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Fano resonances in bilayer 
graphene superlattices
J. A. Briones-Torres    & I. Rodríguez-Vargas

In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We 
consider that this phenomenon is as exotic as other phenomena in graphene because it can arise 
without an external extended states source or elaborate nano designs. However, there are not 
theoretical and/or experimental studies that report the impact of Fano resonances on the transport 
properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances 
on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing 
the number of periods, adjusting the barriers height as well as modifying the barriers and wells width 
it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the 
coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and 
identifiable changes in the conductance. Moreover, by reducing the angular range for the computation 
of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to 
the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these 
conductance features could serve as unequivocal characteristic of the existence of Fano resonances in 
bilayer graphene.

Resonances represent an ubiquitous physical phenomenon, since we can find them in very diverse fields, and 
from the classical world to the quantum world. Resonances are also fundamental characteristics that provide valu-
able information and help to understand physical systems. The archetypal resonance is the so-called Breit-Wigner 
resonance, which has as fundamental characteristic a Lorentzian line-shape. However, from the very beginning 
of atomic physics a resonance with asymmetrical line-shape was challenging1, because it did not obey the usual 
models. The pioneering work of Ugo Fano about auto-ionizing states in atoms came to solve the mystery of the 
asymmetrical resonance2,3. Fano suggested a simple model based on the constructive and destructive interfer-
ence of the propagating and discrete states. That model gave place to what now is known as the Fano profile. 
This profile is characterized by a rather simple mathematical expression, σ = (ε + q)2/(ε2 + 1). This expression 
has a phenomenological parameter q that gives the profile shape and a reduced energy ε = (E − ER)/Γ that bears 
information about the peak position ER and the width of the resonance Γ. Furthermore, according to the value 
of q we can find different types of resonances: q = 1 is a Fano resonance, q = 0 an antiresonance, and for large 
values of q (q → ∞) a typical Breit-Wigner resonance. The simplicity and elegance of this formula together with 
the explosion, continuous refinement and sophistication of spectroscopic techniques make of Fano resonances a 
preponderant phenomenon in science and engineering4. In fact, Fano resonances can be found in many fields of 
physics5–9 and with many potential applications4,10,11. In most cases, this special type of resonances arise in sys-
tems in which continuum states are provided by a light source and discrete states come from size effects. However, 
it is also possible to find Fano resonances in quantum transport by special nano designs that provide extended 
and discrete states simultaneously7,12–23. The archetypal nano design is the so called Aharonov-Bohm ring, a 
nano constriction that can be coupled to quantum barriers, quantum dots, etc., that can give rise to asymmetrical 
line-shapes in the quantum conductance.

Within this context, bilayer graphene is a unique material system, not only because of its outstanding prop-
erties for technological applications24–26, but also because Fano resonances of different nature can arise in this 
material27–31. For instance, in gated bilayer graphene at room temperature light, electrons and phonons can con-
fabulate to give rise to asymmetrical line shapes in the absorption spectra27. Here, it is quite relevant that a band 
gap be opened by electrical gating25 such that discrete phonons and continuous excitons be coupled. Fano phonon 
line shapes are also observed in the infrared spectra of bilayer graphene28. However, in this case the fundamental 
mechanism is the doping induced by gating rather than band gap opening. A radically different Fano resonance is 
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also possible in bilayer graphene29–31. In fact, this resonance can arise without the need of an external continuum 
states source or an elaborated nano design7,12–23,29–31. In this case, it is necessary gapless bilayer graphene as well 
as low temperatures. The special dispersion relation of bilayer graphene32,33 makes that electrons have at the same 
time a propagating and discrete character34,35. Actually, the degree of coupling between confined and continuum 
states is ruled by the transversal component of the wave vector. By considering a potential barrier and adjusting 
the angle of incidence (the transversal wave vector) of the charge carriers on the barrier the propagating and 
discrete nature of electrons can converge to give rise to a Fano profile in the transmission properties29–31. This is 
unprecedented for a material and for graphene constitutes another exotic phenomenon like anti-Klein and Klein 
tunneling34–37, atomic collapse38, Hofstadter’s butterfly39,40 and negative refraction41 to mention a few. However, 
as far as we know this unusual and unprecedented phenomenon of Fano resonances in bilayer graphene has not 
been yet confirmed experimentally. This could obey the fact that: the asymmetrical line-shape of Fano resonances 
is manifested in the transmission probability or transmittance, for which a high degree of control of the angle of 
incidence of electrons is required29–31, issue that is not at all possible in current experiments; most of the exotic 
phenomena in graphene and related 2D materials have been demonstrated through transport measurements36–41; 
the lack of theoretical and experimental studies that address in a systematic way the impact of Fano resonances 
on the transport properties.

