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ABSTRACT
The intrinsic signaling cascades and cell states associated with the Glioma CpG 

Island Methylator Phenotype (G-CIMP) remain poorly understood.  Using published 
mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ 
tumors harbor decreased EGFR signaling using three independent datasets, including 
the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), 
and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection 
of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens 
(p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas 
revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and 
H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate 
dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as 
well as pERK accumulation in independent glioblastoma models. These suppressions 
were associated with increased deposition of the repressive histone markers, 
H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H 
expression-induced pERK suppression can be reversed by exogenous expression of 
H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more 
resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. 
These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves 
as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

INTRODUCTION

Glioblastoma is the most common form of primary 
brain cancer and remains one of the most devastating 
of human diseases [1]. The aggregate of laboratory and 
clinical investigations spanning the past four decades has 
led to the understanding that glioblastomas, like most 
cancers, are defined by a unifying set of phenotypes, 
including self-sufficiency in growth signaling and altered 
DNA damage response [2, 3]. However, the underlying 

molecular events responsible for these phenotypes are 
diverse, and they vary among different glioblastomas. 
Thus, the term glioblastoma captures a wide spectrum of 
molecular physiologies [4]. Meaningful therapeutic efforts 
will only be possible with the elucidation of these distinct 
physiologies [5]. 

One of the recurrent physiologic states in 
glioblastoma is the Glioma CpG island methylator 
phenotype (G-CIMP) [6]. Glioblastoma with this 
phenotype harbors extensive methylation in the 
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CpG islands of a large number of genetic loci. The 
methylation pattern results from aberrant production 
of 2-hydroxyglutarate (2HG) by mutated forms of the 
isocitrate dehydrogenase genes (IDH1 or IDH2) [7]. 
Nearly all IDH mutations associated with G-CIMP 
involve substitution of arginine 132 of IDH1 with histidine 
(IDH1-R132H). The aberrant methylation induced by IDH 
mutations, in turn, down-regulates expression of select 
genes, resulting in a unique physiologic state [6]. As such, 
it is not surprising that the epidemiology and clinical 
course of G-CIMP+ glioblastomas differ significantly 
from those of G-CIMP- glioblastomas [6]. While it is clear 
that G-CIMP+ glioblastomas harbor a distinct biology, the 
intrinsic cellular physiology contributing to this biology 
remains poorly understood.

The intrinsic physiology of a cell state is largely 
driven by intracellular signal transduction cascades [8]. For 
glioblastomas, receptor tyrosine kinase (RTK) signaling 
plays critical roles in tumor initiation and maintenance 
[9]. The Epidermal Growth Factor Receptor (EGFR), 
in particular, is a RTK that is mutated, amplified, or 
hyperactive in nearly all glioblastomas [9]. We wished to 
determine whether G-CIMP+ and G-CIMP- glioblastomas 
differentially utilize these signaling cascades. In vitro 
studies suggest that signal pathway activation triggers 
physiologic changes that can be reliably measured by 
altered mRNA expression [10]. In our study, we utilized 
these mRNA signatures as a platform for analyzing 
transcriptome datasets derived from clinical glioblastoma 
specimens. Using this platform, we showed the EGFR 
signaling was suppressed in G-CIMP+ glioblastomas. 
Moreover, our results suggest that induction of the 
G-CIMP+ state is associated with suppression of EGFR 
and H-Ras expression, resulting in suppressed EGFR 
signaling. 

RESULTS

Identification of gene signatures

The TCGA efforts have identified three pathways 
that are aberrantly regulated in glioblastomas, including 
those mediated by RTKs, p53, and Rb. We performed 
an exhaustive search of the literature to identify mRNA 
signatures that captured the activation of these pathways 
(Figure 1A). Gene signatures reflecting RTK pathway 
activity include: PTEN loss, EGFR, ErbB2, Ras, MAPK, 
RAF1, MEK, MEK Function, and Src. Gene signatures 
that captured Rb pathway activity include: Rb loss, E2F, 
and E2F3. Several gene signatures related to apoptosis and 
DNA damage response were identified, including p53, p53 
target, and Survivin. 

Validation of internal consistency 

We filtered these gene signatures through two 
validation steps. First, we reasoned that if the signature 
harbors biologic meaning in clinical glioblastoma 
specimens, then the general pattern of gene expression 
described by the signature should be grossly conserved in 
the mRNA profiles of clinical specimens. That is, genes 
that are up-regulated in the signatures should cluster in 
terms of their expression pattern in the clinical specimen. 
Moreover, these genes should more likely be over-
expressed in clinical specimens than in a random set of 
genes. Analogous predictions are made for the genes that 
are under-expressed. We refer to this test as a validation 
for “internal consistency.” We tested this consistency using 
mRNA profiles derived from clinical glioma specimens in 
the REMBRANDT (n=288) and the CGGA (n=155) data 
sets using the ANOVA and SROC statistics (see Methods). 
Overall, 79% of the published signatures passed the 
internal consistency test in both datasets (Figure 1). 

To understand the interplay between the gene 
signatures, we determined the extent of overlap between 
the various gene lists for each signaling pathway 
(Supplemental Figure 1). The highest overlaps are 
between MAPK and RAF1 where 62.98% of the genes in 
the MAPK signature are in the RAF1 signature. However, 
these signatures are defined by the same study [31] and 
may be prone to systematic biases. Fortunately, other 
signatures of Ras/RTK activation reported by independent 
groups were identified in our search (See Figure 1A). 
In contrast, the p53 signatures share only 0.4-1.6 % of 
the genes. The low level of overlap in most signatures 
suggests that these signatures offer relatively independent 
assessment of the pathway’s activity.

Validation of biologic relevance 

The prevailing model of carcinogenesis suggests 
progressive or step-wise increase in oncogenic signaling 
and diminution of tumor suppressor signaling during tumor 
progression secondary to accumulation of genetic and 
epigenetic changes [2]. For instance, progressive increases 
in RTK signaling have been noted with advancing grades 
during glioma pathogenesis [3]. Similarly, abridgement 
of DNA damage response mediated by p53 is a critical 
step during transition from lower grade glioma to higher 
grade glioma [32]. For gene signatures to be biologically 
relevant, they should capture this biology. 

