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In this paper, we discuss the theory behind calibration curve experiments and their application to a zinc
(Zn) bioavailability study with broiler chickens. Seven replicates of 16 male commercial broiler chicks
were fed starter diets for 14 days. Six diets had different levels of a potential Zn source and one was a
positive control with standard industry levels of Zn for comparison. Four commonly used methods of
calculating bioavailability means and confidence intervals (CI) from a calibration curve (standard curve)
experiment to estimate the bioavailability of a new zinc source in broiler chickens were compared. The
methods compared were the following: 1) the Counter-Intuitive Method uses a multiple-range test to
compare unknown test and standard samples; 2) the Intuitive Method uses standard linear regression
and inverts the equation to predict Zn bioavailability for each replicate of test samples; 3) the Abductive
Method uses Graybill's Equation, based on theory and observation, to estimate CI's; and 4) the Sophistic
Method uses reverse regression, and calculates Zn bioavailability values directly from the equation. The
Counter-Intuitive Method only gives information about which standards the test samples are, or are not,
significantly different from respectively (average available Zn not predicted). The Intuitive Method ig-
nores error about the standard curve and theoretically cannot estimate the CI directly
(X±SEM ¼ 107.5 ± 15.8 mg Zn/kg). The Sophistic Method underestimates and overestimates the test
sample mean values above and below the mean of the standards, respectively (X ¼ 96.6 mg Zn/kg). The
Abductive Method has an advantage over the other methods: The mean prediction estimation is
consistent with theory (107.5 ± 6.1 mg Zn/kg; X±SEM). When test or “unknown” samples are near the
mean of the standard samples, the CI is smaller than when near the extremes of the calibration curve.
When calibration curve error is small (R2 > approximately 0.95), there is little advantage to using the
Abductive Method, but when calibration curve error is larger, as in many bioassays with growing ani-
mals, the Abductive Method improves the accuracy of the CI calculations. The Abductive Method was
used to demonstrate the influence of the number of replicate samples on experimental power and cost.
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1. Introduction

Progress in all of biology, and especially in many applied bio-
logical fields such as agriculture and nutrition, has been largely
dependent on progress in the fields of analytical chemistry and
experimental statistics. The application of analytical chemistry to
biology mainly uses a seemingly simple technique called the
standard curve, or calibration curve. The calibration curve tech-
nique starts with a series of samples of known composition (in-
dependent or predictor variable X). It compares test samples of
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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unknown composition (dependent variable, Y) to the standard
samples to estimate the composition of the test samples. The
calibration curve problem involves finding the variation or confi-
dence interval (CI) around the predicted composition of a test
sample's mean.

Interestingly, and perhaps the source of some confusion, cali-
bration (or standard) curve methodology is practically always
modeled as a straight line, not a curve. The levels of the property
being estimated in the unknown sample(s), are under the control of
the researcher (Kutner et al., 2005). The levels are chosen so that
the response being measured is linear, and linearity is checked. The
researcher chooses the extreme levels of X and spacing of inter-
mediate ones as well as the amount of replication at each level to
assure linearity. The unknown samples can be diluted or concen-
trated to fall as close to the center of the range of known samples as
possible (where the CI for the line is minimal). The estimated CI of
the unknown samples is used as a measure of quality control. If the
CI of any unknown sample exceeds some predetermined level, the
sample will be re-analyzed.

The calibration curve problem could probably be more appro-
priately called the calibration curve dilemma, because the literature
offers seemingly no one exact or perfect answer as to how to
calculate the confidence interval of the composition of the test
samples. It seemingly involves a sometimes difficult choice.
Eisenhart (1939) summarized the theory involved in choosing the
right mathematical method to evaluate regression data. He
emphasized the importance of understanding experimental design
and its purpose in choosing the correct statistical method. For
instance, when evaluating calibration curve studies with responses
(Yi's) dependent on different levels of input (Xp's), the relationship
to be evaluated should have the response as the (dependent) var-
iable, dependent on chosen levels of the independent variable (Yi ¼
b0 þ b1Xi), where bn are constants. A different mathematical

evaluation could be applied to doseeresponse trials where the
responses become the independent variable used to predict the
Fig. 1. Fitting of artificial XeY data showing fits to linear increments. The solid line is the co
for calibration curve problems with X ¼ g(Y).
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resulting appropriate dose (Xi ¼ b0 þ b1Yi). The resultant regres-
sion equations differ as shown in Fig. 1.