In this work, we address the unique and peculiar phenomenon of Fano resonances in bilayer graphene super-
lattices (BGSLs). The hybrid matrix method and the Landauer-Büttiker formalism have been used to obtain 
the transmission and transport properties. The evolution of the asymmetrical line-shape of Fano resonances in 
the transmission probability or transmittance is studied. In particular, the mentioned evolution is analyzed as a 
function of the superlattice period, the barriers height and the barriers and wells width. We pay special attention 
to the impact of Fano resonances on the transport properties. Our findings indicate that the intrinsic energy min-
ibands of the superlattices structure can help to unequivocal identify the contribution of Fano resonances to the 
transport properties. Specifically, Fano resonances and minibands can couple in such a way that the linear-regime 
conductance presents signatures of this coupling, and hence of the presence of Fano resonances. Furthermore, by 
appropriately reducing the angular range for the computation of the transport properties it is possible to obtain 
conductance curves with line-shapes directly related to the Fano profile and its coupling with the miniband states. 
We hope that our results can help and encourage experimentalists to test this exotic phenomenon of Fano reso-
nances in bilayer graphene.

Metodology
The system that we are interested in is a bilayer graphene superlattice. In particular, we will deal with BGSLs 
conceived by metallic electrodes arranged in periodic fashion, see Fig. 1a. Through the electrodes we can apply 
an electrostatic field perpendicularly to the graphene sheets in such way that the electrostatic potential in the two 
layers be the same. Keeping the same potential between the two layers ensures that the symmetry between them 
is preserved and consequently that no bandgap opening arises in the band structure. Then, the main effect of the 
electrostatic potential is a shifting of the Dirac paraboloids along the energy axis, see Fig. 1b. By arranging regions 
with and without electrostatic potential in periodic fashion we can generate a typical superlattice band-edge 
profile, see Fig. 1a. The transmission and transport properties of this system can be obtained through the hybrid 
matrix method42,43 and the Landauer-Büttiker formalism44, respectively. The basic information that we need in 
order to implement the mentioned methodologies is related to the wave functions and dispersion relations in the 
two regions that define the unit cell of the superlattice, that is, the region with and without electrostatic potential. 
So, we will present in first place the wave functions and dispersion relations to proceed with the generals of the 
hybrid matrix method and the Landauer-Büttiker formalism.

The wave functions and dispersion relation in the barrier region can be obtained by solving the following 
Dirac-like equation:

Figure 1.  (a) Top view of the schematic representation of a bilayer graphene superlattice created by a periodic 
arrangement of top gate (TG) electrodes. Bilayer graphene, blue and red lattices, is typically placed on a non 
interacting substrate like SiO2 and a back gate not see from top view. (b) The resulting band-edge profile of 
(a), which is a periodic energy potential profile. The main effect of the electrostatic potential applied through 
TGs is a shifting of the Dirac paraboloids, paraboloids in the shaded area, proportional to the electrostatic field 
strength.
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here qx and qy are the quasiparticle wavevectors along the x and y directions respectively; m is the band effective 
mass with a value of 0.035 m0, being m0 the bare electron mass29–31,45; and V(x) = V0 represents the strength of the 
electrostatic potential.

The specific dispersion relation for this eigenvalue problem comes as,
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At this point it is important to mention that, in contrast to monolayer graphene, here in bilayer graphene 
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The general solution for the wave function can be written as a linear combination of the four eigenfunctions:
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where A+, A−, B+, B− is a set of expansion coefficients. Furthermore, for regions without electrostatic potential 
or better known as well regions the wavefunctions as well as the wave vectors can be obtained by simply setting 
V0 = 0.

With this information we can implement the standard transfer matrix method to compute the transmission 
properties. However, as we have shown46–48 this method has numerical instabilities and it is not suitable for the 
computation of the transmission properties of BGSLs. We have also shown that a better and reliable option is 
the hybrid matrix method42,43,45. The hybrid matrix method relies on writing the Dirac-like equation for bilayer 
graphene as an ordinary second order differential equation system of the Sturm-Liouville form43. Specifically, for 
bilayer graphene the matrix Sturm-Liouville equation comes as
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Within this context, the problem is reduced to find the linearly independent solutions
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as well as the corresponding eigenvalues k. In fact, we can find them for the regions with and without electrostatic 
potential.

With the solutions F(x) and ALFs A(x) we can define the hybrid matrix. In fact, the hybrid matrix is the 
mathematical entity that relates the solutions and the ALFs between two regions, connected by a certain domain, 
in mixed fashion. In our case, we have a semi-infinite left region connected to a semi-infinite right region by a 
domain that is the superlattice structure. In mathematical terms we have
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Here, the hybrid matrix H is determined by the characteristics of the superlattice structure, specifically by the par-
ticularities of the solutions and ALFs in the barrier and well regions. Actually, we can define hybrid matrices for 
the well and barrier regions, and more importantly, irrespective of the particularities of these regions, the hybrid 
matrix can adopt the following general form
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where d represents the width of the corresponding region. With the hybrid matrices of the well (Hw) and barrier 
(Hb) we can find the hybrid matrix of the unit cell of the superlattice (Huc) and with it the hybrid matrix of the 
entire superlattice H(xR;xL), for more details see ref.45.

In order to obtain the transmission probability or transmittance it is important to remember that the general 
solution is a linear combination of the four individual solutions. Specifically, the general solution and the general 
ALF for the left semi-infinite region can be written as
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here we have set a4(L) = 0 to avoid divergence at x → −∞. In similar fashion for the right semi-infinite region,
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where a2(R) = 0 and a3(R) = 0 because there is no reflected wave anymore and to avoid divergence at x → +∞, 
respectively.

