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Abstract: Siphoviridae of the lactococcal 936 group are the most commonly encountered bacteriophages
in the dairy processing environment. The 936 group phages possess a discrete baseplate at the tip
of their tail—a complex harbouring the Receptor Binding Protein (RBP) which is responsible for
host recognition and attachment. The baseplate-encoding region is highly conserved amongst
936 phages, with 112 of 115 publicly available phages exhibiting complete synteny. Here, we detail
the three exceptions (Phi4.2, Phi4R15L, and Phi4R16L), which differ from this genomic architecture in
possessing an apparent second RBP-encoding gene upstream of the “classical” rbp gene. The newly
identified RBP possesses an elongated neck region relative to currently defined 936 phage RBPs
and is genetically distinct from defined 936 group RBPs. Through detailed characterisation of the
representative phage Phi4.2 using a wide range of complementary techniques, we demonstrated that
the above-mentioned three phages possess a complex and atypical baseplate structure. Furthermore,
the presence of both RBPs in the tail tip of the mature virion was confirmed, while the anticipated
host-binding capabilities of both proteins were also verified.

Keywords: virus; lactic acid bacteria; structure; host interactions

1. Introduction

Owing to the potentially adverse economic impact phages have on commercial food fermentations,
phages of lactic acid bacteria have become one of the most intensely studied groups of viruses [1].
Phages of Lactococcus lactis can be divided into ten groups, incorporating members of both the
Podoviridae and Siphoviridae families [2]. Members of three of these phage groups are most commonly
encountered in the dairy processing environment: the lytic c2 and 936 groups, and the P335 phage
group, which possesses both lytic and temperate members. Among these, the 936 group phages
appear to be the most prevalent [3] with 115 full genome sequences of 936 phages available as of
January 2018 [4]. The 936 phages follow a strictly lytic lifestyle and possess a double-stranded DNA
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genome encapsulated in an isometric capsid (45–60 nm). They also exhibit a long, non-contractile tail
of 130–165 nm in length [5].

The initial stage of phage infection involves a very specific interaction between the phage Receptor
Binding Protein (RBP), located at the distal end of the tail, and the receptor located at the surface of
the bacterial host cell [6]. During the last decade, phage–host adsorption mechanisms of a diverse
range of phages have been characterised to an extraordinary level of detail [7,8], including those
of Escherichia coli phage T4 [9,10], Bacillus subtilis phage SPP1 [11,12], and a number of lactococcal
phages [13–17]. Despite the enormous diversity of the Siphoviridae family, which currently (as of 2017,
International Committee on Taxonomy of Viruses) encompasses 133 genera and hundreds of species of
phages infecting a diverse range of bacterial and archaeal hosts, the tail architecture of these phages
is rather conserved [18]. Phage tails consist of a hollow stack of dozens of homohexameric Major
Tail Protein (MTP) rings, with the tail Tape Measure Protein (TMP) filling the length of the otherwise
hollow tail core, while at the same time determining tail length [19]. The distal end of the tail is capped
by a tail adsorption apparatus, which, for phages infecting Gram-positive bacteria such as L. lactis,
is termed the tail tip or baseplate [15].

The host adsorption apparatus of two lactococcal phages, p2 (a 936 group phage) and TP901-1
(a P335 group phage), have been studied in great detail [14,16,20,21]. The baseplate of TP901-1 is
composed of a central hexameric ring of Dit proteins, with a trimer of BppU (upper baseplate protein)
bound to each Dit, and a trimer of Receptor Binding Proteins (or lower baseplate protein, BppL) in
turn attached to each of these [19]. The baseplate complex is maintained in an “infection ready” state,
with RBPs orientated downward towards potential hosts [16]. It is thought that, upon host recognition
by the RBPs, a “firing signal” is sent along the phage tail, triggering ejection of the phage genome into
the host cell [22].

The baseplate of p2, in contrast, is normally in a “closed” state, with the RBPs orientated upwards,
and requires the presence of Ca2+ to prompt a conformational change to orientate its RBPs downward
in the “open” conformation to facilitate host binding [13]. The characterisation of the baseplate of
phage p2 revealed that the complex is composed of three proteins: the Dit (Distal tail protein), the Tal
(Tail associated lysin), and the RBP. The ~1 MDa complex was deduced to consist of a central Dit
hexameric ring, with a trimer of RBP proteins attached to each Dit. A Tal protein trimer “plugs” the
central cavity of the Dit ring, and a second Dit hexameric ring, rotated 180◦ and sitting on top of the
first, completes the baseplate complex [13].

The RBP structures and functional characteristics of two members (p2 and bIL170) of the 936 group
have now been studied in detail [14,23,24], with resolved (p2) or partially resolved (bIL170) structures
available, and conserved and distinctive features identified. One of the key findings has been
the discovery of a conserved modularity between 936 RBPs, with all exhibiting so-called head,
neck, and shoulder domains in their structures. In the p2 RBP, the shoulder domain is the region
which attaches the RBP to the Dit, and comprises a β-sandwich fold assembling two four-stranded
anti-parallel β-sheets [14], with a long helix domain in each RBP allowing it to associate in trimeric
form with two additional RBPs. The neck domain is formed by a triple-stranded β-helix organised into
four β-strands, resulting in a rigid structure [25]. The RBP head domain, responsible for binding to
phage receptors on the host cell, forms a β-barrel, comprised of seven anti-parallel β-strands. Previous
studies have demonstrated that 936 group RBPs can be divided into at least five groups based on
nucleotide sequence and host [5,26].

