of climate change [2].
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Along with other factors that threaten forests, such as the development of different
industries, urbanization, agriculture, road construction, etc., various diseases are also
important factors that have an adverse impact on the survival of many forest trees, which
ultimately can lead to rapid and widespread deforestation. In the last decades, several
diseases and pests have spread widely in different forest regions at an increasing rate.
These diseases, which are mainly caused by fungal pathogens, destroy—for example—
ash trees and result in the decline of several forest tree species [3]. In some cases, these
diseases can threaten the survival of a particular species in a large area. For example, ash
dieback disease caused by the fungal pathogen Hymenoscyphus fraxineus has spread widely
in different parts of Europe and destroyed ash trees (Fraxinus excelsior L.), and has resulted
in dramatic damage to and decline of ash trees in temperate forests [4]. Over the past
few decades, oak charcoal disease has become a major problem in the forests of Zagros
and Arasbaran, Iran, and is spreading rapidly, posing a serious threat to the survival of
these forests. The disease, which is caused by Biscogniauxia mediterranea and Obolarina
persica fungi, appears with high intensity due to long-term droughts in the target areas
and increases the mortality of oak trees [5,6]. Chestnut blight is another important disease
that has become an important challenge in forest areas. The cause of this disease is the
fungal pathogen Cryphonectria parasitica, which has devastated chestnut forests in the North
American region and other forests across the world [7,8]. In addition, there are several
other fungal pathogens, including Austropuccinia psidii, Fusarium spp., Rhizoctonia spp., and
Rhytisma spp., which affect important forest tree species such as Eucalyptus spp., Fagus
sylvatica L., Picea abies (L.) Karst., and Acer velutinum Boiss., respectively, and cause serious
losses [9–12].

In general, management strategies to reduce the destructive effects of various diseases
are based on monitoring the prevalence of the pathogen, and its eradication or reduction.
To ensure the adoption of effective management plans, it is necessary to pay attention to
climate change, since different pathogens prefer certain temperatures and humidity, and
are affected by the seasonal change in these factors and the formation of newly favorable
climatic conditions for disease agents. Climate change can accelerate the spread and
severity of their pathogenicity [13]. On the other hand, developing new adapted forest trees
with acceptable resistance against biotic stresses (e.g., fungal diseases) will be necessary in
integrative management of forests infected by these diseases. Traditional breeding methods
(introducing new varieties, crossing and hybridization, selection in successive generations,
provenance tests) and modern methods (e.g., genetic engineering and gene editing) can be
used to improve forest trees [14]. The issue of time in plant breeding, especially in breeding
disease-resistant forest trees, and the propagation of resistant trees as soon as possible, is
extremely important in order to compensate for economic and ecosystem damage in the
shortest possible time [15]. Molecular markers are among the precision tools available to
breeders that can be used to accurately and quickly evaluate the various genotypes of trees
in the early stages of development. These methods play an important role in accelerating
the breeding and selection procedure, which can be used in a variety of breeding programs
saving time and costs [16]. Although several genetic studies have been conducted for model
crops and trees, in most forest trees this data is not satisfying. In recent years, the use of next
generation sequencing (NGS) methods has become a widely used approach to genotyping
and evaluating the diversity and structure of tree populations [17,18]. NGS methods and
their derived markers result in high-throughput and reproducible data as compared with
conventional molecular markers such as RAPDs, SSRs, AFLPs, etc. In addition, genomic
sequencing can generate valuable information about the origin, epigenetic alterations, and
physiological changes of plants. These data will improve our insight into pathogen-tree
interactions and underlying resistance pathways, which in turn will be useful in adopting
effective management strategies [3].

Quantitative trait locus (QTL) or interval mapping and genome-wide association
studies (GWAS) are two methods which exploit the existing recombinant and linkage
disequilibrium incidence, respectively. However, due to the low recombination rate in
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families derived from bi-parental crosses, GWAS is a more capable method for understand-
ing the genetic architecture of disease resistance mechanisms in comparison with interval
mapping. These two methods can identify markers associated with the desired trait to use
in marker-assisted selection (MAS) of superior genotypes. Genomic selection methods can
be used for the development of prediction models and selection of elite genotypes with
high disease resistance characteristics. This method is practicable for resistance traits which
are controlled by a large number of genes. However, selection of each of the mentioned
methods is dependent on various factors including type of population and complexity of
traits [16,19].

Genetic diversity is the basis of plant breeding, and on the other hand, evaluating this
diversity and establishing a suitable diversity panel using a variety of genetic methods
is an essential step in any breeding program. The use of NGS based procedures such as
RNA-seq has made it possible to both identify the diversity of gene expression patterns
and find several single nucleotide polymorphism (SNP) markers even in species without a
reference genome [20]. These findings not only help to better understand the interactions
between different genes involved in adaptation responses to various biological and abiotic
stresses, but also accelerate the process of various breeding programs. In this review
article, we intend to first investigate the molecular mechanisms of response of forest trees
to various diseases, especially fungal diseases. In the following, we will discuss how
molecular markers, especially NGS derived high-throughput markers, can help accelerate
the process of breeding programs through QTL mapping and GWAS. We will also point
out the role of genomic selection (GS) in the selection of superior disease-resistant trees.
Finally, it is expected that the new findings will help to better understand the relationship
between pathogen and tree, and accelerate the breeding programs so that a set of superior
individuals can be selected for use in breeding programs and the development of resistant
genotypes.

2. Molecular Mechanisms of Tree Responses to Diseases

Resistance is actually defined as the ability to survive for a long time despite the
threat of disease. Trees use a variety of mechanisms to prevent the progression of pathogen
invasion. The first defense obstacle of trees against the invasion of pathogens is the
presence of physicochemical barriers such as the outer bark, the cuticle surface of leaves
and their lignified cell walls. Forest trees, like many other plants, can secrete a wide range
of phytochemicals such as terpenoids (mono- and diterpenoids), alkaloids, and phenols
(such as stilbene, lignans, flavonoids, tannins, and proanthocyanidins) to change pathogen-
host interactions in favor of host trees [21]. Moreover, phytohormones such as jasmonic
acid, salicylic acid, methyl jasmonate, and abscisic acid can increase pathogen resistance
by activating enzymes involved in the biosynthetic pathways of other compounds or by
causing physiological changes [22]. It has been shown that in trees infected with pathogens,
the expression of several gene families changes. Many of these genes mainly encode
enzymes that are involved in various biosynthetic pathways, including phenylpropanoid,
terpenoid, carbon metabolism, and so on. These gene families have also been reported to
encode a variety of proteins, including fungicides, detoxifiers, inhibitors, and pathogen-
related proteins (PR) [23,24]. So far, several families of PR proteins have been identified
whose aggregation increases with the onset of pathogens and pests as well as abiotic stresses.
These proteins play an important role in natural defense (both directly by destroying
the pathogen cell wall and indirectly by producing eliminators) and ultimately trigger
defense responses by inducers such as salicylic acid, jasmonic acid, and ethylene. In
addition, polygalacturonase inhibitory proteins inhibit the action of the pathogenicity
factor polygalacturonase by preventing the destruction of the cell wall in trees and the entry
of pathogens, and enzymes such as polyphenol oxidase catalyze the oxidation reaction of
hydroxyphenol to quinone derivatives to increase resistance of trees to pathogens [23].