With the help of these expressions it is possible to find relationships between the coefficients of the general 
solution of the left and right semi-infinite regions, namely:



www.nature.com/scientificreports/

5SCiEntiFiC REPOrTs | 7: 16708  | DOI:10.1038/s41598-017-16838-9

= − ⋅ ⋅ ⋅ −−

× ×

a a
a a
a a
a a

x x x xM H M H A
0

F
0

(L)/ (L)
(L)/ (L)
(R)/ (L)
(R)/ (L)

[ ( , ) ] ( , ) },

(22)

R L R L

2 1

3 1

1 1

4 1

1 2
1 10

2 1

10

2 1

where:

=










× ×

× ×
M

F F 0 0
0 0 A A ;

(23)
1

20 30 2 1 2 1

2 1 2 1 10 40

M
A A 0 0
0 0 F F (24)

2
20 30 2 1 2 1

2 1 2 1 10 40
=










.× ×

× ×

As the transmittance is given as T a
a
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= , eq. (22), that depends directly of the hybrid matrix, is the funda-

mental equation to compute this fundamental physical quantity. Here, it is important to mention that the trans-
mittance is in general a function of the energy and angle of incidence, T = T(E,θ).

With the transmittance at hand we can compute the transport properties readily by implementing the 
Landauer-Büttiker formalism44. In concrete, the linear-regime conductance can be obtained by summing over 
all transmission channels,
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factor. To calculate the linear-regime conductance for a specific angular range (GΔθ), we can reduce the integra-
tion limits in eq. (25), such that:
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This expression will be useful in trying to know the particular shape of the conductance curves in the angular 
range at which Fano resonances dominate transport.

Results and Discussion
Bilayer graphene single barriers.  As our main goal is to unveil the impact of Fano resonances on the 
transport properties we will proceed to analyse in the first place a single barriers (BGSBs), which is the most 
simple system, then we will study the case of double barriers (BGDBs) and finally a finite superlattice, with nine 
periods, will be addressed. Here, it is important to mention that even when the transmission properties of BGSBs 
and BGDBs are already reported29–31 we will present them in order to carry out a thorough evaluation and most 
importantly to determine in a precise way the energy regions in which Fano resonances contribute in a more 
significant way to the transport properties.

As we can corroborate in the methodology there are four solutions or eigenfunctions for gapless bilayer 
graphene. So, in principle, by appropriately nanostructuring this material we can create the conditions to have in 
the same energy region propagating and discrete electron states, and hence the conditions to get Fano resonances. 
In Fig. 2 we show a schematic representation of the nanostructuring that we are dealing with. Graphene layers are 
placed on a non-interacting substrate, typically SiO2, top and back gates are incorporated to control the barrier 
characteristics as well as the Fermi energy of electrons, see Fig. 2a. The net effect of the electrostatic field induced 
by the top gate is a shift of the Dirac paraboloids in the energy axis. With this shifting a stepwise band-edge profile 
for the conduction band is generated, see Fig. 1b. Even though the region inside the barrier is not allowed for elec-
trons, for holes it constitutes a resonant cavity, which in principle can give rise to propagating and discrete states, 
see Fig. 2c. By adjusting the angle of incidence, the barrier width and barrier height propagating and discrete 
states can converge to give place to Fano resonances in the transmission spectra, see Fig. 2d. The asymmetrical 
line-shape characteristic of Fano resonances will depend on the angle of incidence, the barrier width and barrier 
height, see Fig. 2d.

The results of the transmission probability or transmittance for BGSBs are presented in Fig. 3. The transmit-
tance as a function of the energy for different angles of incidence is shown in Fig. 3a. The angles of incidence 
chosen are 1°, 3°, 5° and 15°, solid-black, dashed-red, dotted-blue and dash-dotted-green lines, respectively. The 
barrier width and barrier height considered are 10 nm and 50 meV, respectively. As we can notice the asymmetri-
cal line-shape typical of Fano resonances arises in the transmission spectra. The asymmetrical line-shape is acute 
and well-defined for small angles and as the angle of incidence increases Fano resonance broadens and eventually 
for large angles the asymmetrical line-shape is lost. It is also important to remark that the energy location 
(E ≈ V0/2) of Fano resonances is practically unchanged as the angle of incidence grows. This feature is quite 
important because the contribution of Fano resonances to the transport properties will be located precisely at that 
specific energy. Then, in principle, we can track and discriminate the contribution of Fano resonances to the 
transport properties. In Fig. 3b we show how Fano resonances behave as the width of the barrier changes. We have 
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kept fixed the angle of incidence and the height of the barrier at θ = 3° and V0 = 50 meV, respectively. As we can 
notice by changing the width of the barrier the Fano resonance is shifting to higher energies, that is, the resonance 
undergoes a blue shifting. The resonance that was originally located close to 5 meV for 3 nm is gradually shifting 
to: 15 meV for 6 nm, 25 meV for 10 nm and 40 meV for 20 nm. We can also see that the Fano profile deforms grad-
ually and tends to become a Breit-Wigner resonance profile. Furthermore, a Breit-Wigner resonance arises in the 
low energy side of the transmission spectrum for the case of 20 nm. A similar shifting for the Fano resonance is 
obtained by increasing the height of the barrier, see Fig. 1c. In particular, by changing the barrier height from 
50 meV to 100 meV the Fano resonance shifts nearly 10 meV, 25 meV, 37 meV and 45 meV for 3 nm, 6 nm, 10 nm 
and 20 nm, respectively. The Breit-Wigner resonance in the low energy side also blue shifts, approximately 
35 meV. At this point, it is important to mention that the specific energies of the confined states can be computed 
by writing the eigenvalue problem of BGSBs in terms of the eigenbasis of σx, σxψ± = ±ψ±, as well as by taking 
advantage that ψ± are uncoupled at normal incidence34. In fact, ψ− is the component that represents the confined 
states inside the barrier. The details of the method for the calculation of confined states are presented in the sup-
plementary material. Likewise, the specific values of the confined states for the cases of BGSBs treated in Fig. 3 are 
computed and shown in the supplementary material. Despite confined states are calculated at normal incidence 
in some cases there is a good agreement with respect to energy location of the Fano resonances, see Table 1 for an 
explicit comparison. Here, it is also important to remark that once the normal incidence condition is relaxed the 
mixing between ψ± gives rise to asymmetrical resonances in the transmission spectra. Actually, these resonances 
are pretty narrow near normal incidence because their width is proportional to qy