Eisenhart (1939) concluded in his paper: “Closer cooperation is
possible between the practical man and the statistical theorist
when the latter fully appreciates the problems of the former, and
when the former, in turn, understands the methods advocated by
the latter”. We believe closer cooperation is not only possible but
practically necessary to advance many areas of science.

Our goal is to bring clarity to the calibration curve situation by
considering the assumptions behind the methods suggested along
with comparisons. By so doing, the dilemma should disappear aswe
demonstrate what should be a straight-forward solution to the
problem. The example used to illustrate the appropriate method for
calculating means and confidence intervals from calibration curve
bioavailability data is froma trial to evaluate zinc (Zn) bioavailability
froma newchemical compound by broiler chickens. This papermay
serve as a bridge to help “the practical man and the statistical
theorist” (Eisenhart, 1939) understand each-other's perspectives.

1.1. Regression models

1.1.1. Standard model-predicting response Y0 for a given X0

Let us consider first the standard regression model. Suppose
there is one independent variable X (also called regression or pre-
dictor variable) and suppose the response variable is Y; general-
ization to p independent variables X1, …, Xp follows readily. We
have observations Yi, Xi (i ¼ 1, …, n). Then, the standard linear
regression model is the following:

Yi ¼ b0 þ b1Xi þ ei; (1)

where ei are independent error terms with E(ei) ¼ 0 and variance,
Var(ei) ¼ s2. For a given set of observations Yi, Xi (i ¼ 1, …, n), the
model parameters (b0, b1) can be estimated. The least squares es-
timators are
rrect fit for calibration curve problems with Y ¼ f(X). The dashed line is the incorrect fit
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bb1 ¼
Xn

i¼1
YiXi � nYXXn

i¼1
X2
i � nX

2 ¼
Xn

i¼1
ðYi � YÞðXi � XÞXn

i¼1
ðXi � XÞ2

;

bb0 ¼ Y � bb1X;

(2)

where Y ¼ P
i

Yi
n and X ¼ P

i

Xi
n are the sample means. Then, for each

Xi, the estimated predicted response is

bY i ¼ bb0 þ bb1Xi ði ¼ 1; :::; nÞ: (3)

From the squared residuals (SSE,
P
i
R2i where Ri ¼ Yi � bY i), an

estimate of the underlying variance s2 can be found, i.e.,

SSE ¼
Xn
i¼1

R2i ¼
Xn
i¼1

ðYi � bY iÞ2 ¼
Xn
i¼1

ðYi � bb0 � bb1XiÞ2

bs2 ¼ SSE=n� 2:

(4)

If it is assumed that the error ei (i¼ 1,…, n) are independent and
normally distributed, and hence the Yi (i¼ 1,…, n) are also normally
distributed, then the least square estimators of Eq. (2) are
maximum likelihood estimators. See any of the many elementary
text on regression models, e.g., Kleinbaum et al. (1988), Draper and
Smith (1981), Montgomery et al. (2001). Henceforth, we assume
the data (Yi's) are normally distributed; this assumption allows the
calculation of confidence intervals.

The estimated regression parameters and the estimated re-

sponses, i.e., bY i, bb0 and bb1, are random variables, because they are
functions of the responses Yi. Recall here that the independent
variables Xi are fixed values, i.e., they are not random variables, and
so do not have a distribution (unless we are dealing with structural
models which is quite different from the current situation). These

estimators are unbiased, in that, Eðbb0Þ ¼ b0, Eðbb1Þ ¼ b1 and EðbY ijXiÞ
¼ b0 þ b1Xi for given Xi. Note that these bY i values fall along the
regression line, for each respective Xi. The variances are the
following, respectively,

Varðbb0Þ¼
s2

n

" Pn
i¼1X

2
iPn

i¼1ðXi � bXÞ2
#
; Varðbb1Þ¼ s2

"Xn
i¼1

ðXi � XÞ2
#�1

:

(5)

Hence, the variance of the predicted response of an individual

observation bY jX ¼ X0, at a given X0 is the following:

VarðbY0Þ¼s2

"
1þ 1

n
þ ðX0 � XÞ2Pn

i¼1ðXi � bXÞ2
#1=2

: (6)

When the errors are normally distributed, bb0 and bb1 and hencebY 0 are normally distributed. Thus, the confidence intervals (CI) for
these predicted responses can be calculated from

CI¼ bY 0±tvbs
"
1þ 1

n
þ ðX0 � XÞ2Pn

i¼1ðXi � bXÞ2
#1=2

; (7)

where n ¼ n � 2 is the degree of freedom for the tn distribution andbs2 is the estimated error variance given in Eq. (4). If we want to
predict the average of k (say) responses at a given X0, then Eq. (7) is
replaced by
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CI¼ bY0±tvbs
"
1
k
þ 1
n
þ ðX0 � XÞ2Pn

i¼1ðXi � bXÞ2
#1=2

: (8)

Notice that as a given X0 moves away from the X, the variances
increase and hence the CIs curves diverge.
1.1.2. Calibration problem-what independent X0 gave known
responses Y0?