In addition to existing defense structures, trees are able to exhibit a variety of defense
responses after pathogens are detected. In the first stage of infection detection, receptors
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located in cell membranes called pattern recognition receptors (PRRs) and wall-associated
kinases (WAKs) detect pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs), respectively [24,25]. The immunity resulting from
such a process is known as the PAMPs-triggered immunity (PTI). In fact, PRRs (Figure 1a)
detect pathogen-derived compounds such as fungal chitin, bacterial flagellin, and viral
dsRNA, while WAKs detect cellular structures degraded by the enzymatic activity of
pathogens. The external part of the PRR receptor possessing leucine-rich repeats (LRR) is
responsible for detecting and binding to the extracellular ligand, while the cytoplasmic
domain acts as a kinase, initiating signal transduction [26]. There are other receptors inside
the cell that can detect effectors that cross the membrane. These receptors, which belong
to the nucleotide binding site-LRR (NBS-LRR) family of receptors encoded by R genes,
are able to detect these effectors (Figure 1b). This pathway results in effector-triggered
immunity (ETI). There are generally three domains in NBS-LRR (NLR) receivers, each of
which has a specific function. At their N terminal, either the N-terminal Toll/interleukin-
1 receptor-like (TIR) or coiled-coil (CC) domain can be placed, which starts the signal
transduction after the effector is detected by other domains. The middle domain is NB, and
with the continuous replacement of nucleotides (ATP instead of ADP), a conformational
change occurs at this receptor, releasing the end of the N-terminal to initiate the signal
transduction. The C-terminal domain is the ligand binding site that contains the duplicate
units of leucine [27].

Figure 1. Schematic representation of pathogen perception, different signaling pathways, and cor-
responding defense responses in trees. (a) pattern recognition receptors (PRRs), (b) nucleotide
binding site-leucine-rich repeats (NBS-LRR) family of receptors, (c) mitogen-activated protein ki-
nase (MAPK) cascade, (d) turbulence in calcium concentration during stress and its perception by
several proteins, (e) activation of NADH oxidase and production of reactive oxygen species (ROS),
(f) transport of hydrogen peroxide through an aquaporin channel.

The mitogen-activated protein kinase (MAPK) cascade (Figure 1c) is one of the im-
portant signaling pathways in stress response that is stimulated by various stresses and
ultimately leads to adaptive responses and improved resistance to biotic and abiotic stresses.
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This cascade begins with the phosphorylation of MAPKKK by the kinase proteins of the
receptors (i.e., PRRs, WAKs, LRR and NBS-LRR). Phosphorylated MAPKKK then phospho-
rylates MAPKK. Subsequently, phosphorylated MAPKK leads to MAPK phosphorylation.
Finally, the phosphorylated MAPK can act as a kinase enzyme and phosphorylate and
activate different cellular targets such as protein kinases and TFs, and after transfer to the
cell nucleus, leads to the expression of different genes to produce adaptive and resistance
responses [28].

Turbulence in calcium concentrations is a common occurrence during stresses. This
change in concentration activates the signaling pathway, which eventually alters the ex-
pression profile of the genes to elicit a suitable resistance response. PTI and ETI, during
pathogen invasion, can lead to increased cytosolic calcium concentrations. The increase in
the concentration of calcium ions in the cytosol (Figure 1d) is perceived by several proteins,
including Ca2C–dependent protein kinases (CDPKs), calmodulin (CaM), calmodulin-like
protein (CML), and then several TFs, such as calmodulin-binding transcription activators
(CAMTAs) and WRKY, and leads to the transcription of the relevant genes (e.g., NDR1,
EDS1, and RPS2 and RPM1 ETI protein) in the nucleus [24,25].

In addition to the role of plant hormones in controlling the developmental stages of
plants, they also play a pivotal role in the formation of adaptive responses induced under
stress conditions. While some hormones are mainly involved in growth regulation (e.g.,
auxins, gibberellins, cytokinins), other hormones such as jasmonic acid (JA), ethylene (ET),
salicylic acid (SA), and abscisic acid (ABA) play a major role in adapting to stress. ABA in
the early stages of fungal stress leads to the closure of the stomata to prevent the entry of
pathogens. SA is another hormone that reciprocally triggers the MAPK signaling pathway
during infection by biotrophic and hemi-biotrophic pathogens. Signals are transmitted
from different domains of the receptors to SA, and subsequently SA activates multiple tran-
scription factors such as TGA through a complex signaling network to express related PR
genes. Expressed gene products will shape systemic acquired resistance (SAR) to improve
host resistance against a wide range of pathogens. JA is another hormone that mainly plays
a role in increasing resistance to necrotrophic pathogenic agents. The signaling pathway of
this hormone together with ethylene synergistically participates in the expression of the
plant defense-related gene PDF1.2 [24,25,29,30].