234. Furthermore, for narrow 
barriers, states with weaker confinement, it seems that the mixing is stronger to such extent that there is not at all 
correspondence between the energy of confined states and the energy location of Fano resonances.

Now, having clear how Fano resonances change by the angle of incidence, the width and height of the barrier, 
we are in position of evaluate its impact on the transport properties. In Fig. 4 we show the linear-regime con-
ductance as function of the Fermi energy for (a) V0 = 50 meV and (b) V0 = 100 meV. The barrier widths are the 
same as in the case of the transmittance, that is, the solid-black, dashed-red, dotted-blue and dash-dotted-green 
curves correspond to 3 nm, 6 nm, 10 nm and 20 nm, respectively. As we can see in both cases V0 = 50 meV and 
V0 = 100 meV the conductance behaves in the same way in general terms. For instance, in the case of the nar-
rower barrier 3 nm, the conductance is practically zero up to 5 meV (15 meV) for V0 = 50 meV (V0 = 100 meV). 
At that specific energy the conductance presents a sudden rise that coincides quite well with the energy location 
of the Fano resonances. In order to highlight the energy location of Fano resonances we have included shaded 
vertical stripes. Furthermore, the shape of the conductance curves remains the same no matter the width of 
the barrier. The main change that we can notice is that the sudden increase is taking place at higher energies. 
Those energies are precisely the energies at which Fano resonances are presented in the transmission spectra. In 
the case of 20 nm we can also see a peak that is directly related to the Breit-Wigner resonances that arise in the 
transmittance, see the dash-dotted-green curves in Fig. 3. Despite the simplicity of a single barrier we were able 

Figure 2.  (a) Cross-section of the possible device for bilayer graphene single barriers. As in the case of BGSLs 
(Fig. 1a) graphene layers are placed between a top-gate, a SiO2 substrate and a back-gate in order to generate the 
(b) band-edge profile of a single barrier. (c) From the perspective of holes a single barrier in bilayer graphene 
actually represents a quantum well. Moreover, the quantum well can hold propagating and discrete states as a 
consequence of the number of channels within it. (d) Schematic representation of the output of the coupling of 
an extended state and a discrete one. In the case of bilayer graphene the transmission line-shape will depend on 
the energy, angle of incidence as well as barrier width and height.
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to identify the energy region at which Fano resonances contribute to the transport properties. Even more impor-
tant, this region could serve as hallmark of the existence of this rather exotic phenomenon of Fano resonances 
in bilayer graphene as well as help our experimental counterparts to prove it. At this point, it is also important 

Figure 3.  Transmittance as function of the energy for bilayer graphene single barriers. (a) Fano resonances 
for various angles of incidence: 1° (solid-black line), 3° (dashed-red line), 5° (dotted-blue line) and 15° (dash-
dotted-green line). The width and height of the barrier remain fixed at 10 nm and 50 meV, respectively. (b) 
Evolution of Fano resonances for different barrier widths dB: 3 nm (solid-black line), 6 nm (dashed-red line), 
10 nm (dotted-blue line) and 20 nm (dash-dotted-green line). The angle of incidence and the barrier height 
considered are 3° and 50 meV, respectively. (c) The same as in (b) but here V0 = 100 meV.
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to mention that the advance and refinement of the experimental techniques allow nowadays to discriminate the 
angular contribution of Dirac electrons to the transport properties in single-barrier graphene devices49–52. In 
particular, by tilting the top-gate electrodes it was possible to determine the mentioned contribution. This is quite 
appealing for us because we can compute the conductance in the angular range at which Fano resonances are 
preponderant. In fact, in Fig. 5 we show the results for the conductance as a function of the Fermi energy in the 
angular range (−π/12, π/12) at which the Fano resonances are relevant. Figure 5a,b correspond to V0 = 50 meV 
and V0 = 100 meV, respectively. The width of the barrier considered in both cases is dB = 10 nm. By reducing the 
angular range we can see that an asymmetrical lines-shape also arises for the conductance at precisely the energies 
at which the Fano resonances are manifested in the transmission spectra. These Fano profiles in the conductance 
are undoubtedly attributed to Fano resonances in the transmittance curves. Then, it is possible that with angular 
transport measurements the existence of Fano resonances can be proven.

