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Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells
(BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of
BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke.

1. Introduction

Stroke is the second most common cause of death and major
cause of disability worldwide [1]. Current therapies of stroke
target angiogenesis, neurogenesis, and oligodendrogenesis
to attenuate brain tissue damage from ischemic injury and
improve neurological outcome. However, the only globally
approveddrug for acute ischemic stroke is tissue plasminogen
activator (tPA), but it must be given within 4.5 h after stroke
onset [2]. Thus, the beneficial effect of tPA is limited to a
narrow therapeutic window.

Recently, many other agents have provided promising
approaches for stroke patients beyond the hyperacute phase
in clinical trials. Statins used to lower circulating cholesterol
levels have been shown to possess neurorestorative prop-
erties, increase angiogenesis and neurogenesis after stroke,
and improve functional recovery [3]. Niaspan, primarily
used to provide vitamin B3, has also been shown to reduce
blood–brain barrier (BBB) leakage and improve neurological
outcome and vascular remodeling after stroke [4, 5].

Cell-based therapy is a promising approach to promote
functional recovery after stroke [6]. Bone marrow stromal
cells (BMSCs) treatment of stroke has been shown to enhance
function recovery, ameliorate cognitive dysfunction, and
improve neuroplasticity by regulating neurogenesis, angio-
genesis, and oligodendrogenesis [7–12].

This review will focus on the characteristics of BMSCs
treatment for stroke and molecular mechanisms of neu-
rorestorative effects of BMSCs on ischemic stroke.

2. Identification and Characteristics of
Bone Marrow Stromal Cells

Stem cells were firstly isolated from bone marrow (BM) in
1960s, characterized by both their rapid adherence to plastic
and their fibroblast-like morphology [13]. It was examined in
the laboratory that the BMSCs contain many subsets, includ-
ing hematopoietic stem cells (HSCs),mesenchymal stem cells
(MSCs), endothelial progenitor cells (EPCs), and very small
embryonic-like stem cells (VSELs) [14–16]. BMSCs express
a number of nonspecific markers as CD105 (SH2), CD73
(SH3/4), CD44, CD90 (Thy-1), CD71, and Stro-1, as well
as the adhesion molecules CD106 and CD166, intercellular
adhesion molecule1, and CD29 [17].

BMSCs are characterized with paracrine actions, immu-
nomodulation, and multipotency [18–20]. The neurotrophic
effects of BMSCs, releasing growth and trophic factors or
stimulating their release from resident brain cells, have
been suggested to be beneficial in ischemic stroke [21]. The
neurotrophic factors, including hepatocyte growth factor
(HGF), vascular endothelial growth factor (VEGF), brain-
derived neurotrophic factor (BDNF), basic fibroblast growth
factor (bFGF), and insulin growth factor-1 (IGF-1), exert
several protective effects, such as angiogenesis, neurogenesis,
neuroprotection, and synaptogenesis [19].

BMSCs have the potential to be differentiated into mes-
enchymal lineages, neurons, and glial cells [22]. They can
express neural or glial protein markers and take place of
dying cells in the ischemic brain after treatment of stroke
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with BMSCs in animal experiments [23]. Some studies
demonstrate that transplanted BMSCs can also differentiate
into vascular endothelial cells in ischemic brain [24, 25].

The immunomodulatory function is also considered
to account for the beneficial effects of BMSCs. BMSCs
have a profound inhibitory effect on T-cell proliferation of
inflammatory state, which modulate an immune response by
inhibiting antigen-specific T-cell proliferation and cytotoxic-
ity [26]. The underlying mechanisms of immunosuppressive
effect of BMSCs involve several soluble molecules such
as nitric oxide, indoleamine 2,3-dioxygenase, transforming
growth factor-𝛽1 (TGF-𝛽1), HGF, interleukin- (IL-) 10, IL-6,
and soluble HlA-G5, which are partially understood [27–29].

3. Ischemic Stroke

In the acute phase after stroke, ischemic injury is a following
step through BBB breakdown, neuronal damage, and astro-
cytes activation [30–32]. Increased BBB permeability starts
2 h after the onset of ischemia; the dissolution of endothelial
basal lamina may result from accumulation of vascular
endothelial growth factor, active matrix metalloproteinases,
and other protease activities following neurons, glia, and
endothelial cells injury [33–36]. The second phase of severe
BBB injury occurs within 24–72 h after ischemic stroke
[37]. This stage is characterized with leukocyte infiltration
and danger-associated molecular patterns (DAMPs) released
from the necrotic brain to activate infiltrating immune cells
[38].