PRR receptors can trigger reactive oxygen species (ROS) production and the PTI
defense response by activating enzymes such as NADH oxidase and peroxidase. In this case,
the toxicity caused by increasing the concentration of ROS will lead to the elimination of
pathogens. On the other hand, the production of ROS initiates signaling pathways and thus
causes other defense responses and cell death to prevent the spread of the pathogen to other
parts. Activation of NADH oxidase (Figure 1e), also known as a respiratory burst oxidase
homologs (RBOHs) enzyme, is achieved through phosphorylation by PRR associated BIK1
kinase to produce ROS in apoplastic space, which in turn can be transformed to H2O2
through peroxides’ catalytic activity. The membrane channel aquaporin (Figure 1f) has been
shown to play a key role in transporting hydrogen peroxide produced in the apoplastic
space into the cytosol and generating the corresponding defense responses. Cytosolic
and apoplastic ROS burst can activate SAR, strengthen the cell wall and accumulate
callus at the site of infection [31]. NLR receptors in the same manner as described above
lead to ROS burst, which in turn triggers HR cell death. However, some compatible
pathogens suppress the ROS burst by using effector proteins and cause host cell infection.
Proteins such as lectin bind to the pectin in the cell wall of fungi and protect them from
hydrolysis by enzymes that have accumulated as a result of PTI. In some cases, other
proteins such as Mg1LysM and Mg3LysM from the fungus Mycosphaerella graminicola can
bind to degrading enzymes in the host cell and block their activity [32]. In addition to the
ROS burst caused by phosphorylation of the NADH oxidase in PRR and NLR receptors,
the MAPK signaling pathway described earlier activates TFs such as WRKY and thus
increases expression of genes involved in the production of apoplastic ROS (such NADP-
ME and RBHO), leading to oxidative burst. Some pathogens can disrupt the kinase activity
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of these receptors and inhibit the activation of the MAPK and ROS signaling pathways
by producing effectors. Suppression of these signaling pathways will ultimately inhibit
PTI-derived defense responses and lead to the spread of disease in infected cells [33].

3. Experimental Approaches to Characterizing Disease Resistance Related Genes

Traditional genotyping methods using classical markers (such as RAPDs, RFLPs and
AFLPs) entail unacceptable high costs, lack of automation and low efficiency as well as
sometimes non-reproducible results [16]. In addition, these markers did not create a uni-
form coverage across genomes in mapping studies, and eventually were placed far away
from the QTLs associated with the trait, which limited their usability in MAS. With the
advent of NGS-based methods, it was possible to sequence the whole genome of plant and
trees in a short time. Moreover, the study of transcriptomes and comprehensive studies of
the expression patterns of different genes under various environmental conditions (e.g.,
biotic and abiotic stress conditions) has been made possible using these techniques. These
methods, which include restriction site associated DNA sequencing (RAD-Seq), reduced
representation libraries (RRLs), complexity reduction of polymorphic sequences (CRoPS),
genotyping by sequencing (GBS) and multiplexed shotgun genotyping (MSG), were able
to sequence simultaneously with the detection of markers, which resulted in the identifi-
cation of a large number of polymorphic SNP markers [34]. Such markers have various
advantages such as uniform distribution throughout the genome, low cost, and readiness of
application, which enabled the genotyping of a large number of genotypes in a short time.
The development of these markers will aid in accurate interval mapping and GWAS studies,
identify QTLs associated with important traits on different chromosomes, and accelerate
the breeding of forest trees through MAS. Since the abundance of SNP markers in forest
trees is high (1 per 100 bp), it will facilitate the exploitation of genetic diversity in these trees
in order to improve them for adapting to different environmental conditions [16]. There
are only a few traits in forest trees whose inheritance follows Mendelian patterns. Most
important traits, including growth, wood characteristics, resistance to diseases and pests,
and abiotic stresses, are complex quantitative traits. While reverse genetic approaches such
as genetic engineering can be considered as an alternative method to study such traits, the
common application of such methods is hampered by limitations such as high cost and
low-confidence transformation rates in most forest tree species [35]. In contrast, methods
such as QTL mapping and association studies are widely used to investigate these traits.
This technique is extremely important in reducing the time of cycle and cost of breeding
programs of forest trees due to their long juvenile period.

3.1. QTL Mapping

QTL mapping has been used for more than three decades in studies on the complex
traits of forest trees, including resistance to biotic and abiotic stresses and their develop-
mental and wood properties [16]. The long time to reach the reproductive stage on the one
hand and the problem of flowering on the other hand have made the length of the breeding
period in forest trees a major problem [19]. On the other hand, there is no reliable correlation
between the traits observed in young seedlings and mature trees, so direct selection based
only on the traits observed in the juvenile stage cannot lead to the development of a variety
with the desired traits [36]. Constructing genetic maps and QTL mapping have become
important tools for marker-assisted selection (MAS). This strategy is especially important in
trees, as it can lead to reliable early selection in young seedlings and thus increase gain per
unit time and reduce the breeding period [37]. QTL mapping can help to understand the
genetic basis of disease resistance variability in progeny derived from controlled crosses.
However, segregating populations are often not available in non-domesticated and highly
heterozygous species. Limitations such as long life cycle, inbreeding depression, and
self-incompatibility also hamper the development of mapping populations (e.g., inbred
lines and biparental populations) in open pollinated forest trees [38]. For this reason, F1
progenies derived from crosses between two heterozygous parents are common mapping
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populations for such species. In such populations, segregating test cross markers are ana-
lyzed separately for each parent. This strategy is known as “pseudo-testcross” since there
is no prior information about the test cross marker, while in a traditional test cross the
genotype of the tester is determined as homozygous recessive for a given locus [39–41].

Identification of QTLs and further study of genes within QTL intervals can also explain
the molecular basis of diversity in different species in terms of resistance to disease. All
this information can be helpful in adopting an effective management strategy for various
diseases by selecting individuals with multiple resistance mechanisms in breeding pro-
grams [42]. Usually, QTLs derived from single biparental pedigrees do not exhibit similar
patterns in different environmental conditions and genetic backgrounds. In order for the
identified QTLs to be used in accurate genomic selection and MAS for other breeding popu-
lations, they must be validated over different years and locations and in other families [43].
Various molecular markers can be used to generate genetic maps. Classical molecular
markers due to their low frequency, non-codominant characteristic, and lack of uniform
distribution throughout the genome, led to the identification of few QTLs at long genomic
distances. NGS-derived SNP markers are free of these weaknesses and can be used to
develop high-density maps, e.g., [38,44]. These markers are developed by various NGS-
based methods; among them, the GBS method is widely used in QTL mapping (reviewed
in [34]). In the following, the QTL mapping method for finding QTLs related to disease
resistance is briefly described. Initially, the mapping population is developed by crossing
highly heterozygous parents. Markers showing heterozygosity in one or both parents will
be screened in the progeny. After the onset of the disease by methods such as inoculation,
the target population is evaluated based on the target traits such as scoring the disease,
the rate of disease development in the area of infection, and growth related traits. The
genotyping data are analyzed with the relevant software including JoinMap 4 [45] and
MapMaker [46] and based on the recombination between the markers, the distances and
the order of the markers are determined and the linkage map is constructed. Finally, using
several methods such as linear regression analysis, multiple QTL, and composite interval
mapping, the genotyping and phenotyping data are analyzed (e.g., with MapQTL 6), to
identify putative QTLs and associated markers [47].