η = 3
50 η = 6

50 η = 10
50

20
50η = η = 3

100
6

100η = 10
100η = 20

100η =

Eb1 0.52 7 26 46 4 37 78 98

EFR 4 14 24 38 16 41 63 85

Table 1.  Comparison of the energies of the confined states obtained by the method presented in the 
supplementary material and the energies of the Fano resonances found in the transmission spectra of BGSBs. 
We have defined the ratio between the barrier width and barrier height η = dB/V0 as a parameter to characterize 
the barrier. The energies are given in meV and the barrier width in nm. 

Figure 4.  Conductance versus the Fermi energy EF for bilayer graphene single barriers. (a) Conductance for 
various widths of the barrier dB: 3 nm (solid-black line), 6 nm (dashed-red line), 10 nm (dotted-blue line) 
and 20 nm (dash-dotted-green line). The barrier height in the cases is 50 meV. (b) The same as in (a) but here 
V0 = 100 meV. The shaded vertical stripes highlight the location of the Fano resonances.

Figure 5.  Conductance versus the Fermi energy for BGSBs in the angular range (−π/12, π/12) at which Fano 
resonances are preponderant. The heights of the barrier considered are (a) 50 meV and (b) 100 meV. The barrier 
width in both cases is 10 nm.
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Figure 6.  Transmittance as function of the energy for BGDBs. (a) Transmission spectra for different angles of 
incidence: 1° (solid-black line), 3° (dashed-red line), 5° (dotted-blue line) and 15° (dash-dotted-green line). The 
widths of barriers-well and the heights of the barriers considered were dB = dW = 6 nm and V0 = 50 meV, 
respectively. (b) Evolution of the transmittance for different widths of barriers-well dB = dW  :=  3 nm (solid-
black line), 6 nm (dashed-red line), 9 nm (dotted-blue line) and 10 nm (dash-dotted-green line). The angle of 
incidence and the height of the barriers in this case are θ = 3° and V0 = 50 meV, respectively. (c) Similar to (b) 
but here the widths considered are 3 nm (solid-black line), 6 nm (dashed-red line), 7 nm (dotted-blue line) and 
9 nm (dash-dotted-green line). In this case the height of the barriers has been increased to V0 = 100 meV.
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Bilayer graphene double barriers.  Now, it is turn to analyse the case of BGDBs. Here, it is important 
to stress out that this case is more versatile because the well region can incorporate its own propagating and/or 
discrete states that will enrich the features of the transmission spectra. Our results for this specific case are shown 
in Fig. 6. The evolution of the transmittance for various angles of incidence is presented in Fig. 6a. The height of 
the barriers and the widths of barrier and well are V0 = 50 meV and dB = dW = 10 nm. Here, we are consider-
ing dB1 = dB2 = dB as well as VB1 = VB2 = V0, that is, we are dealing with symmetric barriers. As we can notice 
Fano resonances arise at approximately 20 meV, which represents a small red-shift with respect to BGSBs. We 
also found that the asymmetrical line-shape of the resonances is preserved only at small angles. Two additional 
features have arisen as a result of the well region: (1) In the low energy side there is a Breit-Wigner resonance at 
about 2.5 meV, which remains at the same energy irrespective of the angle of incidence; (2) In the high energy side 
we can see an extended resonance at 40 meV, which tends to broaden as the angle of incidence increases, see the 
dash-dotted-green curve. So, in principle, the interplay of these resonances with the asymmetrical line-shape asso-
ciated to the barrier regions can give rise to new resonance characteristics. These new characteristics can change 
the conductance landscape and possibly can give place to special features in the transport properties that can 
serve as hallmarks of the existence of Fano resonances. In fact, in Fig. 6b we can see that these new characteristics 
arise by adjusting the widths of the barriers and the well, while remaining the angle of incidence and the height 
of the barriers at constant values, 3° and 50 meV, respectively. For instance, in the case of dB = dW = 3 nm we can 
see a transmission spectrum typical of BGSBs with a Fano resonance around 10 meV. In this case the well is so 
narrow that its characteristics are not at all manifested in the transmission spectrum. By increasing the widths to 
dB = dW = 6 nm resonances in the low and high energy side of the spectrum come into play as in Fig. 6a. The Fano 
resonance also blue-shifts roughly 10 meV with respect to the case of 3 nm. As far as we have corroborated Fano 
resonances are a characteristic that come from the barrier region and the low and high energy side resonances 
come mainly from the well. So, a simultaneous increase of the width of the barriers and the well makes that the 
resonances approach each other and eventually that the interplay between them gives rise to new resonance pro-
files. Actually, this is the case for 9 nm and 10 nm, respectively. Specifically, for 9 nm the Fano resonance and the 
resonance at the high energy side are pretty close, but not enough to change their own profiles. In the case of 10 nm 
the resonances have merged to give rise to a new resonance profile, at about 27 meV, that resembles to what it is 
known in optics as hybrid Fano resonance53. Similar transmission spectra are obtained for V0 = 100 meV. The main 
changes with respect to 50 meV are the blue-shifting of the overall spectra as well as that the hybrid Fano resonance 
arises at narrower widths, see the case of 7 nm. We also notice that the hybrid Fano resonance eventually splits into 