Many practical researchers will recognize that their standard
curve assay is a regression problem and apply a simple linear
model. The technique is called “Inverse prediction” by Kutner et al.
(2005). It can also be called the Intuitive (instinctive, untaught)
method. Animal nutritionists, analytical chemists and many other
scientists start by estimating b0 and b1 using ordinary least
squares methods. They understand that the responses are depen-
dent on the standards (predictor or independent variable). The
fitted equation is as follows:

Y ¼ bb0 þ bb1X: (9)

Then, to find that unknown X0 value for their Y0 value, Eq. (9) is
turned around, inverted, to obtain an estimated dependent valuebX0 as follows:

bX0 ¼ðY0 � bb0Þ=bb1: (10)

This approach was first suggested by Krutchkoff (1967).
Although Williams (1969) showed why this was not valid, its use
has unfortunately continued to recent times (e.g. Parker et al.,
2010). For each of the m replicate's responses, many practical re-
searchers then estimate a separate X0. Then they average the m

estimates of X0 to get the correct X. The bs2 is then calculated from

the m bX0 values, not the one in Eq. (4). The last step is to calculate
the CI as they always have with m observations to obtain

CI¼ cX0±tvbs.m1=2 (11)

as is illustrated by Fig. 2. More critically, this result Eq. (11) assumes

that VarðbX0Þ ¼ bs2�
m, which is clearly incorrect, as explained in

Section 1.3. This approach estimates a separate X0 for each of m
dependent responses Y. However, in contrast, the problem at hand
is that these m Y values occur for the same unknown X0 value
(Fig. 3).
1.2. Graybill's calibration method

Researchers may recognize that there is variation in both the
calibration curve and between replicate samples, and find an
abductive (based on theory and observation) calibration method.
One such method was described by Graybill (1976): Suppose now
that in addition to the observations Yi, Xi (i ¼ 1,…, n), of Section 1.1,
we have m responses Yi (i ¼ n þ 1, …, n þ m), for an unknown in-
dependent value X0. The model of Eq. (1) becomes

Yi ¼ b0 þ b1Xi þ ei; ði ¼ 1; :::;nÞ:
Yi ¼ b0 þ b1X0 þ ei; ði ¼ nþ 1; :::; nþmÞ: (12)

Then, the first n observations are used to find the estimators (bb0;bb1) as given in Eq. (2). The estimated value for the unknown X0,

provided that bb1s0, is



Fig. 2. Fitting of artificial XeY data showing fits to linear increments. The solid line is the correct fit for calibration curve problems with Y ¼ f(X). The arrows show how a distinct X is
found from responses from each replicate Y (unknown test sample replicates). Confidence intervals are calculated from the individual predicted values of X.

Fig. 3. Fitting of artificial XeY data showing fits to linear increments. The solid line is the correct fit for calibration curve problems with Y ¼ f(X). The dashed and dotted lines
represent the confidence interval for the line. The arrows show how one X value is found from responses from each replicate Y (unknown test sample). Confidence intervals are
calculated from Graybill's Abductive Method (Eq. (14)).
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bX0 ¼
Y0 � bb0 ¼ X þ Y0 � Y

; Y0 ¼ 1 Xnþm

Yi; (13)
bb1
bb1

m
i¼nþ1

which is the maximum likelihood estimator and is often referred to
as the classic estimator. The error variance s2 is now estimated bybs2
c (say) using all n þ m observations, i.e.,

bs2
c ¼

1
nþm� 3

"Xn
i¼n

ðYi � bb0 � bb1X1Þ2 þ
Xnþm

i¼nþ1

ðYi � bY0Þ2
#
:

(14)
297
Notice this differs from the estimated error variance bs2 of Eq. (4)
unless m ¼ 1 when the second term on the right-hand-side of Eq.
(14) is zero.