In the last two decades, several QTLs have been reported for resistance to various
diseases in forest trees. These studies over the past decade have been largely based on
NGS-based markers, including SNPs [37,42,43,48,49]. The use of QTL mapping in the
eucalyptus tree has led to a deeper insight into the genetic architecture of the response
to various diseases including rust, Calonectria leaf blight (CLB), and Ceratocystis wilt.
The causative agent of rust disease in this tree is Puccinia psidii. A total of 4 QTLs (Ppr2,
Ppr3, Ppr4, and Ppr5) were identified for this disease, placed on separate linkage groups.
Two of these 4 QTLs (i.e., Ppr4 and Ppr5) were effective in the hypersensitive reaction
(HR) and the two other QTLs (i.e., Ppr2 and Ppr3) were associated with the presence or
absence of disease symptoms [42]. Because PTI-induced and basal responses result from
structural barriers and chemical compounds such as waxy cuticle are symptomless, it can
be concluded that the loci in Ppr2, Ppr3 QTLs may be involved in such responses. On
the other hand, it has been shown that QTLs underlying HR and their associated loci
control the ETI response. A large number of genes were identified in the QTL confidence
intervals, mainly belonging to the NB-LRR gene families. Proteins encoded by this gene
family can directly or indirectly play a role in identifying effectors and triggering responses
such as HR and asymptomatic immunity. Further, in these confidence intervals, several
transcription factors were identified, including WRKY, bZIP and MYB families, which after
activation at the end of different signal transduction pathways and entering the nucleus can
lead to the expression of different defense genes [42]. In another study, in an F1 mapping
of populations (E. urophylla S.T.Blake × E. camaldulensis Dehnh.) using microsatellite
markers for Calonectria leaf blight (CLB) resistance, five putative QTLs were identified.
Among these QTLs, resistance to defoliation 5 (Rd5) was identified as the major QTL, which
accounted for about 50% of phenotypic variability. Validation of only one QTL (Rd2) out of
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5 QTLs in two other unrelated populations indicates the interaction of QTLs with the genetic
background, which is common in such heterogeneous populations. Therefore, the necessary
caution should be taken in using such QTLs for MAS. To obtain more promising results, it
is recommended to cover the whole genome using larger populations and high-throughput
markers [48]. QTL analysis with SNP markers for resistance to myrtle rust (Austropuccinia
psidii) and Quambalaria shoot blight (Quambalaria pitereka) in 360 F1 genotypes of Corymbia
(Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson × C. citriodora (F.Muell.) A.R.Bean
& M.W.McDonald) resulted in the identification of 22 QTLs. Of these 22 QTLs, 6 QTLs were
related to rust and the rest were related to Quambalaria shoot blight (QBS) resistance. The
two major groups of gene families within the confidence intervals of these QTLs were NBS-
LRR and microRNAs (miRNAs). In addition to the role of miRNAs in regulating growth
and development, hormonal activities and disease response, they also regulate NBS-LRR
genes. Since QBS is a native disease for this tree, due to the mutual evolution of the host
and the pathogen, the QTLs identified for resistance to this pathogen were of larger effect
and independent from the QTLs for rust resistance. Therefore, most of the QTLs involved
in QBS resistance were associated with the specificity of HR, which is carried out through
specific R genes (oligogenic control) [50,51]. Past studies have shown that many of the QTLs
identified for important diseases in eucalypts including CLB, Mycosphaerella leaf spot, and
Ceratocystis wilt are mainly distributed on different linkage groups (LGs), indicating that
resistance to these diseases is polygenic [43,48,52]. In Eucalyptus, chromosome 3 is one of
the important chromosomes in which many syntenic genes of resistance to various fungi
are located. It has been shown that this chromosome has undergone chromosomal changes
during the evolutionary process, such as duplication of interchromosomal fragments, and
on the other hand, it also contains conserved genes [43].

The GBS approach was used in backcross hybrids resulting from the crossing of
American chestnut with two Chinese resistant cultivars (i.e., Mahogany and Nanking) to
find QTLs associated with Phytophthora root rot (PRR) disease and to create saturated
and high-density linkage maps [49]. A total of 17 QTLs were identified, which were
distributed on 4 linkage groups related to parents. Since some crosses were phenotyped
for two consecutive years, the results showed that environmental conditions could have a
significant effect on the strength of identified QTLs. In general, the results showed that the
genetic architecture of pathogen resistance in chestnut hybrids is similar to the pathogenic
system between soybean and Phytophthora soja. Partial resistance in this plant is obtained
by the action of multiple genes. It should be noted that in soybeans, resistance to P. soja
(Rps) genes can configure race-specific resistance [53], while partial resistance in this plant
is obtained by the action of multiple genes. These genes mainly have protected motifs such
as LRR and NBS that are able to execute defense responses through the action of NBS-LRR
receptors by activating the corresponding signaling pathways [49].

3.2. Association Mapping and Genome-Wide Association Studies (GWAS)

Linkage mapping studies are mainly performed in families with close relatives re-
sulting from biparental crosses, which are based on recombination and segregation in this
family to finally identify the genomic region controlling the desired trait (i.e., the QTL).
Due to the limited recombination in such populations, the resulting maps do not have a
high resolution and are not able to explain the diversity of complex traits [54–56]. However,
it should be noted that in linkage mapping studies, controlling the possibility of recombina-
tion in the offspring is more practical than in association mapping (AM). In contrast, AM
can be used in populations with a diverse set of individuals from natural populations, wild
relatives, and other breeding populations. This method uses the linkage disequilibrium
(LD) between markers and QTLs to identify the relationship between the trait and the
marker. GWAS and candidate genes are two well-known methods for AM studies. All of
these features imply the need to use AM studies in these populations in order to identify ge-
nomic regions controlling all traits showing diversity and causal genes by testing multiple
alleles for associations in an experiment. LD analysis in GWAS uses not only recombination
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events after crossings, but also all recombination events that occurred between markers and
genes over hundreds of generations. Involvement of multiple recombination events and
testing of multiple alleles increases the resolution power of this method compared to link-
age mapping [56]. QTL mapping in forest trees, for various reasons such as non-validation
of QTLs, large tree genomes, impossibility of positional cloning of the identified QTLs, and
their different expression across environments, has not been successful in dissecting the
genetic architecture of highly complex traits. These limitations are overcome in GWAS
by the application of a high marker density and unstructured natural populations. On
the other hand, since the latter method is based on LD, if the trait-marker association is
identified and validated, it is more reliable and likely to be located at close distance to
functional genes. Since such a trait-marker association will remain for many generations
and recombination events, GWAS derived markers in MAS are recommended [57].