To assess the expression patterns of our gene 
signatures as a function of glioma grade, we collapsed 
the gene signature for each specimen of the same tumor 
grade into a single value [33] (see Methods). This average 
pathway activity score was converted into a heat map for 
visual display, with “red” denoting increased pathway 
activity and “green” denoting decreased pathway activity 
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(Supplemental Figure 2, Figure 1B and C). We then 
performed statistical analysis to identify signatures that 
i) trended with progressive tumor grades or ii) exhibited 
differing activity score between grade 2 and 4 gliomas. 
Through this analysis, we identified four signatures 
associated with RTK activation (Epidermal Growth Factor, 
MAPK, RAF1, and MEK), three signatures associated 
with Rb pathway inactivation (TGF-β, Rb loss and 
E2F), and three signatures associated with p53 pathway 
activation (p53 and p53 targets). Overall, 68% of the 
internally consistent gene signatures passed the biological 
plausibility test. The genes that make up of the various 
signatures can be found in Supplemental Table 2.

Transcriptome based determination of G-CIMP 
status. 

Since the CGGA and the REMBRANDT 
glioblastoma specimens were not subjected to global 

genomic methylation profiling, the samples cannot be 
directly assessed for G-CIMP status. However, mRNA 
based gene classifiers for G-CIMP+ tumors have been 
reported [22]. We used the Prediction Algorithm for 
Microarrays (PAM) and these classifiers to categorize 
tumors as either G-CIMP+ or G-CIMP-. Since IDH1 
mutational status is available in the CGGA and IDH1 
mutation is tightly coupled to G-CIMP+ status [7], we 
used IDH1 mutation as a proxy for G-CIMP positivity. Our 
PAM classified IDH1 mutated gliomas with a sensitivity 
of 95.65% and specificity of 92.41%. We subsequently 
tested the method using the subset of glioblastomas in the 
TCGA where G-CIMP status was directly determined. In 
this analysis, PAM application of the G-CIMP signature 
discriminated G-CIMP status with 97.95% sensitivity and 
85.67% specificity (Supplemental Figure 3). We therefore 
conclude that the method of G-CIMP discrimination by 
mRNA signature is robust, allowing us to interrogate the 
complete CGGA and REMBRANDT data sets. 

Figure 1: Identification and validation of gene signatures. (A) Published gene signatures that captured the activation of canonical 
signaling pathways as described by Hanahan and Weinberg [2]. Indicated with * are the signatures that were validated by the internal 
consistency and the biologic plausibility test (see Methods). (B) Test of internal consistency. The heat map shows the expression of the p53 
signature genes in the CGGA data set. The gene annotations on the left side show which genes are parts of the up- (red) and down- (green) 
regulated components of the signature. Distribution of the ANOVA and SROC statistics were empirically derived for each signature by a 
bootstrapping procedure (see Methods) in which 1500 Monte-Carlo simulations were performed. For signatures consisting of only over- or 
under-expressed genes (e.g. RB Loss), the mean pair-wise SROC between all genes in the signature was calculated and simulated. The 
blue line indicates where the actual expression of signature genes in the clinical specimen falls within this distribution. (C) Test of biologic 
consistency. Collapsed gene signature heat maps showing the mean expression of the gene signature in normal (N), grade II glioma (a.k.a. 
astrocytoma, “A”), grade III glioma (a.k.a. anaplastic astrocytoma, “AA”), and grade IV glioma (a.k.a. glioblastoma, “G”) in both the 
CGGA and REMBRANDT data set. The linear trend p is the bootstrapped one-tailed p from 1500 simulations of the Kendall Tau rank 
correlation coefficient. The combined p statistic is from the Stouffer Weighted combination of the p values from each data set for each gene 
signature. Signatures with combined p values < .05 were included in later analyses. 
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Differential pathway utilization in G-CIMP+ and 
G-CIMP- tumor

Using PAM application of G-CIMP mRNA 
signature, we categorized glioblastoma specimens in the 
CGGA and the REMBRANDT as either G-CIMP+ or 
G-CIMP-. We then compared the activity score of the 
various gene signatures in the G-CIMP+ and the G-CIMP- 
tumor. 

The results of this analysis are remarkably 
consistent. For EGFR pathway activation, the activity 
scores for the EGFR, MAPK, RAF1, and MEK signatures 
were higher in the G-CIMP- glioblastomas in the 
CGGA. This difference appeared notable for the MAPK, 
RAF1 and MEK signatures (p=0.003, 0.007 and 0.009 
respectively, see Methods). Moreover, the results were 
highly reproducible within the REMBRANDT data set. 
On the other hand, the pathway activity scores associated 
with Rb Loss and p53 did not differ based on G-CIMP 
status (Figure 2A, left panel).

As a means to derive definitive statistics for the 
overall status of the canonical pathways represented by 

multiple sub-signatures, the individual statistics for the 
contributing signatures were combined using the Stouffer 
Weighted Z score (see Methods). This analysis enrichment 
of the Ras/RTK (EGFR, MAPK, RAF1, and MEK) in 
G-CIMP- glioblastomas is relative to the G-CIMP+ 
glioblastomas in both the CGGA and the REMBRANDT 
dataset. On the other hand, Rb loss and p53 inactivation 
signatures did not differ based on G-CIMP status (Figure 
2A, right panel). 

Validation of observation using the TCGA 
glioblastoma dataset. 