Figure 7.  Evolution of hybrid Fano resonances for different angles of incidence: (a) 3°, (b) 6°, (c) 9° and (d) 15°. 
The width and height of the barriers are 10 nm and 50 meV, respectively. As in the case of Fano resonances the 
hybrid line-shape is: well defined at small angles; deformed and eventually lost as the angle increases.
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two weakly coupled Breit-Wigner resonances, see the dash-dotted-green curve that corresponds to 9 nm. Here, 
it is worth mentioning that hybrid resonances are well defined at small angles of incidence and that they tend to 
deform and eventually lose their hybrid line-shape as the angle grows, see Fig. 7. As in the case of BGSBs this opens 
the possibility to study the transport properties in the angular range in which hybrid resonances are preponderant 
as well as the opportunity to test the existence of these resonances by angular transport measurements.

Figure 8.  Conductance versus the Fermi energy EF for BGDBs. (a) Conductance for different barriers-well 
widths. The widths and heights correspond to those used in Fig. 4b. (c) Similar to (a) but the parameters 
used are the ones that correspond to Fig. 4c. (b,d) Represent zooms of (a,c). These figures have the intention 
of magnify the region in which hybrid resonances are preponderant and even more important how these 
resonances defined the line-shape of the conductance curves. The shaded vertical stripes highlight the location 
of the Fano and the hybrid Fano resonances.

Figure 9.  Conductance versus the Fermi energy for BGDBs in the angular range (−π/12, π/12) at which hybrid 
Fano resonances are preponderant. The heights (widths) of the barrier considered are (a) 50 meV (10 nm) and 
(b) 100 meV (7 nm).
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Now, it is turn to analyse the transport properties of BGDBs. In Fig. 8 we show the linear-regime conductance 
versus the Fermi energy for (a) V0 = 50 meV and (b) V0 = 100 meV. The widths of the barriers and the well for 
Fig. 8a,b are the same as in Fig. 6b,c. As we can see for small widths the conductance is practically the same as 
for BGSBs, see the solid-black and dashed-red curves. For the case of 10 nm and 7 nm, dash-dotted-green curve 
in Fig. 8a and dotted-blue curve in Fig. 8b, the conductance presents some features that contrast with the other 
cases such is the case of the peak and minimum at around 27 meV and 55 meV respectively. These character-
istics are shaped mostly by hybrid Fano resonances because their energy location coincides perfectly with the 
location of the hybrid line-shapes in the transmittance. We also see that in the case of 9 nm, dash-dotted-green 
curve in Fig. 8b, the peak-minimum region is steeper as well as its localization agrees quite well with the weakly 
coupled Breit-Wigner resonances of the transmission spectra, dash-dotted-green curve in Fig. 6c. So, these 
peak-minimum characteristics are directly related to the hybrid Fano resonances and in principle they can serve 
as a hallmark of the existence of these special resonances and consequently of the existence of the Fano reso-
nances. Furthermore, by reducing the angular range for the conductance to (−π/12, π/12) we obtain that the 
conductance also exhibits the hybrid line-shape, see Fig. 9. This range is precisely the angular region at which 
the hybrid resonances are preponderant, Fig. 7. We can also notice that this region is totally identifiable and in 
principle can be detectable via angular transport measurements.

Bilayer graphene superlattices.  Now it is time to analyse the more general case of bilayer graphene super-
lattices. Here, it is worth mentioning that one of the most remarkable characteristics of practically any superla-
ttice is the formation of the so-called minibands. In this regard the periodic arrangement of barriers and wells 
in bilayer graphene is not the exception. The most noteworthy difference of BGSLs with respect to superlattices 
of conventional materials is that minibands depend strongly on the angle of incidence in the former case. As we 
have corroborated in the case of single and double barriers Fano resonances represent an intrinsic characteristic 
of bilayer graphene. Moreover, these special resonances also depend strongly on the angle of incidence. Then, at 
first instance, these characteristics, minibands and Fano resonances, can be located in different energy regions, 
however, at second instance, by appropriately adjusting the fundamental parameters of the superlattice such as 
the angle of incidence, the widths of barriers and wells, the heights of barriers and the superlattice period it is pos-
sible to tune the minibands and Fano resonances at the same energy region. In Fig. 10a,b we show the schematic 
representation of these possibilities. More importantly the interplay of minibands and Fano resonances can give 
rise to new features in the transmission spectra. The possible resulting line-shape of the mentioned interplay is 
shown schematically in Fig. 10c. In principle, these new features can be more intricate than the ones found in the 
case of double barriers, and in general they will depend on the location of the Fano resonance within the min-
iband. Our specific findings for a finite superlattice of nine periods are shown in Fig. 11. Three different widths 
of barriers-wells dB = dW have been considered: (a) 3 nm, (b) 5 nm and (c) 7 nm. The height of the barriers and 
the angle of incidence have remained fixed at 50 meV and 3°, respectively. For 3 nm we can see that the Fano res-
onance and the miniband lie in different energy regions consequently there is no coupling as well as no new fea-
tures in the transmission spectrum. The Fano resonance is located at 23 meV, while the miniband starts at 28 meV 
and it has an energy width of 222 meV. By increasing dB = dW to 5 nm the Fano resonance and the miniband 
coincide in the same energy region, specifically the Fano resonance lies at the onset of the miniband. In this case 
the resulting line-shape corresponds to the type of hybrid Fano resonances. It is also important to note that the 