The genomic architecture of the baseplate of p2 is highly conserved among the 936 phage group.
Of the 115 publicly available sequences of 936 group phages, 112 possess this same conserved gene
order, consisting of the dit gene, followed by the tal gene, a small gene encoding a product of unknown
function (hp), and the rbp gene. However, three phages that deviate slightly in the baseplate-encoding
region were isolated from a Dutch Gouda-producing dairy facility [27]. These phages (Phi4.2, Phi4R15L,
and Phi4R16L) appear to encode two distinct RBP genes: a “classical” RBP (rbp2), which aligns with
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Group I (based on predicted head-domain structure) RBPs, and an elongated RBP (rbp1) that differs
significantly to previously described 936 phage RBPs [5,26].

In the present study, a detailed characterisation of the host interactions of Phi4.2 was undertaken.
This phage was selected as a representative phage of this dual-RBP phenomenon. Through the
application of a range of complementary molecular techniques, including mass spectrometry, electron
microscopy (EM), and single gene and “block” cloning strategies, the functionality of these putative
RBPs was investigated.

2. Materials and Methods

2.1. Host Strains and Phages

Strain L. lactis 4, isolated from a Dutch dairy starter culture in 2009 [27], was used as the bacterial
host. The strain was grown in M17 broth (Oxoid, Basingstoke, UK) supplemented with 0.5% lactose at
30 ◦C overnight. Phage Phi4.2, isolated from a dairy facility in 2013 [5], was selected as a representative
of the dual-RBP phages (Phi4R15L and Phi4R16L were isolated from the same facility at a later time [4]).
Phi4.2 was propagated by inoculating a log-phase culture of L. lactis 4 supplemented with 10 mM
CaCl2. Phage lysates were filtered using a 0.45 µm filter (Sartorius, Dublin, Ireland) and stored at 4 ◦C.
Phage p2, used to represent a typical 936 group phage, was propagated on L. lactis NZ9000 and stored
in the same manner.

2.2. Mass Spectrometry Analysis

To determine if both RBP proteins were produced and incorporated into the mature phage, intact
phage particles were analysed by mass spectrometry. Phages were first concentrated and purified
by a discontinuous caesium chloride (CsCl) density gradient [28]. The proteinaceous material from
50 µL of purified phage (representing approximately 1011 Plaque Forming Units (PFU) per mL) was
concentrated by chloroform/methanol precipitation as performed previously [29]. The sample was
applied to 12% SDS-PAGE and the resulting protein profiles were visualized following staining with
0.25% Coomassie Brilliant Blue (Bio-Rad, Hertfordshire, UK). Protein bands derived from SDS-PAGE
analysis were excised, digested with trypsin, and analysed by electrospray ionization–tandem mass
spectrometry (ESI-MS/MS) performed as described previously [30,31].

2.3. Electron Microscopy

Phi4.2 virions were first concentrated by precipitation with polyethylene glycol 8000 (PEG8000,
10% w/v final concentration) and purified using two consecutive CsCl density gradient centrifugations;
the first gradient at 82,000× g for 2.5 h, the second at 340,000× g for 18 h, as described previously [28].
Staining was performed with 2% (w/v) uranyl acetate on freshly prepared ultrathin carbon films.
Grids were analysed in a Tecnai 10 transmission electron microscope (FEI Thermo Fisher Scientific,
Eindhoven, The Netherlands) at an acceleration voltage of 80 kV. Micrographs were taken with
a MegaView G2 charge-coupled device camera (Emsis, Münster, Germany) [32]. Phage p2 was also
prepared and imaged in this manner for comparative purposes.

2.4. Individual RBP Cloning and Production

RBP1Phi4.2 (ORF20) and RBP2Phi4.2 (ORF21) were individually cloned into pNZ8048 [33].
The primers used to amplify these genes are listed in Supplementary Table S1. Following overnight
double digestion of the plasmids and amplicons with relevant restriction endonucleases, overnight
ligation (T4 DNA ligase, NEB, Ipswich, MA, USA) was performed to generate pNZ8048_RBP1 and
pNZ8048_RBP2. The resulting ligation mixture was introduced into L. lactis NZ9000 by electroporation
and transformants were selected on M17 agar plates supplemented with 0.5% glucose (GM17)
and 10 µg/mL chloramphenicol (Sigma Aldrich, Wicklow, Ireland) at 30 ◦C. Sanger sequencing
was employed to verify the integrity of the generated recombinant constructs (sequencing service
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provided by MWG Eurofins, Cologne, Germany). Heterologous gene expression using L. lactis NZ9000
harbouring pNZ8048_RBP1 or pNZ8048_RBP2 was performed using the Nisin Controlled Expression
(NICE) system incorporating a hexahistidine (His) tag for purification as described previously [17,34].
Protein purification of His-tagged RBP1Phi4.2 and RBP2Phi4.2 using a Ni-NTA agarose column (Qiagen,
Manchester, UK) was performed as described previously [17]. The protein concentration of each
fraction was quantified using the standard BioRad protein assay (BioRad, Dublin, Ireland) [35]. In the
case of RBP1Phi4.2, expression was also attempted in the pTX8048 vector [34] in L. lactis NZ9000, and the
E. coli expression vectors pQE30 (Qiagen, Manchester, UK), and pETM11 and pETM30 [36] in E. coli
BL21(DE3). Finally, two constructs, with RBP1Phi4.2 and RBP2Phi4.2 fused to a C-terminal fluorescent
mCherry tag, were created using the NZYtech Easy Cloning Kit (NZYtech, Lisbon, Portugal) as per
the manufacturer’s instructions.