To validate our findings, we turned to the subset 
of glioblastomas in the TCGA data base (n=406) that 
were profiled for both global methylation status as well 
as overall mRNA expression. The glioblastomas were 
categorized by G-CIMP status based on direct methylation 
profiling. Overall pathway activity was determined as 
above-described. The TCGA results faithfully recapitulated 
those observed in the CGGA and REMBRANDT. Namely, 
RTK pathway score was consistently elevated in G-CIMP- 

Figure 2: Differential pathway utilization in G-CIMP+ and G-CIMP- glioblastomas. (A) Differing signature expression by 
G-CIMP status. Left: collapsed gene signature heat maps for the validated gene signatures in normal (N) and G-CIMP-, and G-CIMP+ 
glioblastomas (“G”) profiled in the CGGA and REMBRANDT data sets. p values are bootstrapped two-tailed t tests between G-CIMP+ 
and G-CIMP- glioblastomas. Right: Bootstrapped p-values for the combined two-tailed t tests for each signature group. p < 0.05 was 
boxed in red. G-CIMP status of samples in the CGGA and REMEBRANDT was determined based on PAM classifiers. (B) Validation 
in the methylation-profiled TCGA data set. Left: collapsed gene signature heat maps for the validated gene signatures in normal (N) and 
G-CIMP-, and G-CIMP+ glioblastomas (“G”) profiled in the TCGA. Right: Bootstrapped p-values for the combined two-tailed t tests for 
each signature group. p-value < 0.05 was boxed in red. G-CIMP status in the TCGA dataset is determined using global genomic methylation 
profiles as described by Noushmehr et al. [6].
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glioblastomas relative to G-CIMP+ glioblastomas (p value 
of <.001). Pathway activity scores associated with Rb 
inactivation and p53 activation, as in the discovery data 
sets, did not significantly differ based on G-CIMP status 
(Figure 2B).

Validation by pERK Western blotting

To further verify that the results of our comparative 
gene signature analysis reflect genuine biology, we tested 
whether G-CIMP+ and G-CIMP- glioblastoma specimens 
harbor differing levels of pERK, a biomarker of EGFR 
pathway activation [34]. 25 additional glioblastoma 

specimens were transcriptomally profiled and classified 
into G-CIMP+ and G-CIMP- using the PAM classifier 
described above. 6 G-CIMP+ and 19 G-CIMP- 
glioblastomas were identified (Figure 3A). Consistent 
with prior reports, G-CIMP+ glioblastomas all harbored 
the IDH1-R132H mutation (Figure 3B). The level of 
pERK was significantly higher in the G-CIMP- specimens 
relative to the G-CIMP+ specimens (Figure 3C and D). 
These results support our gene signature analysis and 
suggest differential activation of the RTK/Ras pathway in 
G-CIMP+ and G-CIMP- glioblastomas.

Figure 3: Decreased pERK signaling in G-CIMP+ glioblastomas. (A) G-CIMP status of an independent collection of 25 
glioblastoma specimens. These specimens were transcriptomally profiled and classified into G-CIMP+ and G-CIMP- using the PAM 
classifier described above. 6 G-CIMP+ and 19 G-CIMP- glioblastomas were identified. (B) Representative image of Chromatogram 
profile after direct DNA sequencing showing IDH1 mutations in G-CIMP+ glioblastoma samples. All specimens predicted by PAM to 
be G-CIMP+ harbored the IDH1-R132H mutation. (C) Decreased pERK level in G-CIMP+ glioblastoma specimens. Ras/RTK signaling 
was analyzed by Western blotting using an antibody against pERK, an established biomarker for Ras/RTK pathway activity. (D) Levels of 
pERK, ERK and actin in (C) were analyzed using Image J software (Bethesda, MD). The level of pERK was normalized (see Methods) 
and plotted as a function of G-CIMP status.
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Suppression of EGFR expression in G-CIMP+ 
glioblastomas

Subtle differences in EGFR expression level 
are amplified by cascade interactions into significant 

differences in signaling output [35]. Thus, we tested the 
hypothesis that the lowered EGFR signaling in G-CIMP+ 
glioblastomas was related to lowered EGFR expression in 
these tumors. To this end, we used the TCGA glioblastoma 
data set, where tumors are classified by G-CIMP status 
based on global genomic methylation profiles. We found 

Figure 4: Suppression of EGFR expression in G-CIMP+ glioblastomas. (A) Decreased EGFR mRNA level in G-CIMP+ TCGA 
glioblastomas. G-CIMP status in the TCGA dataset is determined using global genomic methylation profiles as described by Noushmehr 
et al. [6]. (B) IHC staining using TMA of 19 independent glioblastoma specimens (5 G-CIMP+ and 14 G-CIMP-; G-CIMP assignment 
made based on PAM classifiers). Left: Representative images of IHC staining and grading scheme. Right: Scoring of IHC staining was 
plotted as a function of G-CIMP status. p value was derived using the non-parametric Mann-Whitney test as described in Methods. 
(C) Induction of G-CIMP+ status suppressed EGFR expression and pERK accumulation. Human U87 MG glioblastoma cells or murine 
Ink4a-Arf-/- glioblastoma line were stably transduced with retrovirus carrying empty vector, IDH1 or IDH1-R132H. Cells were propagated 
for >10 passages. Whole cell lysates were extracted and analyzed with Western blotting using antibodies against pERK, ERK, EGFR, 
Flag (for IDH1) and Tubulin (as loading control). (D) Induction of G-CIMP+ status by treatment of U87MG cell with 2HG suppressed 
EGFR expression and pERK accumulation. U87MG cells were treated with 2HG (1mM) and passaged for >10 generations. Whole cell 
lysates were then collected and analyzed by immunoblotting with antibodies against pERK, ERK, EGFR and Tubulin (as loading control). 
(E) Induction of G-CIMP+ state increased deposition of repressive histone markers H3K9me3 and H3K27me3 in the EGFR promoter 
region. U87MG cells stably transduced with retrovirus carrying empty vector, IDH1 or IDH1-R132H mutant were lysed after crosslinking 
with formaldehyde. Chromatin was extracted, fragmented, and immunoprecipitated with antibodies against Histone H3, H3K9me3 and 
H3K27me3. Relative abundance of H3K9me3 and H3K27me3 at EGFR promoter region was shown as fold change compared to the cells 
transduced with empty vector. Error bars represent standard deviation. 
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that G-CIMP+ tumors expressed lower levels of EGFR 
mRNAs relative to G-CIMP- tumors (Figure 4A). 
Additionally, we validated this observation by EGFR 
immunohistochemistry (IHC) using a tissue microarray 
(TMA) consisting of 19 independent glioblastoma 
specimens (5 G-CIMP+ and 14 G-CIMP-, p=0.0014, 
Figure 4B). 