In the last two decades, GWAS has been used as a key approach in assessing the
natural diversity of crops, fruit and forest trees to explain the genetic architecture of
various complex traits, including disease resistance [54,56,57]. In general, these studies
have focused on traits such as wood characteristics, growth-related traits, resistance to
diseases and pests, and abiotic stresses (Table 1). Using a large number of markers and
evaluating an abundance of different germplasms, this method provides a suitable density
of markers to evaluate the rate of LD decay and detect causative genes controlling traits of
interest [56]. There are several factors that can affect the resolution of GWAS, which should
be considered in the implementation of this method. Assessing phenotypic diversity, first
the outliers should be removed from the raw data and then traits with high heritability
estimates should be selected. At this stage, methods such as best linear unbiased estimator
(BLUE) and best linear unbiased prediction (BLUP) are used to adjust the phenotypic scores
based on the interactions of the genotype with the environment so that the power of GWAS
is not negatively affected by this effect [55,58]. The number of individuals selected should
also ensure sufficient genetic and phenotypic diversity in the study population. Populations
with large numbers of individuals can increase the chances of identifying large quantities of
the effect and also identifying QTLs with small phenotypic effects. Analysis of population
structure with programs and methods such as STRUCTURE (using Q-matrix) [59], kinship
matrix (K) and principal component analysis (PCA) is also one of the requirements of
GWAS that is used to identify kinship between individuals and possible subgroups in the
study population. Because individuals in GWAS do not have the same kinship, a false link
between a trait and genotype can be detected if kinship is not considered. GWAS power
also depends on the frequency of alleles, and it is possible that functional alleles with low
abundance may not be detected despite their large effect on the phenotype. Rare alleles can
be important in tree breeding, as some of them have major favorable phenotypic effects
on complex traits such as resistance to certain diseases [19,60]. Selection of wild relatives
and landraces and efficient genotyping methods such as GBS can help increase the power
of GWAS to identify these alleles. Finally, calculating LD through statistics such as r2 and
D’ is also necessary to estimate the distances between loci and identify common mutation
and recombination history between them. The calculated LD is shown as r2 and D’ in a
plot called the LD decay plot for each chromosome. In this plot, the genetic distance is
displayed on the X-axis and the calculated LD values (as r2) are displayed on the Y-axis.
Finally, a nonlinear logarithmic regression curve for the scatter points is obtained. In AM
studies, a threshold for LD is usually considered, and SNPs with r2 > 0.2 are considered for
statistical analysis. The rate of LD decay over distances determines the mapping resolution,
while LD decay at short distances leads to high-resolution maps and vice versa. All factors
resulting in deviation from Hardy–Weinberg equilibrium, including migration, genetic
drift, non-random crossover, selection, and mutation, can affect LD. The LD value is also
used to determine the number of sufficient markers to cover the entire genome. If LD
between two significant SNPs is small, it is likely that these two SNPs are independent of
each other and are located in a separate QTL, and vice versa.
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False positive identification is one of the main limitations of GWAS that should be
considered, although appropriate models which include affecting covariates such as PCA,
population structure (Q matrix) and kinship (K), can also impede such identifications. In
addition, genetic engineering methods (e.g., gene silencing) can be useful for validation
of the identified associations. However, it should be noted that in many tree species these
methods have not been established [35,56,61].

In the following, the GWAS procedure in plant resistance to a variety of diseases is
briefly explained. The first step involves selecting the right number of individuals for
the population to be studied. In the case of forest trees, groups of natural individuals are
usually selected without the use of controlled crosses with unknown ancestors to take
advantage of natural recombination events that have occurred during their evolution.
Selected individuals are exposed to the target disease by using artificial inoculation and
then phenotyped based on the target trait or traits. Usually, these analyses are performed
in replicated provenance or progeny trials using a randomized design (for example, ran-
domized complete block design) to minimize environmental effects on the phenotype. In
this case, based on the observed disease symptoms, a diverse range of disease responses
from asymptomatic to the presence of obvious symptoms in different tissues are usually
scored and raw data are obtained, the outliers removed and the adjusted phenotype val-
ues calculated using BLUP or BLUE [58,62]. The broad-sense heritability is also usually
calculated for raw data to determine the genetic portion in controlling traits. Phenotypic
measurements must be repeated in different years and places, which is a major challenge
due to the large number of individuals used in this method. In the next step, individuals
are genotyped using suitable markers. The reason for the use of SNPs, which are usually
obtained with the GBS method, is their wide distribution in the genome, low cost, and high
reproducibility. Population structure determined using PCA, the software STRUCTURE,
and a kinship matrix (K) are included in appropriate GWAS models to detect valid marker-
trait associations [55,63]. Finally, using models such as general linear models (GLMs) and
mixed linear models (MLMs), GWAS analysis is performed and the relationships between
the target trait and the alleles are identified. Significant associations of each trait with
each SNP are assessed using Bonferroni correction (BC) and false discovery rate (FDR). In
general, the FDR method has a high degree of flexibility and is less conservative than the
BC method, and is recommended for determining independent associations of traits and
markers. GWAS outputs may depend on the type of software used and can include various
parameters and graphs (Figure 2).

Table 1. Several significant marker-trait (SNP and DArT) associations found by GWAS models in
different forest tree species.

Species Target Trait Number of
Samples

Number of
Markers

Significant
Markers GWAS Model References

Cornus florida L.

Resistance to
dogwood

anthracnose
and ecological

pressures

289 3134 14–29 Latent factor mixed
modeling [64]

Eucalyptus
Growth and

wood property
traits

1123 37,832 78 FarmCPU [65]

Eucalyptus
DBH, diameter
at breast height;
HT, total height.

3373 41,320 11–3

linear model-based
association (LMA)
and mixed linear

model-based
association
(MLMA)

[66]
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Table 1. Cont.

Species Target Trait Number of
Samples

Number of
Markers

Significant
Markers GWAS Model References

E. globulus
Growth and

wood property
traits

303 2,364 DArT 18 Unified Mixed
Model [67]

E. grandis

Terpene traits,
1,8-cineole,
c-terpinene,

and p-cymene

416 15,387 21–32 and 28

Efficient
Mixed-Model
Association
eXpedited
(EMMAX)

[68]

Fagus
grandifolia Ehrh.