Highmobility group box 1 (HMGB1), a kind ofDAMPs, is
localized in cell nuclei in the normal brain. It can translocate
into the cytosol and extracellular space after ischemic stroke
[39]. Release of HMGB1 is observed 2–4 h after stroke onset
and peaks around 4 days by activated microglia and astro-
cytes [40, 41]. Extracellular HMGB1 can bind to its receptors
and activate downstream proinflammatory molecules such
as TNF-𝛼, IL-1𝛽, MMP9, and RAGE [42–46]. The increased
expression of these proinflammatory molecules contributes
to BBB disruption, facilitates immune cell migration, and
forms signaling complexes in the ischemic brain [47]. Block-
ade of HMGB1 mediated inflammatory signaling during the
acute phase of stroke is beneficial for BBB functional integrity
and functional recovery [21, 46, 48].

4. The Effects of BMSCs on Cerebral Ischemia

Damaged brain can be surprisingly plastic and crosstalk
between various types of remodeling in ischemic brain
occurs after stroke [49]. Angiogenesis is defined as the
formation of new capillaries from preexisting vessels through
the activation of hypoxia inducible factor-1𝛼 and proangio-
genic molecules such as vascular endothelial growth factor-A
(VEGF-A) and VEGF receptor-2 (VEGFR-2), angiopoietins
(Ang-1 and Ang-2), cognate receptor Tie-2, neuropilin-1,
and basic fibroblast growth factor [21, 50–52]. Ang-1 plays
a vital role in recruiting pericytes and basement membrane
deposition to inhibit endothelial cell migration, keep vascular
stability, and form tube-like structures. However, Ang-2 acts

as an antagonist for Ang-1 and balances the neovasculariza-
tion procession [51]. Our previous study indicated that pro-
and antiangiogenic factors play a vital role in the procession
of angiogenesis after ischemic stroke. Enhanced secretion of
angiogenic cytokines after treatmentwith BMSCs in ischemic
stroke has strong angiogenic effects on microvasculature
remodeling in neovascularization [53].

In the past decade, it was claimed that BMSCs treatment
not only exerts angiogenic effects, but also induces neuroge-
nesis, axonal sprouting, and neurite outgrowth after stroke
[54]. Several possible mechanisms, involved in BMSCs-
induced neuroprotective effects, are as follows. On the one
hand, BMSCs treatment can induce the generation of new
neurons from progenitor cells within the subventricular
zone (SVZ) of the lateral ventricle and the dentate gyrus
in ischemic brain [22, 55]. On the other hand, BMSCs can
enhance neurogenesis, oligodendrogenesis, and synaptogen-
esis by differentiating into neurons and oligodendrocyte [56].

5. BMSCs Treatment of Ischemic
Stroke in Aged Animals

Age is the principal nonmodifiable risk factor for stroke [57].
Studies have shown that the rates of functional impairment
and mortality were significantly increased in aged stroke
patients when compared to relative young ones [58–62].
Studies have shown that the proliferation of endogenous
neural precursor cells (NPCs) was significantly increased
in the SVZ after BMSCs treatment in aged stroke animals
[63, 64]. Recently, BMSCs treatment of stroke has also shown
to ameliorate neurological impairment in aged stroke rats
by reducing infarction volume and promoting angiogenesis,
neurogenesis, and synaptogenesis [65].

6. BMSCs Treatment in Diabetic Stroke

Diabetes mellitus (DM), as a global health problem compli-
cated with microvascular and macrovascular diseases, is a
predisposing risk factor for stroke. Stroke in diabetic patients
has a higher mortality and worse outcomes after stroke [66–
68]. Previous study indicates that type 1 diabetic rats exhibited
increased mortality and BBB leakage and reduced functional
recoverywhen compared to nondiabetic individuals [69].The
poor outcomes after stroke in type 1 diabetic rats have been
attributed to HMGB1 mediated inflammatory response and
Ang1 regulated angiogenesis [70, 71].

BMSCs treatment of stroke has also been reported to
contribute to increased dysfunctional angiogenesis and the
risk of cerebral hemorrhage after stroke in type 1 diabetic
rats [72–75]. This dysfunctional angiogenesis was associated
with reduced functional recovery and vessel wall maturity,
increased mortality rate, BBB leakage, and brain hemorrhage
after diabetic stroke [11, 76].

7. Administration Strategies of BMSCs

Behavioral improvements after treatments of stroke with
BMSCs have been observed with intracerebral, intracerebro-
ventricular, and intravascular deliveries of stem/progenitor
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cells. Here we discuss the pros and cons of different delivery
strategies.