These results suggest that the induction of a 
G-CIMP+ state may suppress EGFR expression. To test 
this hypothesis, we exogenously expressed IDH1-R132H 

to induce a G-CIMP+ state [7] in the human U87MG 
glioblastoma line as well as an Ink4a-Arf-/- genetically 
engineered murine model (GEMM) derived glioblastoma 
line [36]. In both models, exogenous expression of 
IDH1-R132H was associated with suppression of EGFR 
expression (Figure 4C). Further supporting our hypothesis, 
induction of G-CIMP+ status in U87MG by chronic 
treatment with 2HG [37] also induced a reduction in 
EGFR expression (Figure 4D). 

The prevailing model of the biology of G-CIMP+ 

Figure 5: Suppression of H-Ras expression in G-CIMP+ glioblastomas. (A) Ectopic expression of EGFR or EGFRvIII failed 
to restore pERK accumulation in G-CIMP+ Ink4a-Arf-/- glioblastoma cells. Ink4a-Arf-/- glioblastoma lines expressing wild type or mutated 
(R132H) IDH1 were stably transduced with retrovirus carrying vector, EGFR or EGFRvIII expression construct, separately. Whole cell 
lysates were extracted and analyzed with Western blotting using antibodies against pERK, ERK, EGFR and Tubulin (as loading control). 
(B) Decreased H-Ras mRNA level in G-CIMP+ TCGA glioblastomas. G-CIMP status in the TCGA dataset is determined using global 
genomic methylation profiles as described by Noushmehr et al. [6]. (C) Induction of G-CIMP+ status suppressed H-Ras expression. Human 
U87 MG glioblastoma line was stably transduced with retrovirus carrying empty vector, IDH1 or IDH1-R132H. Cells were propagated 
for >10 passages. Whole cell lysates were extracted and analyzed with Western blotting using antibodies against H-Ras, Flag (for IDH1), 
and Tubulin (as loading control). (D) Induction of G-CIMP+ state increased deposition of repressive histone markers H3K9me3 and 
H3K27me3 in the H-Ras promoter region. U87 cells stably transduced with retrovirus carrying empty vector, IDH1 or IDH1-R132H 
mutant were lysed after crosslinking with formaldehyde. Chromatin was extracted, fragmented, and immunoprecipitated with antibodies 
against Histone H3, H3K9me3 and H3K27me3. Relative abundance of H3K9me3 and H3K27me3 at H-Ras promoter region was shown as 
fold change compared to the cells transduced with empty vector. Error bars represent standard deviation. (E) Ectopic expression of H-Ras 
restored pERK accumulation in G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma cells. H-Ras expression constructs were stably transfected 
into Ink4a-Arf-/- glioblastoma lines expressing wild type or mutated (R132H) IDH1. Whole cell lysates were extracted and analyzed with 
Western blotting using antibodies against pERK, ERK, H-Ras, Flag (for IDH1), and Tubulin (as loading control). (F) G-CIMP+ state 
lowered glioblastoma sensitivity to the EGFR inhibitor, Gefitinib. Murine Ink4a-Arf-/- cells expressing wild type IDH1 or IDH1-R132H 
were stably transduced with empty vector or EGFRvIII and treated with vehicle or Gefitinib at 10 µM for 14 days. Clonogenic survival was 
determined. ** indicates statistical significance at p<0.01.
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tumors involves epigenetic regulation of gene expression 
[38]. As such, we wished to determine whether the 
G-CIMP+ related EGFR suppression was related to 
deposition of repressive histone markers [39] in the region 
of the EGFR promoter. To this end, ChIP analysis was 
performed to determine whether IDH1-R132H expression 
was associated with the increased deposition of H3K9me3 
and H3K27me3, two well-established repressive histone 
markers that are associated with transcriptional repression 
[40], in the EGFR promoter region. In the U87MG model, 
exogenous expression of IDH1-R132H was associated 
with increased deposition of H3K9me3 and H3K27me3 
in the EGFR promoter region, suggesting that G-CIMP+ 
state is epigenetic down-regulation of EGFR (Figure 4E). 

Suppression of H-Ras expression in G-CIMP+ 
glioblastomas

If suppression of EGFR expression is the sole 
mechanism by which G-CIMP+ glioblastomas down-
regulate EGFR signaling, then exogenous expression 
of EGFR should restore this signaling. We tested this 
hypothesis. Surprisingly, exogenous expression of neither 
a wild type EGFR nor a hyperactive, oncogenic form of 
EGFR, EGFRvIII restored pERK accumulation in the 
G-CIMP+ Ink4-Arf-/-glioblastoma line (Figure 5A). This 
result suggests that G-CIMP+ status may additionally 
suppress the expression of genes down-stream of EGFR 
that are required for EGFR signaling. 

To identify such genes, we tested whether 
downstream effectors of EGFR, including H-Ras, were 
differentially expressed based on G-CIMP status. Using 
the TCGA dataset, we found that H-Ras mRNA levels 
were significantly lowered in G-CIMP+ glioblastomas 
relative to G-CIMP- glioblastomas (Figure 5B). 
Moreover, exogenous expression of IDH1-R132H was 
associated with suppression of H-Ras expression in the 
U87MG model (Figure 5C). As was observed with EGFR, 
exogenous expression of IDH1-R132H was associated 
with increased deposition of two repressive histone 
markers, H3K9me3 and H3K27me3, in the promoter 
region of H-Ras (Figure 5D).

These results suggest that the lowered expression 
of H-Ras is a rate-limiting step for EGFR signaling in 
G-CIMP+ glioblastomas. To test this hypothesis, we 
tested how exogenous expression of a hyperactive form of 
H-Ras (H-RasG12V) restored pERK accumulation in the 
G-CIMP+ Ink4a-Arf-/- EGFRvIII model. Supporting our 
hypothesis, exogenous H-RasG12V expression restored 
pERK accumulation to levels comparable to those of 
Ink4a-Arf-/- EGFRvIII lines expressing wild-type IDH1 
(Figure 5E). 