Beech bark
disease (BBD) 514 16,000 4 logistic regression

model [69]

Hevea
brasiliensis Latex yield 170 21,146 4 MLMA [70]

Picea abies (L.)
H. Karst.

Susceptibility to
H. parviporum 533 373,384 36 EMMAX [71]

P. abies L. Karst
Heterobasidion
rot caused by H.

annosum s.s.
400 63,760 12 MLM [72]

P. abies L. Karst Resistance to H.
parviporum 466 197,399 11 LASSO [73]

P. crassifolia
Kom.

Earlywood
tracheid traits 106 12,275,765 96 MLM [74]

Pinus contorta Serotiny 98 95,000 11
Bayesian

generalized linear
model (GLM)

[75]

P. taeda
Solid wood and
wood chemistry

traits
435 58 4 MLM [76]

P. taeda Carbon isotope
discrimination 961 46 4 MLM [77]

P. taeda Pitch canker
resistance 498 7216 10

Bayesian
association with

missing data
(BAMD)

[78]

Populus
trichocarpa

16 wood
chemistry/

ultrastructure
traits

334 29,233 141 regression model [79]

P. trichocarpa
Resistance to
Sphaerulina

musiva
3404 8,253,066 96 EMMA in EMMAX

software [80]

P.trichocarpa Stomatal traits 2447 34,131 25 GLM [81]

Identifying important alleles and supporting the introgression of these alleles from
diverse individuals into selected populations is one of the important applications of AM. In
this regard, limited studies have been conducted in forest trees to identify disease resistance
related alleles. Discovering markers located at close distances to QTLs controlling the target
trait can also be another practical aspect of AM. These markers can be used to identify
individuals and genotypes of interest instead of directly selecting them based on the trait.
This strategy is known as MAS, which can significantly reduce the breeding program
process, especially in perennial trees that have a long juvenile period. After identifying the
important and significant QTLs to which the significant markers are attached, these QTLs
can be used to find their physical position and identify candidate genes [64]. Identification
of these genes in disease resistance studies could reveal the genetic architecture of the
response to these diseases. From another point of view, cloning and overexpression of these
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genes in the same plant or its expression in another species can be a step in the development
of resistant plants to various diseases [3,35].

Figure 2. (a) Schematic representation of GWAS and (b) resulting Manhattan plot in forest trees for
finding marker-trait associations in disease resistance studies. On the x-axis of this plot, the markers
are displayed on different chromosomes and on the y-axis, the –log10 p-values related to each marker
are displayed. A threshold line is considered for p-values, and the SNP markers located above this
line can be considered as potential QTL (modified from [55]).

The use of regional heritability mapping (RHM) along with GWAS can help identify
loci containing rare allelic effects that contribute little to the phenotypic variance. Usually,
the GWAS method is not able to estimate this variance due to insufficient LD between these
sites and the SNPs used. RHM uses both common and rare SNP variants found in short
intervals of the genome to create a genomic relationship matrix (GRM) which finally will
be used for calculating phenotypic variance related to such segments. This method is able
to identify more QTLs with a lower false positive rate than the GWAS method [82]. GWAS
and RHM were used to find loci associated to growth, wood and disease resistance traits in
768 eucalyptus hybrid trees resulting from a E. grandis L. x E. urophylla cross. According to
the –log10 p-value and permutation threshold, the association between Puccinia psidii (also
known as Austropuccinia psidii Beenken) rust disease resistance and the corresponding SNP
(placed on chromosome 3) was identified as the most significant association. RHM led to
the identification of 4 QTLs for resistance to the disease, which, along with two other QTLs
associated with wood quality traits, were located on the same chromosome [83]. The first
major QTL for resistance (i.e., Ppr1) to the disease was identified by Junghans et al. [84], and
subsequent further studies led to its validation and positioning on chromosome 3 [85,86].
The results showed that the RHM method compared to GWAS leads to a 3-fold increase in
heritability for various traits, including disease resistance, which indicates the superiority of
the RHM method in identifying the association of loci with complex traits. This superiority
can be explained by the fact that RHM using the combined effect of several SNP variants
increases the likelihood of association in comparison with GWAS that only uses single
marker effects for association analyses [82,83].
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Recently, in another study, 33 significant SNPs were identified for resistance to myrtle
rust disease in the E. oblique L’Hér. tree. Most of the significant markers were associated
with the presence or absence of symptoms of the disease, hypersensitivity and pustules.
Five of these markers were located on each of chromosomes 3 and 4, and the rest were on
the other chromosomes. Several genes (i.e., 67) identified around these markers (±5 kb
of each SNP) indicate that resistance to the disease includes a wide range of responses,
including PTI and basal resistance (asymptotic responses) to ETI (e.g., cell death and
HR) [58]. The results of this study and other studies have shown that resistance to this
disease in eucalyptus and other related trees is controlled by diverse loci with different
effects, indicating the complexity of this trait [42,87,88]. Previous studies in Eucalyptus
identified not only NBR-LRR genes, but also some other groups of R genes including
kinases, hydrolases, and nucleotide-binding proteins and transcription factors (e.g., WRKY
and bHLH) to be involved in resistance against myrtle rust. The presence of different R
gene families in plants and trees allows effective identification of pathogenic effectors that
change over time [42,58,89]. In previous studies, many SNPs of resistance to this disease
and other fungal diseases were mainly located on chromosome 3 [43,52,89,90]. In a recent
study, several of the significant SNPs were also located on the same chromosome, which
indicates the presence of conserved genomic regions, gene clusters, and pleiotropic genes
for resistance to this disease and other diseases on this chromosome [58].

Although AM-based methods can overcome most of the limitations of the linkage
mapping method, this method itself also has limitations that restrict its practical use in MAS.
Among the limitations of this method, the following can be mentioned: low phenotypic
variance explained by identified associations, limited LD, false positive/negatives, and
rare alleles.