2.5. Block Cloning and Expression of Baseplate Proteins

Various DNA fragments each encoding a different combination of baseplate component-encoding
genes were cloned into pETM11 [36]. Baseplate constructs incorporating gene deletions were
constructed via SOEing PCR as described previously [37], with primers outlined in Supplementary
Table S1. The resulting vectors were introduced into E. coli BL21(DE3) by heat shock and transformants
were selected on Luria–Bertani (LB) agar plates supplemented with 10 µg/mL kanamycin (Sigma
Aldrich, Wicklow, Ireland) at 37 ◦C. The constructs generated using this approach are outlined in
Figure 1. Protein expression was performed by adding a 1% inoculum of culture to 800 mL of LB broth
and incubating at 37 ◦C until an OD600nm of 0.8 was reached. Targeted protein expression was induced
by the addition of a final concentration of 1 mM IPTG and the culture was then incubated overnight
at 20 ◦C. Cells were harvested by centrifugation at 4000× g for 30 min. Pellets were resuspended in
20 mL of lysis buffer (50 mM Tris pH 8.0, 500 mM NaCl, 5% glycerol, 1% triton-X100, 30 mM imidazole,
50 mg lysozyme), and incubated shaking at 4 ◦C for 30 min, followed by centrifugation at 20,000× g
for 30 min. Protein was then purified using a Ni-NTA agarose column (Qiagen, Manchester, UK)
as described previously [17]. The stability of successfully expressed and purified proteins/protein
complexes was assessed via gel filtration using a Superose 6 Increase 10/300 GL column on the AKTA
Pure HPLC system (GE Healthcare Life Sciences, Cork, Ireland).
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Figure 1. Schematic view of the constructs generated in the pETM11 vector in this study. Diagonal red
lines indicate locations where genes have been removed, and adjoining sequence joined together via
SOEing PCR. In all cases, a sequence corresponding to a 6× His-tag is incorporated at the 5′-end of the
first gene present on the inserted DNA fragment (illustrated by the red dot).

2.6. Antibody Production, Western Blot Analysis, and Immunogold Labelling

Polyclonal antibodies were raised in chickens against RBP2Phi4.2 from purified protein, and against
RBP1Phi4.2 using gel slices corresponding to the molecular weight of the RBP1Phi4.2 protein when
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running the entire baseplate complex on a 12% SDS-PAGE gel, by Davids Biotechnologie (Regensburg,
Germany) using their standard protocol. Western blot analysis of both RBPs was performed using
purified and concentrated phages as described in Section 2.2. Immunogold electron microscopy was
performed as described previously with both antibodies, using 5 nm gold conjugates (Sigma-Aldrich,
Wicklow, Ireland) in the case of RBP2Phi4.2, and 10 nm gold conjugates in the case of RBP1Phi4.2 [38].

2.7. Adsorption Inhibition Assays

The binding capabilities of the two RBPs were investigated via adsorption inhibition assays as
described previously [17]. The RBP-mediated adsorption inhibition assay is an adaptation of the
adsorption assay method [39]. Briefly, late exponential phase L. lactis 4 (225 µL) cells resuspended
in 1/4-strength Ringer’s solution were added to a tube to which either 50 µL of protein buffer
(negative control), purified RBP2Phi4.2 protein (at concentrations of 1.6, 0.5, and 0.1 mg/mL), purified
∆RBP1Phi4.2 baseplate (at concentrations of 3.25, 1.62, and 0.8 mg/mL), or the ∆RBP2Phi4.2 baseplate
(at a concentration of 0.55 mg/mL) was added. This cell–RBP mixture was incubated at 30 ◦C for
1 h, at which point phages were added at a final concentration of 106 PFU mL−1 in a total reaction
volume of 0.5 mL (giving an approximate MOI, or Multiplicity of Infection, of 0.01). This mixture was
incubated at 30 ◦C for 12.5 min, before host cells were removed by centrifugation. The supernatant
was retained, and the residual titre of remaining phages determined using the double-agar plaque
assay method [40]. The control was used to determine base-line adsorption, which was calculated
by subtracting residual titre from the initial titre. The resulting figure was then divided by the initial
titre to give the adsorption percentage. Adsorption inhibition was calculated as follows: (control
adsorption per cent − adsorption per cent after incubation)/control adsorption per cent.

2.8. Fluorescent Binding of RBP1Phi4.2

Fluorescent binding assays using fluorescently tagged RBP1Phi4.2 and RBP2Phi4.2 were performed
as described previously [41]. Briefly, 0.3 mL of L. lactis 4 in the exponential growth phase (taken
as an OD600nm of between 0.4 and 0.6) was harvested and resuspended in 100 µL of SM buffer
(50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgSO4). Cells were incubated with either 5 µg/mL
of mCherry-RBP1Phi4.2 (the maximum quantity possible due to poor expression) or 50 µg/mL of
mCherry-RBP2Phi4.2 for 12.5 min at 30 ◦C. Cells were washed twice in SM buffer, and fluorescent
binding was visualized by confocal microscopy (Zeiss LSM 5 Exciter, Zeiss, Germany) to achieve
high-resolution images, with a wavelength of 514 nm for mCherry. Strain L. lactis 10, isolated from the
same facility as L. lactis 4 [27], was used as a negative control. Images were analysed and compiled
using the Zen 2.3 Lite software package (Zeiss, Oberkochen, Germany).