The down-regulation of EGFR signaling suggests 
that G-CIMP+ glioblastomas may be less dependent on 
this mitogenic signaling pathway. As such, these tumors 

may be less sensitive to EGFR inhibitors relative to 
G-CIMP- glioblastomas. To test this hypothesis, we 
treated isogenic pairs of murine Ink4a-Arf-/- EGFRvIII 
glioblastoma lines expressing either IDH1-R132H or 
wild type IDH1 with the EGFR inhibitor, Gefitinib [41]. 
We found that the Ink4a-Arf-/- EGFRvIII expressing the 
wild type IDH1exhibited exquisite Gefitinib sensitivity 
(Figure 5F). In contrast, the Ink4a-Arf-/- EGFRvIII IDH1-
R132H cells exhibited a near 10-fold increase in Gefitinib 
resistance [36]. These results suggest that G-CIMP status 
of glioblastomas influences cellular sensitivity to EGFR 
inhibitors.

DISCUSSION 

With the advent of high-throughput genomic 
technologies including transcriptomal profiling and 
the application of these platforms to clinical tumor 
specimens, it is now possible to directly assess in 
vivo tumor physiology [42]. However, the biologic 
interpretations of these results are often difficult without 
insights derived from in vitro models. A major barrier in 
our ability to maximally extrapolate the clinical genomic 
information involves the lack of a reliable platform 
that affords translation of genomic information into 
biologic insight. It is, in this context, that the findings 
in this study are important. We used multiple methods 
to assess the internal consistency and biologic relevance 
of gene signatures derived using tissue culture models 
as they pertain to clinical specimens. We imposed strict 
criteria for these validation methods and demonstrate that 
signatures derived from tissue culture can be applied to 
clinical transcriptomal datasets to attain biologic insights. 
Importantly, signatures developed to reflect similar 
biology (e.g. EGFR activation) exhibit highly predictable 
and reproducible patterns of expression. Moreover, the 
results of our comparative pathway signature analysis are 
highly robust to the distinct profiling platforms utilized by 
different consortiums [43] as well as validation through 
cell biologic, proteomic [44], and immunohistochemical 
analysis. 

Our results indicate that canonical pathways in 
glioblastoma biology can be generally divided into those 
that define the cancer phenotype and those that define 
molecular glioblastoma subtypes (such as G-CIMP 
positivity). Pathways regulating DNA damage response 
and cell cycle progression fall into the former category. 
Dysregulation of these processes is required early during 
carcinogenesis and likely occurs prior to genetic events 
that subsequently define molecular subtype [45]. For 
instance, inactivation of the p53 axis (either through 
mutations in genes required for p53 function or epigenetic 
modulation of these genes) is required to abridge cell 
cycle arrest that occurs in response to oncogenic events 
[46]. Disruption of this anti-tumor barrier is required 
early during carcinogenesis and is required for all cellular 
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transformations [32, 47]. On the other hand, our current 
biologic understanding of glioblastoma pathogenesis 
suggests that EGFR activation occurs later during the 
evolution of the cancer [48]. The finding that these axes 
were hypoactive in G-CIMP+ glioblastomas suggests that 
the global methylation pattern or aspects of IDH biology 
prevents genetic/epigenetic events required for activation 
of these pathways or obviate the need for these pathways 
by functionally redundant circuitry. 

Our analysis further highlights the complementary 
nature of comparative pathway signature analysis to 
genomic mutational analysis. For instance, G-CIMP+ 
glioblastomas are more likely associated with p53 
mutations [4]. However, our comparative pathway 
signature analysis demonstrated that the p53 axis is 
inactivated early during glioblastoma pathogenesis in 
both G-CIMP+ and G-CIMP- tumor. Notably, the p53 
axis can be inactivated by a multitude of mechanisms, 
including MDM2 amplification [49]. In this context, our 
data suggest that the mechanism of p53 axis inactivation 
differs between G-CIMP+ and G-CIMP- glioblastomas. 

The finding that G-CIMP+ glioblastomas harbor 
lowered levels of EGFR signaling is largely consistent 
with the previous observation that IDH mutated, G-CIMP+ 
glioblastomas exhibited lowered likelihood of PTEN loss 
of heterozygosity or EGFR amplification [4]. Additionally, 
here we demonstrate that promoter methylation patterns 
in G-CIMP+ glioblastoma facilitated deposition of 
repressive histone markers in the promoter region of 
EGFR and H-Ras, thereby suppressing expression of 
these genes. This suppression, in turn, contributed to 
lower EGFR signaling in G-CIMP+ tumors. Decreased 
EGFR signaling in the G-CIMP+ glioblastomas suggest 
that these pathways may be peripheral in sustaining tumor 
growth and viability [50]. Supporting this hypothesis, we 
found that G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastomas 
were more resistant to EGFR inhibition than their isogenic 
G-CIMP- counterparts. As such, consideration should be 
given to exclude G-CIMP+ glioblastoma patients from 
EGFR or RTK related therapeutic trials. 

In conclusion, our study indicates that comparative 
pathway signature analyses using in vitro derived 
transcriptional signatures offer a robust methodology for 
understanding of glioblastoma physiology in vivo. Using 
this analytic approach, we found that EGFR signaling is 
suppressed in G-CIMP+ glioblastomas through epigenetic 
regulation. Importantly, our results were validated in 
four independent glioblastoma cohorts, totaling over 
900 patients, with specimens profiled using distinct 
platforms. The consistency of the results observed in these 
independent datasets is both impressive and reassuring. 
These results harbor important clinical implications for 
therapeutic strategies targeting G-CIMP status or RTK 
signaling.