3.3. Genomic Selection

With the advancement of high-throughput genotyping methods, the genomic selection
(GS) procedure has become an alternative paradigm for MAS. This method is of consider-
able importance in the study of complex quantitative traits with low heritability (such as
yield, disease resistance, and wood quality) that are affected by environment and expensive
to measure and appear after a long time of growth. Early selection of elite genotypes using
this method not only reduces the cost and amount of work of breeding programs, but also
makes it possible to identify successful parental crossings that ultimately lead to desired
allelic combinations in the progeny [19,67,91,92]. The GS method, unlike MAS, uses the
data of all markers without considering the significance of the marker-trait relationship,
and the magnitude of the QTL effect [93]. In this method, a suitable training population
is selected and genotyped using genome-wide markers, while phenotypes are scored in
different places and years. The obtained phenotypic and genotypic data are used to fit
a prediction model and estimate its parameters that will be used later in the breeding
population. The fitted model is cross-validated in a validation population that is genetically
related to the training population. The breeding population is also genotyped with the
same number of markers (no need for phenotyping). Using the genotyping data of the
breeding population and with the help of the marker effect on the trait obtained from the
training model, the genomic estimated breeding values (GEBVs) of the individuals are
calculated. Finally, the individuals of the population are selected based on the calculated
GEBVs [66]. In general, several methods for calculating GEBV values are based on Bayesian
(e.g., Bayesian A, B, Bayesian ridge regression and Bayesian least absolute shrinkage and
selection operator) and BLUP (genomic and ridge regression) methods. The application of
different methods depends on the conditions of the research in question, for example, when
there is less kinship between the breeding and training population, the Bayesian method is
preferred to GBLUP, and on the other hand, for traits having high heritability and traits
that are controlled by a moderate number of genes, it is better to use the Bayesian A and B
method, respectively [92]. Since GEBVs can be estimated in seedlings, the GS approach can
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play an essential role in increasing genetic gain per time unit and reducing the breeding
period in forest trees [94].

In the last decade, GS has attracted the attention of many forest tree breeders in order
to identify superior genotypes for various traits. SNP and DArT genotyping platforms
available for Eucalyptus have made it possible to accurately estimate genetic parameters
and construct pedigree architecture; therefore, most GS studies in forest trees have been
performed in eucalypts [95]. However, recently, due to the emergence of NGS sequencing
methods and the possibility of discovering SNPs in different species, GS has also been
started in other forest trees. In a recent study on the nut yield of Macadamia integrifolia
Maiden and Betche, moderate and high prediction accuracy was obtained for yield and
yield stability traits, respectively. The results of this study showed that GS can reduce
the selection cycle for yield by seven years (from 21 to 14 years) and double the genetic
gain for this trait [94]. Some reports showed the predictive accuracy of traits related to the
growth and quality of wood in trees such as fire tree, Pinus pinaster Ait. and Eucalyptus
pellita F. Muell to be moderate [95–97]. High prediction accuracy increases the confidence
level in selecting the top individuals and depends on various factors such as population
size, nature of a trait, model type, number of markers used and the amount of LD [94].
Preliminary studies regarding the evaluation of factors affecting the GS accuracy in forest
trees have shown that among them, LD between marker-trait and heritability, and the
number of QTLs have the greatest and least impact on the accuracy of GS, respectively. On
the other hand, for the successful application of GS in forest trees, a sufficient number of
training populations and a high marker density should be used. For a population with
an effective size of <30, the density should be 2-3 markers per centimorgan, and for larger
populations, this value should be 20 to have 50% prediction accuracy even for traits with
low heritability controlled by 100 QTLs [91]. Unlike cultivated and self-pollinated plant
populations, in most forest tree species with large effective population sizes and an open
pollination system, LD has a significant decrease in short distances, and in order to make
an accurate prediction in these species, a high marker density should be used [95,98]. In
addition, close kinship of the individuals of the training and validation population can lead
to an increase in the prediction accuracy of GS models [99].

More recently, GS has also been used for disease resistance traits (Table 2). These traits
are often controlled by oligo QTLs that explain a significant portion of the phenotypic
variance. These features guarantee the success of MAS in such traits and on the other hand
increase their predictability through GS [100]. Different GS methods (such as Bayes A, Cπ

Bayesian LASSO and RR–BLUP) were used for several traits in Pinus taeda L., including
growth, development, wood quality, and fusiform rust resistance, in order to evaluate
the efficiency and accuracy of their estimates. The lowest (0.17) and the highest (0.51)
predictability of different methods was related to lignin and branch angle traits, respectively.
Bayes A and Cπ, compared to other methods, showed better predictive power in relation
to fusiform rust resistance. This outcome is related to the genetic architecture of traits
and shows the high capability of these methods in predicting a trait with simple genetic
architecture controlled by a few loci with large effect. The poor performance of the RR-BLUP
in oligogenic traits is due to fitting a large number of markers in modeling the phenotypic
variation of traits that are controlled by a small number of loci. In contrast, in Bayes methods
the effects of each marker are considered specifically and they are not treated equally
as in the BLUP method [100,101]. Using the RR-BLUP method with adding individual
makers to the model and calculating the predictive ability, it was determined that the
maximum predictive ability is achieved with 110 markers for the resistance traits in P. taeda.
However, the number of markers required for most traits related to growth, development
and wood quality to reach the maximum predictive ability was over 600 [101]. The RR-
BLUP B method with the necessary number of markers to reach maximum predictive
ability performed better than Bayes and traditional RR-BLUP methods [101]. The predictive
ability of SNP markers for Fusarium blight resistance in P. taeda is affected by the type of
model used and the cross validation scenarios. Higher predictability is obtained when the
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relationship between training and validation populations is greater. For this reason, the
random selection of samples from the population and creation of training and validation
populations compared to random sampling scenarios of families and within families leads
to the highest prediction value (0.71–0.76) of different models. In different cross validation
scenarios, the Bayesian method is preferred over the whole genome regression models in
order to capture major effect QTLs involved in Fusarium rust resistance [102].

Knowing the genetic architecture of a trait can help in adopting the appropriate model
by including additive or additive-dominance effects in the model to increase the predictive
ability. For polygenic traits such as height, which are controlled by a large number of
genes (dominance effects), application of additive-dominance models leads to increased
prediction accuracy. On the other hand, additive models work better to achieve high
prediction accuracy regarding oligogenic traits such as rust resistance for which dominance
effects are negligible. Usually, additive-dominance models perform better than the additive
models alone for oligogenic traits with high dominance effects. Prediction accuracy of
additive-dominance models decreases with the progress of generations, however. There-
fore, these models are more practical in species that are propagated through vegetative
methods [103,104].

It has been found that the selection of a subset of top significant SNPs based on
GWAS p values can create more accurate predictive models than randomly selected SNPs
of the same subsets. Highest prediction accuracy (0.67) for ash die back (ADB) disease
resistance was achieved by the top 10,000 significant SNPs of a training population (out
of 9,347,243 SNPs) which were selected from GWAS. In this study, using 200 informative
SNPs in the test population, the fitted model was able to assign trees with the highest
resistance to this disease to healthy groups with a prediction accuracy of 0.9. Since the
model was fitted on pooled sequencing data (31 pools from 1250 trees), the obtained model
can be used with high accuracy in evaluating the resistance to ADB of different populations
of ash trees that are genetically different [105].