Figure 10.  Schematic representation of the possible scenarios between Fano resonances and miniband states. 
(a) The Fano resonance (dotted-blue line) and the miniband (shaded cyan region) lie in different energy regions 
such that there is no coupling between them. (b) The Fano resonance and the miniband lie in the same energy 
region and their coupling can take place. (c) Coupling of a Fano resonance and miniband states giving rise to 
new features in the transmission spectrum.
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miniband width is reduced around 132 meV. Likewise, the Fano resonance and the miniband blue and red shift 
with respect to the case of 3 nm. A further increase of the barriers-wells width to 7 nm turns out in an additional 
reduction of the miniband width of nearly 53 meV as well as extra blue and red shifts of the Fano resonance and 
the miniband. The net result of these shifts and the miniband narrowing is that the Fano resonance blue shifts 
with respect to the onset of the miniband, in other words, the Fano resonance tends to be localized at higher 
energies within the miniband. In fact, by appropriately adjusting the fundamental parameters of the superlattice 
we can tune the position of the Fano resonance at practically any energy within the miniband. The coupling of the 
Fano resonance with the states along the miniband gives rise to new and unique features in the transmission spec-
tra. Even more important, we were able to identify and discriminate the contribution of these new transmission 
line-shapes onto the transport properties. For instance, when the Fano resonance and the miniband are decou-
pled, Fig. 12a, the linear-regime conductance shows the typical sudden jump related to Fano resonances, in this 

Figure 11.  Transmittance of BGSLs for different barriers-wells widths dB = dW: (a) 3 nm, (c) 5 nm and (e) 
7 nm. In all these cases the height of the barriers, the angle of incidence and the superlattice period were set 
at 50 meV, 3° and 9, respectively. In order to have a better view of the Fano resonance and its coupling with 
miniband states zooms of the considered transmission spectra are shown. Specifically, (b,d,f) represent zooms 
of (a,c,e), respectively.
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case at 23 meV, as well as a broad peak with small oscillations that constitutes the contribution of the miniband. 
The red vertical arrows indicate that the small oscillations (peaks) are associated to states within the miniband. 
We can also see acute peaks in the low energy side which are associated to Breit-Wigner resonances. When the 
Fano resonance and the miniband are coupled at the onset of the latter, Fig. 12b, the conductance presents a dis-
tinctive feature at the onset of the broad peak that come from the miniband, see the blue vertical arrow. In fact, 
this distinctive feature is a small peak with a line-shape that contrasts with the typical line-shapes associated to 
the states of the miniband. A further penetration of the Fano resonance into the miniband, Fig. 12d, gives rise to 
a peculiar line-shape in the conductance. Specifically, notice the small notch, highlighted by blue arrows and the 
shaded vertical stripe, at about 25 meV. It is worth mentioning that the location of this notch agrees well with the 
localization of the new features of the transmission spectrum of Fig. 11c. Here, it is also important to remark that 
despite transport is practically dominated by the miniband and the Breit-Wigner resonances it is still possible 

Figure 12.  Conductance of BGSLs for different barriers-wells widths dB = dW: (a) 3 nm, (c) 5 nm and (e) 7 nm. 
In order to have a better perspective of the hallmark on the conductance of the contribution of Fano resonances 
and its coupling with miniband states the energy range has been reduced to the energy region at which the 
coupling is preponderant. The other structural parameters of the superlattice are the same as in Fig. 11. The 
shaded vertical stripes highlight the energy region at which the coupling is taking place.
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to identify and characterized the contribution of the new spectral features. Moreover, by reducing the angular 
range for the conductance it is possible to discriminate in a more transparent and direct way the contribution of 
the coupling of the Fano resonance and the states of the miniband. In Fig. 13 we show our results for the angular 
reduction of the conductance curves presented in Fig. 12d,f. In this case the angular range was reduced to (−π/18, 
π/18). As in the case of single and double barriers, the angular reduction modifies greatly the conductance curves 
to such an extent that the new conductance curves resemble in great extent to the corresponding curves of the 
transmission spectra.

Discussion and important remarks.  Finally, we want to discuss some important aspects about Fano res-
onances in bilayer graphene:

	 1.	 The first aspect that we want to address is the Fano-resonance profile. In fact, there is a formalism that pro-
vides a universal formula for the Fano-resonance profile in the context of coherent quantum transport23. 
This formalism solves important problems such as the nature of the parameter q and the width of the 
resonance. Taking into account that this formalism is based on the Green’s function method for quantum 
transport and that the Green function and the scattering formalism of quantum transport are equivalent44, 
in principle the universal formalism can be applied to our problem. In particular, it is quite interesting and 
relevant how the universal formula for the Fano-resonance profile will depend on the angle of incidence, 
since as we have corroborated throughout our study, the angle of incidence represents a preponderant 
parameter that determines in great extent the Fano-resonance profile. Considering the magnitude and rele-
vance of this aspect, a thorough analysis, that go beyond the objectives of the present work, is required.