MATERIALS AND METHODS

mRNA microarray data

Exploratory studies were performed using 
the Chinese Glioma Genome Atlas (CGGA) and 
the Repository of Molecular Brain Neoplasia Data 
(REMBRANDT) datasets. The CGGA data set was kindly 
provided by Dr. Tao Jiang as normalized, probe-level 
expression values. Values of probes designed to assess the 
same gene were averaged [11]. REMBRANDT samples 
were downloaded from the caArray archive (https://array.
nci.nih.gov/caarray/project/fine-00037) on March 13th, 
2014 as raw, un-normalized CEL files. A Robust Multi-
array Average (RMA) procedure was performed with a 
gene-based probe set for the HG-U133-Plus2 platform 
using the R-based aroma.affymetrix package [11]. 

Validation studies were performed using data from 
the Cancer Genome Atlas (TCGA). TCGA data was 
downloaded from the TCGA data portal (https://tcga-data.
nci.nih.gov/tcga/) as level 3 data. Both mRNA expression 
and methylation profile microarray data for glioblastoma 
and normal brain specimens were downloaded. Descriptive 
statistics for the dataset are shown in Supplemental Table 
1. 

Selection of gene signatures 

The Frequency Weighted Links (FLink) tool was 
used to perform a comprehensive search for relevant gene 
signatures identified. Search terms, intended to identify 
multiple signatures in canonical signal transduction 
cascades, include: EGFR, Ras axis, Receptor Tyrsoine 
Kinase (RTK) activity. In addition to RTK signaling, we 
also identified signatures of pathways frequently altered 
in glioblastoma, including those mediated by Rb or p53 
[12]. The signatures curated for this study are shown in 
Figure 1A.

Characterizing the expression pattern of the gene 
signatures in clinical glioblastoma specimens

For a gene signature to be pertinent in clinical 
specimens, the expression patterns described by the 
signature should be conserved in the clinical specimens. 
That is, genes that are up-regulated in the signature should 
cluster in terms of their expression pattern in the clinical 
specimen. Moreover, these genes should be more likely 
over-expressed in clinical specimens than a randomly 
selected set of genes. Analogous predictions were made 
for the down-regulated genes in the signatures. 

To test the conservation of gene expression patterns 
in a statistically rigorous manner, we took the following 
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approach. First, if the expression pattern described by the 
gene signature is conserved in the clinical specimens, the 
variance (or variation) of the expression of the signature 
genes in the specimens should be largely explained 
by whether they were over- or under-expressed in the 
signature. To test this, a mean was calculated for the 
expression level of each signature gene across all samples. 
This mean was set to zero and the variance was set to 
one. We then utilized the F-statistics from ANOVAs to 
rigorously quantitate the variance of gene expression. 

In performing these calculations, we avoided 
any assumptions that the F-statistics would follow any 
particular distribution. Instead, the distributions of these 
statistics were empirically derived for each signature by a 
bootstrapping procedure [13], in which 1500 Monte-Carlo 
simulations were performed where the genes within the 
signatures were randomized. For ANOVA, the p-value 
was 1 minus the percentile rank of the statistic within the 
bootstrapped distribution. A p-value was assigned to each 
gene signature. As an exploratory analysis, bootstrapped 
p-value of <0.05 was considered to be sufficient for further 
evaluation (Figure 1B). In general, we found this method 
to be more rigorous than parametric assumptions and 
multi-comparison correction [14]. 

Second, if the described signature expression pattern 
is conserved in clinical specimens, then these average 
expression values of the over- and under-expressed genes 
in the signature should be anti-correlated in the clinical 
specimen. This correlative analysis was done using the 
Spearman Rank Order Correlation (SROC). To determine 
the likelihood that any particular correlation coefficient 
would arise by pure chance, we performed 1500 Monte-
Carlo simulations [15] where the genes within the 
signatures were randomized and SROC determined. For 
this correlative analysis, p-value is simply the percentile 
rank of the statistic within the Monte-Carlo distribution. A 
p-value was assigned to each signature. A p-value of <0.05 
was considered to be sufficient for further evaluation 
(Figure 1B).

For signatures with only over-expressed genes, 
a Spearman Rank Order Correlation (SROC) was 
evaluated between all gene-pairs in the signature in 
terms of expression in clinical specimens. The mean of 
these values, termed “mean pair-wise spearman” (MPS) 
[16], was used to assess the extent to which the genes in 
the signatures are coordinately expressed in the clinical 
specimen. 1,500 Monte-Carlo simulations were then 
performed where the signature genes were randomized and 
MPS determined. The likelihood that the observed MPS 
for a particular signature will occur by pure chance was 
then determined from this distribution. A p-value of <0.05 
was considered to be sufficient for further evaluation 
(Figure 1B).

Gene signatures harboring a p-value of <0.05 for 
the ANOVA and the SROC test or a p-value of <0.05 for 
the MPS analysis were selected for testing of biologic 

plausibility (see below).

Defining pathway signature activity score 

For each specimen, a pathway activity score 
was calculated using the t-score method developed by 
Creighton et al. [17]and used extensively in the TCGA 
studies [18]. In brief, each gene in the signature that was 
over-expressed was assigned the value of +1; genes that 
were under-expressed were assigned -1. The normalized 
expression values of the signature genes in the clinical 
specimen are then plotted against these assigned values, 
and Pearson Correlation Coefficient was determined. The 
correlation may range from -1 (denoting low pathway 
activity) to +1 (denoting high pathway activity). A schema 
of the method is shown in Supplemental Figure 2.

Several published signatures consist of only over-
expressed genes. These signatures cannot be analyzed 
using the above described methods. Once again following 
the established method of Creighton et al.[17], for these 
“unidirectional” signatures, the pathway activity score 
is defined as the summed-average of the normalized 
expression value of the signature genes. 

For ease of display, heat maps were generated to 
display the pathway activity scores for grade II, III, and IV 
gliomas as well as G-CIMP+ and G-CIMP- glioblastomas. 
For these heat maps, all pathway activity scores for 
each sample within a group (e.g. grade II gliomas) were 
collapsed into a mean value and displayed using a red 
(high expression)/green (low expression) color scheme 
(Supplemental Figure 2) .