The process of forest restoration of different tree species can take more than a cen-
tury and the GS method can be used in such programs and accelerate this process. The
restoration of the American chestnut forests, which were destroyed by blight, started in
the 1920s [106]. More recently, promising results have been obtained using MAS and GS
studies. Recently, GS has been used to accelerate the selection of resistant trees in two
chestnut backcross populations (BC3F2) named “Clapper” and “Graves”. The genes of
resistance to this disease in these populations was descended from two different Castanea
mollissima Blume Chinese donor parents. The fitted models (HBLUP and Bayes C) per-
formed similarly but their capabilities were better than pedigree methods in the selection
of 1% of the individuals for canker severity and late-developing blight traits in BC3F2
selection candidates and BC3F3 (maximum ryŷ = 0.64 for “Clapper” and ryŷ = 0.48 for
“Graves”) progeny, respectively [107]. This capability can be attributed to the more accu-
rate and higher estimation of individual relatedness in the GS compared to the pedigree
method [108]. The results of this study showed that resistance to this disease is a polygenic
trait with a low heritability and the proportion of the genome inherited from American
chestnut in individuals has a negative relationship with resistance. Therefore, according to
the above facts, to improve resistance to this disease, a breeding program including recur-
rent selection, backcrossing with a lower number of generations and using new sources of
resistance, evaluation of resistance in the backcross trees and the progeny of the selected
individuals will have promising results [107].
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Table 2. GS studies in forest tree breeding applied for disease resistance.

Species Target Trait Population
Size and Type

Number of
Markers

Prediction
Accuracy

Prediction
Model References

Pinus taeda L.

Growth, wood
quality, and

fusiform rust
resistance

921 from 61
full-sib families 4,853 SNPs 0.17-0.51

Bayes A, Cπ

Bayesian
LASSO and
RR–BLUP

[101]

P. taeda L. Fusiform rust
resistance

721 from 5
full-sib families 16,920 SNPs 0.71–0.76

Ridge
regression,

Bayes B, and
Bayes Cπ

[102]

Fraxinus
excelsior

Resistance to ash
dieback disease

1,250 from 15
native seed

zones
10,000 SNPs 0.67 RR–BLUP [105]

Castanea dentata Mean canker
severity

Progeny of
1,230 from

BC3F2

71,507 SNPs 0.06-0.30
HBLUP,

ABLUP, and
Bayes C

[107]

Theobroma cacao

Resistance to black
pod rot (BPR),

witches’ broom
disease

(WBD), and frosty
pod rot disease
(FPRD) diseases

1,345 accessions
from F1
progeny

9,640 SNPs 0.065-0.478 G-BLUP [109]

4. Future Application of GWAS and GS

With expanding access to whole genome sequences of forest tree species and the
possibility of discovering high-throughput markers (e.g., SNPs), the use of GWAS and
GS for the breeding of forest trees is increasing. For the successful use of this method
in breeding programs, it is necessary to develop and improve effective statistical models
and software. Since the phenotyping step is an essential step in such studies, the use of
precise phenotyping tools and methods is another challenge that must be considered in
the evaluation of individuals and populations. On the other hand, to use the significant
markers discovered in future experiments, trait-marker associations should be validated in
other populations and in repeated experiments in different places. GWAS in future forest
tree breeding for disease resistance also should take into account the climate change issue,
since some weather conditions such as extreme drought can intensify the severity of a
disease and increase the susceptibility and mortality of genotypes that appear resistant
under favorable conditions. Therefore, strategies such as simultaneous selection for disease
and drought resistance alleles should be considered in forest tree breeding programs. Using
the information for all the markers, the GS procedure can be applied as an alternative or a
complementary method for MAS not only for wood quality and growth related traits but
also for disease resistance traits. Knowing the type of trait (simple or complex inheritance)
is very important in choosing a statistical method and the development of new statistical
methods according to the degree of complexity of the target traits can increase the efficiency
of GS. Breeding of forest trees by using MAS and GS for disease resistance is not considered
as a common strategy in forest management programs, especially in developing countries.
However, it is expected that due to the significant diversity in such natural populations
and by reducing the cost of whole genome resequencing, GS will become more important
in the future. Methods such as GWAS with an indirect selection approach through MAS
and GS can lead to the development of elite parents or genotypes that can be used in the
future to create desired populations. These populations can finally be propagated and used
in an integrated form with other management methods and gradually replace sensitive
trees. In addition, by identifying resistance genes and overexpressing or introducing them
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into other forest tree species with genetic engineering methods or editing specific genomic
regions using new techniques such as CRISPER/Cas, the development of transgenic forest
trees resistant to various diseases is not far from reach. In this regard, the non-response
of many forest tree species to tissue culture and gene transformation methods is a serious
challenge that requires much work in the future so that the methods mentioned above can
be used.

5. Conclusions

In recent years, with the help of NGS methods, genomics and transcriptomics studies
in forest trees have increased significantly and have helped the breeding programs of these
trees. However, most of these studies have been conducted on economically valuable trees,
and ecologically valuable species have been neglected. With the advent of this technology
and availability of whole genome sequences, high-throughput markers (e.g., SNPs) were
also discovered, which enable quick and cheaper genotyping of different species. Due to
their uniform distribution throughout the genome, these markers enabled the construction
of high-density linkage maps and the identification of QTLs related to resistance traits to
various diseases. Due to the limitations in the interval mapping method and the unique
characteristics of forest trees, the AM method has attracted the attention of researchers
in this field. Both of these methods are able to dissect the architecture of resistance to
diseases and the different genes involved. Identifying markers related to disease resistance
traits using these methods can increase forest tree improvement programs through MAS.
Along with other challenges of AM and interval mapping methods, paying attention
to QTL effects and marker-trait associations is one of the major disadvantages of these
methods, and ignores valuable genome information. The GS method, using the information
on all markers, is the best method to greatly increase the speed of breeding in complex
traits related to disease resistance. However, the number of such studies in forest trees is
limited due to various reasons such as the lack of reference genomes; the development
of databases is limited to certain trees. Choosing the best model and using appropriate
sampling methods to ensure the highest relatedness between the training and verification
populations has a significant impact on the success of GS studies. AM and interval mapping
(for MAS) and GS can be used according to the type of target trait and increase the breeding
gain per year of perennial forest trees. However, the success of these types of studies
depends on the development of accurate statistical models and accurate phenotyping tools
and methods.
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