2.9. SEC MALS Analysis to Determine Baseplate Size

Size exclusion chromatography was carried out on an Alliance 2695 HPLC system (Waters, Dublin,
Ireland) using a Superose 6 HR10/30 column (GE Healthcare, Cork, Ireland) run in a buffer containing
10 mM Tris-HCl, 300 mM NaCl and 50 mL CaCl2 at pH 7.5 with a flow rate of 0.6 mL/min. Detection
was performed using a three-detector static light-scattering apparatus (MiniDAWN TREOS, Wyatt
Technology, Haverhill, UK), a quasielastic light-scattering instrument (Dynapro, Wyatt Technology,
Haverhill, UK) and a refractometer (OptilabrEX, Wyatt Technology, Haverhill, UK). Molecular weight
calculations were performed with the ASTRA V software (Wyatt Technology, Haverhill, UK) as
previously described [42]. Proteins were injected at a final concentration of 1 mg/mL (±0.1 mg/mL).
Errors were assigned by the Astra software (Wyatt).

2.10. Negative Stain EM Analysis of Baseplate Complexes

For negative staining, 6µL of each successfully expressed baseplate complex was applied onto
glow-discharged carbon-coated grids (Agar Scientific, Stansted, UK) at a concentration of 0.03 mg/mL.
The grids were washed three times with 10µL of deionized water before incubating for 45 s in 1%
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(w/v) uranyl formate (Agar Scientific, Stansted, UK). CCD images were collected using a Tecnai Spirit
operated at 120 KV and a 2 K × 2 K CCD camera.

3. Results

3.1. RBP1Phi4.2 Is Distinct from Current 936 RBP Groups

Phages Phi4.2, Phi4R15L, and Phi4R16L possess an atypical gene sequence in the baseplate region
of their genome in relation to other phages of the 936 group, incorporating an additional, elongated
RBP gene, rbp1 (Figure 2A). Analysis of deduced amino acid sequences suggests that the second
putative RBP gene, rbp2, encodes a typical 936 group RBP, which displays a high degree of homology
to the entire sequence of the RBP of p2 (Figure 2C). Alignments also highlighted significant homology
between the N terminus, or “shoulder” domain, of RBP1Phi4.2 and those of RBP2Phi4.2 and p2, indicating
it likely attaches to the Dit protein in the assembled baseplate. Several conserved amino acids were
also present in the C terminus, or “head” domain, of RBP1Phi4.2. However, RBP1Phi4.2 differed greatly
in its “neck” region, possessing a significantly elongated sequence over 100 amino acids longer than
those of RBP2Phi4.2 and p2.
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obtained for both RBP1Phi4.2 (13 unique reads covering 51% of the amino acid sequence) and RBP2Phi4.2 

Figure 2. Sequence analysis of the RBPs of Phi4.2 and p2. (A) Genomic architecture of the baseplate
regions of p2 and Phi4.2. (B) Ribbon structure of the RBP trimer of p2, as previously determined [14,23],
highlighting the “shoulder”, “neck”, and “head” domains. Ribbon structure retrieved from the PDB
database (PDB ID: 1ZRU). (C) Alignment of the amino acid sequences of the RBPs of Phi4.2 and
p2, highlighting the elongated “neck” domain of RBP1Phi4.2. Conserved amino acids are in red,
and partially conserved in blue. Alignment created using Multalin [43].

3.2. RBP1Phi4.2 Is a Structural Protein and Part of the Mature Virion

To determine whether both RBP1Phi4.2 and RBP2Phi4.2 are expressed and incorporated into the
mature phage particle, proteins of the Phi4.2 virion were analysed via ESI-MS/MS. Most of the
predicted tail-associated proteins of Phi4.2, such as the major tail protein, the tail tape measure protein,
the TpeX (tail protein extension) protein, and the receptor binding protein, were detected in this
analysis, although phage capsid proteins were not identified (a phenomenon previously observed
in a number of studies, and likely a result of covalent cross-linking of head components resulting in
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oligomers too large to enter the gel [44,45]). A significant number of peptide reads were obtained for
both RBP1Phi4.2 (13 unique reads covering 51% of the amino acid sequence) and RBP2Phi4.2 (8 unique
reads covering 39% of the amino acid sequence), indicating both are indeed expressed and apparently
incorporated into the phage particle (Figure 3B).

1 
 

 

Figure 3. Summary of mass spectrometry data. (A) Schematic representation of the genetic architecture
of Phi4.2. ORFs of the late region of the genome, which are known to code for the structural proteins
of the phage, are represented in colour, with proteins detected by mass spectrometry reads bordered
in bold. ORFs in light blue represent the packaging region of the genome, ORFs in red proteins of
the phage head, ORFs in green unassigned hypothetical proteins, dark blue denotes genes encoding
phage tail components, purple genes encoding the dual RBPs, and yellow represents genes involved in
host lysis. (B) Summary of the peptide reads obtained from purified Phi4.2 particles via electrospray
ionization-tandem mass spectrometry (ESI-MSI/MS). A minimum of either two independent unique
peptides or 5% sequence coverage was used as threshold values. (C) The 12% SDS-PAGE of purified
Phi4.2, from which bands were excised for ESI-MS/MS analysis. The ladder used is the 7–175 kDa
broad-range protein ladder (NEB, Ipswich, MA, USA).