Intracerebral and intracerebroventricular injections
result in more transplanted cells in the infarcted region when
compared to other delivery routes. However, the procedural
risk for injection significantly raises safety issues [77, 78].
Until now, intracerebroventricular injection has been used
only in one clinical trial. The study showed some patients
developed fever and meningeal signs after cell implant via
intracerebroventricular delivery [79]. Intravascular injection
is another strategy to deliver BMSCs in stroke animals and
patients. This strategy has several advantages, including easy
injection and potential for widespread BMSCs distribution
[80].However, intravascular routes also have safety problems.
BMSCsmay stick together and cause microemboli, including
lethal pulmonary emboli and microstrokes [80].

In conclusion, each cell delivery method has its pros and
cons. Stroke subtype and cell delivery timing and working
mechanisms should be taken into consideration togetherwith
the selection of cell delivery route.

8. Therapeutic Time Window

The optimal time for BMSCs delivery may be dependent on
their mechanism of action. If a treatment focuses on neuro-
protectivemechanisms, acute deliverywill be very important.
If BMSCs aim to enhance endogenous repair mechanisms,
then subacute transplantation would be optimum as these
events are more prevalent in the first few weeks after stroke
[81]. The route of administration may also affect the timing
of transplantation. Because inflammatory signals may guide
BMSCs home to the ischemic brain, intravascular injection
may require early administration [71, 82]. In conclusion, how
the timing of administration affected the outcome of these
trials is not clear, but they at least demonstrate that delivery
of cells at different times is feasible.

9. Conclusion

Taken together, although tPA is the only approved treat-
ment for acute ischemic stroke, cell-based therapy, especially
BMSCs-based therapy, has also been shown to enhance
function recovery, ameliorate cognitive dysfunction, and
improve neuroplasticity after stroke. Many factors including
nonmodifiable and modifiable risk factors such as age and
diabetes may affect the efficiency of BMSCs treatment of
stroke. Further investigations into the use of BMSCs as a
therapeutic agent for the treatment of stroke are warranted.

Disclosure

Xinchun Ye and Jinxia Hu are co-first authors.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. 81201025 and 81571155), the
National Natural Science Foundation of Jiangsu Province
(nos. BK20131118 and BL2014031), and the Summit of Six Top
Talents Program of Jiangsu Province (no. 2013-WSN-081).

References

[1] D. Mozaffarian, E. J. Benjamin, A. S. Go et al., “Heart disease
and stroke statistics—2015 update : a report from the American
Heart Association,”Circulation, vol. 131, no. 4, pp. e29–e39, 2015.

[2] J. Liu, X. Jin, K. J. Liu, and W. Liu, “Matrix metalloproteinase-
2-mediated occludin degradation and caveolin-1-mediated
claudin-5 redistribution contribute to blood-brain barrier dam-
age in early ischemic stroke stage,” Journal of Neuroscience, vol.
32, no. 9, pp. 3044–3057, 2012.

[3] J. Chen, Z. G. Zhang, Y. Li et al., “Statins induce angiogenesis,
neurogenesis, and synaptogenesis after stroke,” Annals of Neu-
rology, vol. 53, no. 6, pp. 743–751, 2003.

[4] J. Chen, X. Cui, A. Zacharek et al., “Niaspan increases angio-
genesis and improves functional recovery after stroke,” Annals
of Neurology, vol. 62, no. 1, pp. 49–58, 2007.

[5] B. J. Wu, L. Yan, F. Charlton, P. Witting, P. J. Barter, and K.-A.
Rye, “Evidence that niacin inhibits acute vascular inflammation
and improves endothelial dysfunction independent of changes
in plasma lipids,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 30, no. 5, pp. 968–975, 2010.

[6] J. Zhang and M. Chopp, “Cell-based therapy for ischemic
stroke,” Expert Opinion on Biological Therapy, vol. 13, no. 9, pp.
1229–1240, 2013.

[7] M. Song, O. Mohamad, X. Gu, L.Wei, and S. P. Yu, “Restoration
of intracortical and thalamocortical circuits after transplanta-
tion of bone marrow mesenchymal stem cells into the ischemic
brain of mice,” Cell Transplantation, vol. 22, no. 11, pp. 2001–
2015, 2013.

[8] H. Xin, Y. Li, L. H. Shen et al., “Increasing tPa activity in
astrocytes induced by multipotent mesenchymal stromal cells
facilitate neurite outgrowth after stroke in the mouse,” PLoS
ONE, vol. 5, no. 2, Article ID e9027, 2010.

[9] S. Ishizaka, N. Horie, K. Satoh, Y. Fukuda, N. Nishida, and
I. Nagata, “Intra-arterial cell transplantation provides timing-
dependent cell distribution and functional recovery after
stroke,” Stroke, vol. 44, no. 3, pp. 720–726, 2013.

[10] M.Gutiérrez-Fernández, B. Rodŕıguez-Frutos, J. Alvarez-Grech
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