	 2.	 The second aspect that it is important to discuss is the one related to non-idealities such as substrate 
effects, impurity scattering and temperature disorder. In fact, these effects can can modify the fundamental 
characteristic of the band structure of bilayer graphene as well as destroy coherent quantum transport, and 
consequently jeopardizing the particular conditions that give rise to Fano resonances. For instance, sub-
strates that interact strongly with bilayer graphene open a band gap and modify the dispersion relation54. 
On the other hand, if disorder, caused by impurity scattering or temperature, is relevant the transport 
will be predominantly diffusive rather than ballistic. Therefore, compromising the specific conditions to 

Figure 13.  Conductance of BGSLs for the angular range at which the coupling between Fano resonances and 
miniband states is dominant. In this case the angular range has been reduced with respect to the cases of single 
and double barriers. In particular, the angular range considered is (−π/18, π/18). (a,c) Correspond to the widths 
of Fig. 12c,e, respectively. The other structural parameters of the superlattice are the same as in the preceding 
figures, Figs 11 and 12. (b,d) Represent zooms of (a,c), respectively.
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obtain Fano resonances. Fortunately, high-quality bilayer graphene samples, non-interacting substrates 
like SiO2 and very low temperatures can guarantee the conditions to obtain a gapless parabolic dispersion 
relation and coherent quantum transport in bilayer graphene. In fact, unconventional quantum Hall effect 
and 2π Berry phase associated to the gapless parabolic dispersion relation in bilayer graphene have been 
demonstrated experimentally24. In addition, it is well known that high quality of graphene samples ensures 
coherent quantum transport up to 80 K37. So, in principle, the detection of Fano resonances is achievable 
via low-temperature transport measurements.

	 3.	 The last aspect that we consider it is important to address is the one associated to relevant effects such as 
the bandgap opening, non parabolicity and warping. For instance, in order to preserve a gapless band 
structure in bilayer graphene the sheets need to be maintained at the same potential energy. Despite the 
sophistication of the experimental techniques there will be unavoidable differences between the potential 
energies of the graphene sheets, causing a bandgap opening in the band structure of bilayer graphene. 
This bandgap opening can modify significantly the fundamental properties of bilayer graphene. In fact, in 
the case of anti-Klein tunneling it has been reported that the bandgap opening can destroy it55. Regarding 
Fano resonances our results in BGSBs indicate that the asymmetrical line shape can be deformed and for a 
certain band gap practically destroyed, see the supplementary material for more details. In addition, band 
gap opening can activate phonons27 that in principle could be coupled with propagating or discrete elec-
tron states and/or could represent an additional scattering mechanism. As far as we know these phonons 
were observed at room temperature27, but if they are present at temperatures below liquid helium could 
affect in great extent the asymmetrical line shape associated to confined and continuum electron states. 
Non parabolicity and warping are effects that can also modify the transmission and transport properties 
in bilayer graphene structures. In specific, non parabolicity is relevant at energies of 390 meV. Then, if we 
want to limit this effect it is crucial to work in a reduced energy range, otherwise it will be relevant to know 
the possible changes that non parabolicity can caused to the transmission and transport properties. Up to 
this moment, the numerical degradation related to the transfer matrix approach and the Hamiltonian that 
describe band gap opening and non parabolicity impede us to see to what extent the Fano profile is modi-
fied by non parabolicity. The mentioned numerical degradation is presented in the corresponding section 
of the supplementary material. Lastly, warping in principle it is less relevant than the bandgap opening and 
non parabolicity32, however, effects such as temperature can induced natural distortions on the graphene 
sheets56. So, it is also interesting to know the impact of warping on the transmission and transport proper-
ties. A full analysis of band gap opening, non parabolicity and warping is needed and its possible conse-
quences will be published elsewhere.

Conclusions
In summary, we have addressed the exotic phenomenon of Fano resonances in bilayer graphene superlattices. 
The hybrid matrix method and the Landauer-Büttiker were implemented to unveil the Fano characteristics on 
the transmission and transport properties. Particularly, we find an asymmetrical line-shape, Fano profile, on the 
transmittance characteristics. The Fano profile is pretty sensitive to the electron angle of incidence, being well 
defined for small angles, and deformed and practically lost for large ones. We also find that the Fano resonances 
can be coupled with the energy minibands of the superlattice, giving rise to special transmission characteristics. 
Even more important, the Fano resonance by itself as well as its coupling with miniband states have direct and 
identifiable consequences on the transport properties. Specifically, well-defined conductance characteristics arise 
at Fermi energies at which the Fano resonance and its coupling are taking place. Furthermore, angular transport 
calculations provide conductance curves with practically the same line-shape of Fano resonances as well as the 
same profile of its coupling with miniband states. Then, we have shown that bilayer graphene superlattices are 
systems that can be helpful to obtain unequivocal characteristics in the transport properties related to existence 
of Fano resonances. We hope that our findings encourage further studies about this rather exotic phenomenon of 
Fano resonances in bilayer graphene, and furthermore, that our results help and encourage experimentalists to 
test this peculiar phenomenon.
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