3.3. Phi4.2 Exhibits Distinct Features among 936 Group Phages

Phi4.2 was analysed by EM to determine if its structure differed from those of the archetypal
936 group phages. This analysis demonstrated that intact Phi4.2 phage particles possess an atypical
baseplate (Figure 4A,B,E), which is significantly less compact than that of the previously analysed
936 phage p2 (Supplementary Figure S1). Micrographs of Phi4.2, as well as Phi4R15L and Phi4R16L,
highlight that the phages possess an elongated baseplate when compared vertically with that of
p2 (Supplementary Figure S1 and Table S2). While the baseplate of p2 measured 12.7 ± 1.3 nm in
length, the baseplates of the Phi4.2-like phages measured 6–7 nm longer (Supplementary Table S2).
Considering the very high sequence identity between the dit, tal, and rbp/rbp2 genes in p2 and 4.2,
this difference can likely be attributed to the presence of RBP1Phi4.2 in the baseplate. Comparative
sequence analysis of RBP1Phi4.2 suggests a large insertion in the neck domain [14] which would likely
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cause the RBP1Phi4.2 head to protrude from the baseplate core. The RBP1Phi4.2 protein was visible as
a drumstick-like appendage, mainly present in damaged phage particles where the staining solution
had already penetrated into the central tail tube (Figure 4C,D,E), indicating distinct conformational
changes of these distal complexes which exposed RBP1Phi4.2. Additionally, the phage tail appeared
to be covered in a series of small, globular proteins, separated by roughly half a tail width from the
tail itself, and possibly linked by fine, flexible fibres, although the resolution limits of the microscope
made this difficult to discern (Figure 4A–E). These proteins may be a variation of the TpeX protein
previously observed in 936 group proteins [5], with Phi4.2 previously noted as possessing a tpeX gene
downstream of the mtp gene Phages Phi4R15L and Phi4R16L (which are also predicted to encode a dual
RBP baseplate) demonstrated similar morphologies (Supplementary Figure S1), while imaging of p2
confirmed it did not possess these globular appendages on its tail (Supplementary Figure S1).
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3.4. RBP1Phi4.2 Forms a Complex with Other Baseplate Components

Expression of a range of individual proteins and protein complexes was attempted in order
to further characterise the baseplate-associated region of Phi4.2. Expression and purification of
RBP2Phi4.2 (which demonstrates a higher similarity to other 936 group RBPs) was successful, with a high
protein yield. Despite considerable efforts, RBP1Phi4.2 (which possesses an elongated “neck” region
and is highly divergent from other 936 group RBPs) could not be expressed in a soluble manner
irrespective of the expression system or host used. These included the L. lactis vectors pNZ8048 and
pTX8048 (incorporating a thioredoxin fusion tag to improve solubility), and the E. coli vectors pQE30,
pETM11, and pETM30 (which incorporates a Glutathione S-Transferase (GST) tag to promote solubility).
However, when expressed in fusion with mCherry, a very small amount of soluble mCherry-RBP1Phi4.2
fusion protein (0.048 mg/L of culture) was purified. The Dit and Tal proteins were equally insoluble
when expressed individually. Expression of mCherry-RBP2Phi4.2 fusion protein resulted in purification
of a very high yield of stable protein (173 mg/L).

Expression of the full baseplate region (encoding the Dit, Tal, HP, RBP1, and RBP2 proteins)
resulted in the successful purification of the baseplate of Phi4.2, with a yield of 9 mg/L, and the
purified complex was stable during assessment by gel filtration (Figure 5A). The ∆RBP1Phi4.2 complex,
in which RBP1Phi4.2 was removed via SOEing PCR, expressed at higher levels with a yield of 16.2 mg/L
and was also highly stable (Figure 5B). In contrast, expression of the ∆RBP2Phi4.2 complex produced
a much lower yield of 2.75 mg/L of protein and was highly unstable, with the vast majority of the
protein complex degraded after 24 h of storage at 4 ◦C (Figure 5C). Negative staining EM analysis of this
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complex further confirmed its instability (Figure 5D), with numerous disassembled components visible,
including many drumstick-like structures possibly indicating dissociated RBP1Phi4.2. The ∆HPPhi4.2
construct, which lacks the small protein of unknown function, did not allow detection of protein
expression in any examined fraction. The DitPhi4.2 + TalPhi4.2 complex (also incorporating the
hypothetical protein) was not produced in the soluble fraction.
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Figure 5. Gel filtration chromatograms of three Phi4.2-derived baseplate complexes analysing complex
stability, with accompanying EM analysis of the ∆RBP2Phi4.2 complex: (A) analysis of the full baseplate;
(B) analysis of the ∆RBP1Phi4.2 complex; (C) analysis of the ∆RBP2Phi4.2 complex; and (D) negative stain
EM micrograph of the ∆RBP2Phi4.2 complex, highlighting its instability. In gel filtration chromatograms,
the y-axis represents intensity of absorbance (milli Absorbance Units), and the x-axis represents the
elution volume in millilitres. Protein complexes were observed using 1% uranyl-acetate staining and
imaged on a FEI Tecnai Sphera LaB6 200 kV microscope. Scale bars represent 100 nm. Gel filtration was
performed using a Superose 6 Increase 10/300 GL column (GE Healthcare Life Sciences, Cork, Ireland),
in a 50 mM Tris-HCl, 300 mM NaCl, pH 7.5 protein buffer.