Testing the biologic plausibility of the gene 
signatures 

Advancing glioma grade is associated with 
progressively increasing oncogenic signaling and 
inactivation of tumor suppressor genes [1, 9]. In order 
for the gene signature to be biologically plausible, the 
expression of signature genes in the clinical specimens 
should recapitulate this expectation. Biological plausibility 
was evaluated for each of the internally consistent 
signatures in the CGGA and REMBRANDT data sets. 
The CGGA and REMBRANDT datasets were selected 
for analysis because both sets include transcriptome data 
for grade II, III, and IV gliomas. Pathway activity scores 
for all tumor samples were obtained using the methods 
described above. Changes in pathway activity score as 
a function of progressive tumor grades were assessed 
using a Kendall tau rank correlation coefficient test [19] 
. The test has the dual advantages of being based on rank, 
rather than serving as a test of linearity, and allowing for 
duplicated values, such as all tumors in a particular grade 
class being given the same tumor grade value.

The distribution of the Kendall Tau estimates for 
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each signature in each data set was simulated 1500 times 
by Monte Carlo simulation [16]. As each signature had 
an a priori hypothesized trend direction, the percentile of 
the oncogenic signature in the distribution was used as the 
one-tailed p-value. The p-values from the analysis of the 
CGGA and the REMBRANDT data set were combined 
into a single p-value using the Stouffer Weighted Z 
method [20]. Signatures with a combined p-value less than 
.05 were considered to be validated for their biological 
plausibility (Figure 1C). Comparisons were additionally 
made between between grade II and IV gliomas using 
paired t-tests.

Training G-CIMP Status

G-CIMP status was trained using the Prediction 
Analysis for Microarrays (PAM) algorithm, which 
classifies samples by nearest shrunken centroids [21]. In 
order to train the nearest shrunken centroid classifiers, 
IDH1 mutation status data from the CGGA data was used 
as the gold standard of G-CIMP definition. IDH1 mutated 
glioblastomas were defined as G-CIMP+ [1, 7], and IDH1 
wild-type glioblastomas were defined as G-CIMP-. PAM 
analysis was done using the 200 G-CIMP defining genes 
previously reported by Bayson et al. [22] as classifiers. 
A threshold was chosen to discriminate IDH1 wild-type 
versus mutated tumors in the CGGA data set.

G-CIMP status in the TCGA samples was 
ascertained using the methylation profiles as described by 
Noushmehr et al. [6]. Briefly, level 2 methylation data was 
obtained from the TCGA data portal, and unsupervised 
hierarchical clustering was performed (Supplemental 
Figure 3). 

Gene signature expression in G-CIMP+ and 
G-CIMP- glioblastomas

Pathway activity score-heat maps were generated 
using the methods described above for G-CIMP+ and 
G-CIMP- glioblastoma samples in the CGGA and 
REMBRANDT data sets. Welch’s two sample t-test 
was used to compare expression values between these 
two groups for each gene signature. The distribution 
of the t statistic was empirically derived by the same 
bootstrapping procedure as described above—1500 
Monte-Carlo simulations randomizing gene identity, but 
not the number of over-/under-expressed genes or the 
data set. A two-tailed p-value was assigned, calculated 
as two times the percentile of the signatures’ t statistic 
in the bootstrapped distribution (or two times 1 minus 
the percentile, if t > 0.5). Signatures with p < .05 were 
considered significantly differently expressed between the 
G-CIMP+ and G-CIMP- GBMs.

In order to assess the significance of multiple 
signatures within the same pathway acting concordantly, a 

group level statistic was derived. P-values from each (non-
bootstrapped) Welch’s two sample t-test were combined 
using the Stouffer Weighted Z score. In essence, we 
treat the signatures as independent assays of the overall 
pathway’s activity, and use methods derived from the 
meta-analysis literature to assess the evidence of pathway 
activity as a whole [23]. The distribution of the Z scores 
for each group in each data set was empirically derived by 
a bootstrapping procedure which performed 1500 Monte-
Carlo simulations of each group. For each simulation, 
signatures were assigned a random gene list, keeping all 
other factors constant. A two-tailed p-value was assigned 
to the Z score from each group based on the empirical 
distribution of Z-scores. 

Microarray profiling of 25 independent 
glioblastoma specimens

All research performed was approved by IRB boards 
at University of California, San Diego Human Research 
Protections Program and were in accordance with the 
principles expressed at the declaration of Helsinki. Each 
patient was consented by a dedicated clinical research 
specialist prior to collection. Written consent was obtained 
for each patient. The consent process was approved by 
the ethics committee, and all records were documented 
in our electronic record system. The written consent 
from patients was also scanned into our electronic filing 
system. The specimens were collected at the University of 
California San Diego Medical Center under IRB 120345X. 

In total, 25 consecutive glioblastomas were collected 
as fresh-frozen specimens. The specimens were secured 
from newly diagnosed glioblastoma patients who had not 
undergone temozolomide or radiation treatment. Total 
RNA was extracted from the specimens. Whole genome 
gene expression profiling was performed using Affymetrix 
HGU133 Plus 2.0 microarrays. Microarray data were GC 
Robust Multiarray Average normalized using R and the 
bioconductor.org package gcrma. G-CIMP status was 
determined using PAM as described above. The genomic 
data generated for this study has been made available on 
the Gene Expression Omnibus  (http://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE60184.

ERK pathway analysis by Western blotting

To determine ERK signaling pathway in 25 
glioblastoma specimens, protein lysates were extracted 
with NP-40 buffer (1% NP-40, 20 mM Tris-HCl (pH 
8.0), 137 mM NaCl, 10% glycerol,2 mM EDTA, 1 mM 
sodium orthovanadate, 10 μg/mL Aprotinin, 10 μg/mL 
Leupeptin, and 10 μg/mL Pepstatin). 50 µg of the protein 
lysate was fractionated by SDS-PAGE following the 
Western blotting using a phospho-specific anti-pERK 
antibody (Cell Signaling Technology, 1:1,000), anti-



Oncotarget7353www.impactjournals.com/oncotarget

ERK antibody (Cell Signaling Technology, 1:2,000), 
anti-actin antibody (Sigma, 1:10,000), anti-Tubulin 
antibody (Sigma, 1:10,000), anti-Ras antibody (Cell 
Signaling Technology, 1: 1,000), anti-EGFR antibody 
(Cell Signaling Technology, 1:1,000). Band intensities 
were analyzed using Image J software (Bethesda, MD). 
The levels of pERK and ERK were quantitated based on 
methods previously described [24, 25]. In brief, levels 
of pERK and ERK were normalized to actin. Ratio of 
normalized pERK to ERK was then determined and 
compared. Statistical comparisons of the averaged scores 
were performed using unpaired t-test. 