3.5. Both RBP1Phi4.2 and RBP2Phi4.2 Bind Specifically to Lactococcal Host Cells

The proteins and protein complexes that were successfully expressed and purified were applied
to adsorption inhibition assays to determine which proteins play a role in the binding of Phi4.2 to its
host. For this purpose RBP2Phi4.2, the ∆RBP1Phi4.2 baseplate complex, and the ∆RBP2Phi4.2 baseplate
complex were incubated with exponential-phase L. lactis 4 host cells at a variety of concentrations
(with the exception of ∆RBP2Phi4.2, which was only examined at a single concentration using protein
taken directly after gel filtration due to the instability of the complex). Incubation of L. lactis 4
with each of RBP2Phi4.2, the ∆RBP1Phi4.2 baseplate complex, and the ∆RBP2Phi4.2 baseplate complex



Viruses 2018, 10, 668 10 of 17

resulted in significantly reduced phage adsorption in comparison to the control (which involved
incubation of the cells with protein buffer, and determined base adsorption to be 46.8%). In the
case of RBP2Phi4.2, a protein concentration of 1.6 mg/mL was shown to completely eliminate phage
adsorption to the host, while 40% adsorption inhibition was observed at concentrations as low as
0.1 mg/mL (Figure 6A). Similarly, incubation with the ∆RBP1Phi4.2 complex had a major impact on
phage adsorption, with adsorption being completely blocked at 3.24 mg/mL, confirming the role
of RBP2Phi4.2 in host binding. Fluorescent binding assays using the purified mCherry-RBP2Phi4.2
fusion protein at a final concentration of 50 µg/mL resulted in strong labelling (Supplementary
Figure S2), further confirming its role as a typical RBP. In the case of the ∆RBP2Phi4.2 complex, 80% of
phage adsorption was blocked at a concentration of 0.55 mg/mL (Figure 6A). Additionally, fluorescent
binding assays using the purified mCherry-RBP1Phi4.2 fusion protein were performed, and host binding
was observed (Figure 6B), although at a very low level (roughly one in every 30–50 cells), possibly due
to the minute quantity of protein employed (5 µg/mL), while no binding was observed in the case of
the control strain L. lactis 10.Thus, RBP1Phi4.2 also appears to play a role in the host binding process.
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3.6. Western Blot and Immunogold Labelling 

Figure 6. Adsorption inhibition and fluorescent binding assay results. (A) Adsorption inhibition assays
involving the incubation of host L. lactis 4 with either RBP2Phi4.2, the ∆RBP1Phi4.2 complex, or the
∆RBP2Phi4.2 complex. Due to the instability of the ∆RBP2Phi4.2 complex, adsorption inhibition assays
were performed using protein taken directly after gel filtration purification, resulting in only one
concentration of protein being examined. All adsorption inhibition assays were performed in triplicate.
(B) Fluorescent binding assays using mCherry tagged RBP1Phi4.2. Protein was added at a quantity of
5 µg/mL. Scale bars correspond to 5 µm. Cells were visualized using differential interference contrast
(DIC) microscopy (panel on the left), and fluorescent confocal microscopy (panel on the right) at the
mCherry excitement wavelength of 514 nm.
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3.6. Western Blot and Immunogold Labelling

Using antibodies raised against RBP1Phi4.2 and RBP2Phi4.2, the presence of both proteins in the
purified phage samples was confirmed by Western blot analysis (Figure 7). Immunogold electron
microscopy was attempted to confirm their location in the tail. Specific labelling of the tail tip region
of the phage was obtained reliably with anti-RBP2Phi4.2 antibodies (Figure 7A). However, in the case
of anti-RBP1Phi4.2 antibodies, specific labelling proved to be much less consistent (Figure 7B) despite
attempts with a range of gold conjugates (2, 5, and 10 nm), although weak labelling of the tail tip
region was occasionally observed.
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Purification of the open form of the p2 baseplate resulted in a back-to-back dimerisation of pairs of 
individual baseplates. Lateral views of the open Phi4.2 baseplate and the ΔRBP1Phi4.2 complex 
revealed the presence of two “disks” of RBP heads, indicating both purified complexes have 
dimerised in this case as well, likely the result of a lack of a tail to attach to when expressed alone in 
E. coli. As both protein complexes proved unstable once Ca2+ was removed from the protein buffer, 
baseplates in the closed conformation could not be observed. Noteworthy, once the dimerisation is 
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Figure 7. Western hybridisation and immunogold labelling of Phi4.2 using individual antibodies
against RBP2Phi4.2 (raised against purified RBP2 protein), and RBP1Phi4.2 (raised against purified
SDS-PAGE bands produced by the full baseplate complex). (A) Western hybridisation analysis
of RBP2Phi4.2 (on the left), and immunogold labelling (on the right) using 5 nm gold conjugates
(Sigma-Aldrich, Wicklow, Ireland). (B) Western hybridisation analysis of RBP1Phi4.2 (on the left), and
immunogold labelling (on the right) using 10 nm gold conjugates (Sigma-Aldrich, Wicklow, Ireland).
For all blots, the New England Biolabs Color Prestained Protein Standard, Broad Range (11–245 kDa)
was used (indicated by lanes marked “L”, molecular weights indicated in kDa on the left).

3.7. Electron Microscopy Analysis of the Baseplate of Phi4.2

The purified full baseplate and ∆RBP1Phi4.2 protein complexes were analysed by negative staining
electron microscopy in an attempt to obtain structural information on these heteromultimeric protein
assemblies. During previous negative staining EM analysis of the 936 group phage p2 purified
baseplate complex, the presence of two conformations was detected [13]: the closed, globular (or
“heads-up”) form in the absence of Ca2+, and the open, star-like (or “heads-down”) form in the
presence of Ca2+ and Sr2+. In the case of Phi4.2, we observed only the open, star-like conformation,
likely due to the presence of Ca2+ in the protein buffer (Figure 8). Purification of the open form of the
p2 baseplate resulted in a back-to-back dimerisation of pairs of individual baseplates. Lateral views
of the open Phi4.2 baseplate and the ∆RBP1Phi4.2 complex revealed the presence of two “disks” of
RBP heads, indicating both purified complexes have dimerised in this case as well, likely the result of
a lack of a tail to attach to when expressed alone in E. coli. As both protein complexes proved unstable
once Ca2+ was removed from the protein buffer, baseplates in the closed conformation could not be
observed. Noteworthy, once the dimerisation is accounted for, both the full baseplate of Phi4.2 and
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the ∆RBP1Phi4.2 complex are comparable in structure to that of the open p2 baseplate, with the key
difference being the presumed RBP1Phi4.2 protruding from the full Phi4.2 baseplate.Viruses 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 8. Electron microscopy analysis of the baseplate of Phi4.2: (A) negative stain imaging of the
full baseplate of Phi4.2; and (B) negative stain analysis of the ∆RBP1Phi4.2 complex. (A,B) Scale bars
correspond to 100 nm. Representative 2D classes of each complex are inset.

3.8. SEC/MALS Determination of Baseplate Size

Both the full baseplate and ∆RBP1Phi4.2 complexes were characterised via SEC/MALS/RI in
order to determine their absolute mass (the instability of the ∆RBP2Phi4.2 complex precluded such
an analysis). The measured molecular mass of the full baseplate was ~1.8 MDa (Supplementary
Figure S3), roughly double the size of the previously characterised baseplate of the 936 phage p2 [13],
a result which can largely be attributed to the dimerization mentioned previously. For the ∆RBP1Phi4.2
derived complex, a molar mass of ~1.4 MDa was obtained. In both cases, the accuracy of the molar
mass could not be refined further due to the instability of the peak, likely a result of the instability of
the complexes. The theoretical mass of two back-to-back open baseplates (each composed of 6 Dit
proteins, 3 Tal proteins, and 18 RBPs) is 2.12 MDa if it was composed of only RBP1, and 1.7 MDa if
it was composed of only RBP2. The observed mass of ~1.8 MDa indicates a mixture of RBP1 and
RBP2 in the native phage 4.2 baseplate. The theoretical mass of back-to-back ∆RBP1Phi4.2 complex
(incorporating two full complements of 18 RBP2Phi4.2 proteins) is 1.68 MDa, larger than the observed
value of ~1.4 MDa, which can be explained by the absence of RBP1Phi4.2 in the baseplate. A slight
instability was observed during SEC/MALS characterisation of the full baseplate, with a second,
smaller peak observed at a similar size to that of the ∆RBP1Phi4.2 derived complex, indicating possible
dissociation of RBP1Phi4.2. Slight asymmetry was also observed in the peak produced for the full
baseplate complex presented in Figure 5, although due to the lower resolution of the produced
chromatogram it is less apparent.

4. Discussion

Analysis of the genomes of all 115 available 936 group lactococcal phages reveals that the
architecture of the baseplate of this phage group is highly conserved, with 112 phages possessing the
same gene order. However, the three phages mentioned in this study (Phi4.2, PhiR15L, and PhiR16L)
are currently the exceptions to this general architectural rule, as they possess a second RBP-encoding
gene, rbp1, which exhibits an extended 3’ end and thus does not match previously determined
groupings of 936 group phage RBPs. Through detailed characterisation of Phi4.2, the representative
phage for this dual-RBP phenomenon, it was revealed that these exceptions possess a number of
significant differences to the typical 936 phage structure.
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EM analysis of the whole phage has revealed that the phage possesses an atypical baseplate,
which is significantly less compact in comparison to the previously studied phage p2 [13]. Negative
staining EM analysis of the full expressed baseplate and the ∆RBP1Phi4.2 complex indicates that each is
in the “open” conformation, which resulted in dimerization in solution (an observation previously
observed in the characterisation of the B. subtilis phage SPP1 [46], which also possesses a hexameric
Dit conformation, and likely a result of the absence of its partners when expressed alone in E. coli [11]).
Comparison of the two structures indicates that, in each, the Dit ring possesses a near-complete
complement of 18 RBP2Phi4.2 proteins, with the full baseplate incorporating an undetermined, but much
lower number of highly flexible RBP1Phi4.2 proteins protruding from the structure. The molecular
mass of the back-to-back open baseplates as determined by SEC-MALS analysis supports this, with the
determined mass of ~1.8 MDa indicating that the heteromultimeric protein complex may be composed
of two Tal trimers (6 × 42.9 kDa), two Dit hexamers (12 × 34.4 kDa), and two near-complete
compliments of 18 RBP2Phi4.2 proteins (36 × 28.6 kDa), giving a total of 1.69 MDa, with the difference
accounted for by the incorporation of the larger RBP1Phi4.2 proteins (a full RBP1Phi4.2 baseplate dimer
would be 2.12 MDa).