Immunohistochemical staining of EGFR 

Of the 25 microarray profiled glioblastoma 
specimens, 19 were present in sufficient quantity that a 
tissue microarray (TMA) was assembled. Regions of 
FFPE used to make the TMA was selected by a board-
certified neuro-pathologist (H.R. and S.V.) based on the 
absence of necrotic tissue or normal cerebrum. Each 
specimen is represented by three distinct cores taken from 
differing region of the FFPE specimen. 

The anti-EGFR monoclonal antibody (Santa Cruz 
Biotechnology, 1:50) was used for the IHC staining. TMA 
slides were incubated at 60˚C for 60 min in a hybridization 
oven to remove secondary paraffin layers. Antigen 
retrieval was accomplished with incubating the sections 
for 10 minutes in citrate buffer at sub-boiling temperature. 
Primary antibodies were applied and incubated over 
night at 4˚C. The reaction was visualized by DAB 
(Vector Laboratories, Burlingame, CA). The sections 
were counterstained with Mayer’s hematoxylin and 
mounted with Permount™ Mounting Medium (Electron 
Microscopy Sciences, Hatfield, PA).

Staining of EGFR based on: 1+ (low staining), 2+ 
(medium staining) and 3+ (high staining) [26, 27]. Three 
independent cores were scored for each sample. Over 
90% inter-rater reliability was observed. The discrepant 
scores were discussed by the three reviewers as to derive 
a consensus grading. The three distinct cores of each 
specimen were individually scored and the scores are 
averaged. Statistical comparisons of the averaged score 
were performed using the non-parametric Mann-Whitney 
test with Graphpad Prism (GraphPad Software, Inc.). 

Cell culture, plasmid constructs, and transfection

Human glioma cells U87MG are purchased from 
American Type Culture Collection (Manassas, VA). 
Murine Ink4a-Arf-/- cells were kindly provided by Dr. 
Oren Becher (Duke University Medical Center). The 
cells were propagated at 37°C (humidified atmosphere 
containing 5% CO2) in Dulbecco’s modified Eagle 
medium supplemented with 10% fetal calf serum, 2 mM 

L-glutamine, 100 U/mL penicillin G sodium, and 100 mg/
mL streptomycin sulfate (Gibco). For 2HG treatment, 
U87 cells were treated with 2HG (1mM, Sigma) for >10 
passages.

The wild-type human IDH1 and IDH1-R132H 
mutant (c.395G>A) were generously provided by Dr. 
Kun-Liang Guan(University of California, San Diego) 
and Yue Xiong (Fudan University, China). The constructs 
were confirmed by Sanger sequencing. The wild-type 
EGFR, EGFRvIII, and H-Ras (G12V) constructs were 
generously provided by Dr. Frank Furnari (University 
of California, San Diego). Retrovirus packaging and 
infection were performed as previously described [28] 
and stably infected cells were generated by selection with 
puromycin (1 µg/ml) for 5 days, G418 (600 µg/ml) for 2 
weeks, or Hygromycin (100 µg/ml) for 2 weeks prior to 
the subsequent experiments. Gefitinib was purchased from 
SelleckChem and used at 10 µM.

DNA extraction, PCR Amplification, Purification, 
and Direct DNA sequencing

Genomic DNA was extracted from FFPE sections 
using QIAamp DNA FFPE Tissue Kit (Qiagen) according 
to the manufacturer’s instructions. The DNA concentration 
was determined with Nanodrop (Thermo Scientific). Exon 
4 of the IDH1 gene was amplified with PCR as previously 
described [29] using the following primers: Forward, 5’ 
CGGTCTTCAGAGA-AGCCATT 3’, and Reverse 5’ 
GCAAAATCA-CATTATTGCCAAC 3’. The products 
were purified using QIAquick PCR Purificaiton Kit 
(Qiagen) and all purified PCR amplicons of IDH1 were 
subjected gel electrophoresis (2% agarose), followed 
by QIAquick PCR Purification (Qiagen) and Sanger 
sequencing for detection of specific mutations.

Chromatin Immunoprecipation (ChIP) assay

ChIP assays were performed as described before 
[30]. In brief, after crosslinking with formaldehyde, 
cells were lysed and chromatin was harvested and 
fragmented by micrococcal nuclease digestion (5,000U/
sample for 20 min). The chromatin was then subjected 
to the immunoprecipitation using H3K9me3 (Active 
Motif) and H3K27me3 (Abcam) antibodies followed 
by DNA purification. Histone H3 antibody was 
used as positive control. Primers sequences used for 
amplifying ChIP products are: EGFR, Forward: 5’ 
GGACACTTAGCCTCTCTAAA 3’, and Reverse: 5’ 
GGGAAACTGCTCCTTTATTC 3’; H-Ras, Forward: 
5’ CAGATTGAAGGATGCCTAGA 3’, and Reverse: 5’ 
GCATCTCCTAATCTCCTCTG 3’. Normalized Ct (∆Ct) 
values were calculated by substracting the Ct obtained with 
input DNA from that obtained with immunoprecipitated 
DNA (∆Ct=Ct (IP)-Ct (Input)). Relative fold enrichment 
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of H3K9me3 or H3K27me3 at the target site was then 
calculated using percent of positive control. Changes 
related to expression of wild type IDH1 or IDH1- R132H 
mutant was then represented by fold change relative to 
cells infected with empty vector.
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