Purification of RBP1Phi4.2 alone was not achievable in this study due to its insolubility, likely
a result of its elongated “neck” region, composed of difficult-to-fold interlaced beta-helix folds [14].
Furthermore, precise localisation of RBP1Phi4.2 was difficult due to the weak labelling observed
during immunogold labelling. The weaker interactions of anti-RBP1Phi4.2 antibodies in comparison
to those of RBP2Phi4.2 may be due to a number of reasons. For example, as the antibody was
raised against denatured protein extracted from SDS-PAGE gel slices, it may not recognise the
native, folded protein. Secondly, RBP1Phi4.2 may not be sufficiently exposed for labelling, with the
drumstick-like protein primarily visible in damaged phage particles during EM analysis. Finally,
as the polyclonal antibodies were raised against much lower quantities of protein than in the case
of RBP2Phi4.2, they may simply possess a low affinity for RBP1Phi4.2. However, through fluorescent
binding with an RBP1Phi4.2-mCherry fusion protein, and adsorption assays using the ∆RBP2Phi4.2
complex, RBP1Phi4.2 has been demonstrated to bind to the host, and therefore is highly likely to play
a role in phage–host interactions. Numerous factors may be at play in relation to the low binding levels
observed for RBP1Phi4.2-mCherry in comparison to RBP2Phi4.2. Low protein concentrations, and poor
complex stability undoubtedly play a role. However, the host receptor for the RBP may also be a factor;
while the head domains of both RBPs showed a degree of similarity, the sequence at amino acid level
was quite different. Thus, it cannot be precluded that RBP1Phi4.2 binds a slightly different receptor to
that of RBP2Phi4.2, which may be more exposed on the labelled cells.

These results raise the question as to why it would be advantageous for the phage to incorporate
both of these RBPs. In fact, as demonstrated by the improved expression and greater stability of
the ∆RBP1Phi4.2 complex in comparison to the full baseplate, it appears that the RBP1Phi4.2 protein
is difficult to produce and incorporate into the baseplate structure. However, when viewing this
phenomenon in the context of the host ranges of these phages, possible reasons for the incorporation
of this second RBP emerge. These three phages were isolated from the same dairy facility against the
same starter culture host (L. lactis 4) [4,5]. Interestingly, while all other phages isolated from these
facilities demonstrated a relatively broad host range and all infected multiple strains, these three phages
only infected L. lactis 4, and were also the only phages to do so. Thus, it appears that the dual-RBP
phenomenon may be a specific adaptation to this host, allowing the phages to fill a niche in the starter
culture. This is in apparent contrast to Twort-like phages infecting Gram-positive Staphylococcus aureus,
where the presence of two RBPs contributes to a broad host range [47].

With the exception of the ∆RBP1Phi4.2 complex, the removal of any part of the baseplate results
in either a lack of expression (∆HPPhi4.2), insolubility (RBP1Phi4.2, DitPhi4.2, and TalPhi4.2 proteins
individually), or a high degree of instability (∆RBP2Phi4.2). This implies that assembly of this complex
during phage propagation must occur rapidly to allow formation of a stable baseplate, as previously
observed [13]. The lack of protein expression in the case of the ∆HPPhi4.2 construct indicates that it is
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required for baseplate assembly. However, the ∆HPPhi4.2 protein is not part of the final complex. Thus,
this indicates that the hpPhi4.2 gene encodes a chaperone protein required for baseplate assembly.

Anomalous globular appendages were observed coating the phage tail of Phi4.2, which were
presumed to be encoded by the tpeX gene, as opposed to the smaller adhesin domains present on the
tail of p2, which are encoded by the C-terminal end of the MTP [48]. However, these globular structures
do not resemble previously described TpeX tail accessories observed in 936 group phages [5], despite
possessing similar sequence lengths and amino acid sequence similarity between the Phi4.2 TpeX
protein and comparable TpeX extensions. For example, the TpeX of Phi4.2 exhibited homology with
that of PhiC0139 (99% coverage and 38% identity), with the vast majority of homology occurring in the
N and C termini, where sequence identity increased to 78%. Preliminary HHpred analysis of the central
portion of the protein sequence predicted structural homology with the BppA structure of the P335
phage Tuc2009 (PDB ID 5e7T), a baseplate component that encodes a Carbohydrate Binding Module
(CBM) involved in host binding. Thus, the spiral-like structure apparent on the tail of PhiC0139 and
the globular appendages visible on the tails of the three phages examined in this study, thought to be
the TpeX fused to the MTP through a programmed +1 frameshift [5], highlight the structural diversity
of these potential host-binding adaptations.

The flexibility of the globular tail appendages and the protruding RBP1Phi4.2 proteins ultimately
resulted in Phi4.2 being recalcitrant to detailed structural characterisation. However, initial questions
have been answered in this study of Phi4.2; both RBPs are produced and incorporated into the mature
phage, and both appear to be involved in host–phage interactions. This places the three phages
mentioned in this study as the only lactococcal 936 phages possessing two distinct RBPs which have
been proven to be simultaneously incorporated into the mature phage particle, and to both be involved
in host binding.

5. Conclusions

Phages of L. lactis remain a constant cause of economic loss in the dairy industry. Improving
our understanding of the host-binding machinery of these phages and how they infect their hosts
is an integral part of the design and improvement of strategies to limit their impact on industrial
processes [49]. While the host binding machinery of 936 phage group appears to be relatively conserved,
studies such as these highlight that variation and specific adaptations to fit biological niches do occur.
The unique baseplate structure of the phages examined in this study emphasises the potential diversity
and genetic elasticity of these phages, and highlights the adaptations still to be unearthed even amongst
relatively well characterised phage groups.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/12/
668/s1, Figure S1: EM analysis of phages p2, Phi4R15L and Phi4R16L, Figure S2: Fluorescent binding assays
using mCherry tagged RBP2Phi4.2, Figure S3: SEC/MALS/RI analysis of the full baseplate and the ∆RBP1
complexes, Table S1: Oligonucleotides used in this study, Table S2: Measurements of morphological features of
the examined phages.
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