To calculate the CI around this estimated bX0 requires knowl-
edge of its distribution and (estimated) variance. However, from

Eq. (13), we see that bX0 is a function of the inverse of the nor-

mally distributed bb1 which inverse follows a Cauchy distribution
whose mean and variance do not exist. One solution to this
problem is to use the abductive method sometimes called



G.M. Pesti, L. Billard, S.-B. Wu et al. Animal Nutrition 10 (2022) 294e304
Graybill Calibration Method, e.g., Graybill (1961, 1976), also called
the Inverse Method. Other approaches have been proposed in the
literature, but unfortunately these can not be sustained theo-
retically, as we shall see.
1.3. Other approaches

Another approach offered in the literature (Krutchkoff, 1967;
Parker et al., 2010) is the Sophistic (plausible but fallacious)
Method, or Reverse Regression approach, based on a reverse
regression model, as in

Xi ¼b
ðrÞ
0 þ b

ðrÞ
1 Yi þ eðrÞi ; (15)

where now the superscripts (r) have been used to distinguish be-
tween the standard and reverse regression models. The estimators

of bðrÞ0 and b
ðrÞ
1 are

bbðrÞ
1 ¼

Xn

i¼1
YiXi � nYXXn

i¼1
Y2
i � nY

2 ¼
Xn

i¼1
ðYi � YÞðXi � XÞXn

i¼1
ðYi � YÞ2

;

bbðrÞ
0 ¼ X � bbðrÞ

1 Y :

(16)

Fig. 1 compares the dashed regression equation obtained when
fitting the model of Eq. (1), and the solid regression equation is
fitting the model of Eq. (15). For the standard regression model, the
least squared estimates of the parameters are found by minimizing

the sum of the squared Y residuals R2 ¼ ðbY i � YÞ2 corresponding to

the solid blue vertical distance between the Yi and bY i in Fig. 1;
whereas, for the reverse regressionmodel, the estimators are found
by minimizing the sum of the squared “reverse” X residualsP
i
ðRðrÞÞ2 ¼ P

i
ðXi � bXiÞ2 corresponding to the dotted horizontal

distances between the Xi and bXi in Fig. 1.
If we continue with this model approach, we would obtain an

estimate of the reverse error variance as

SSEðrÞ ¼
Xn
i¼1

�
RðrÞi

�2 ¼
Xn
i¼1

ðXi � bXiÞ2 ¼
Xn
i¼1

�
Xi � bbðrÞ

0 � bbðrÞ
1 Xi

�2
;

bs2bs2
ð2Þ ¼ SSEðrÞ

.
ðn� 2Þ:

(17)

There are difficulties with this approach. One is that in the
derivation of the parameter estimators of Eq. (16), there is an

apparent but spurious implicit assumption that the errors eðrÞi are
independent of the Yi values, which violates the original assump-
tion (that Y is the dependent variable). This implies that minimizing
the sum of the squared “reverse” residuals [R(r)]2 is meaningless
mathematically, because the Xi values have been pre-determined.
Another problem is the obvious fact that the reverse regression
equation is different from the real regression equation, as is evident
from Fig.1. Themodel assumptions apply to themodel of Eq. (1) but
not to themodel of Eq. (15). Further, if Eq. (15) is used to estimate an
unknown X0 value for given Y0 value in a bioassay, wewould obtain

bX ðrÞ
0 ¼ b

ðrÞ
0 þ b

ðrÞ
1 Y0: (18)

Thence, if we ignore for the moment the mathematical diffi-

culties, the CI for the estimated bX ðrÞ
0 would follow (analogous to Eq.

(7) but with X's and Y's reversed) as
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CI¼ bX ðrÞ
±tvbsðrÞ

"
1þ 1þ ðY0 � YÞ2P

#1=2
: (19)
0 n n

i¼1ðYi � bY Þ2
Eq. (19) cannot be appropriate for calibration curve bioassays

because bX ðrÞ
0 is not an appropriate estimate of the mean, X0, quite

apart from the mathematical difficulties discussed above.

Krutchkoff (1967) and Osborne (1991) refer to this bX ðrÞ
as an

inverse estimator of X0. Crucially, bX ðrÞ
0 sbX0 for the same Y0 value.

Furthermore, the CIs around these estimates are also different,
because the estimate of the underlying error variance is based on
the X residuals (R(r)) in the former and on the Y residuals (Ri) in the

latter. What is wanted is the expectation, bX0 of Eq. (13).
Advocates of this method for calibration curves point to the fact

that it is relatively easy to implement, and that the estimator bX ðrÞ
0

has a finite variance (compared to the infinite variance of bX0); even
there, this smaller (mean square error, based on the X residuals)
variance only holds when estimating X0 from a single Y0 value with
this unknown X0 being in a very narrow region around X and for
large samples, but not otherwise. Also, these advocates completely
overlook the fact that model assumptions are violated which has
the consequence that answers are invalid. The fact that the as-
sumptions are invalidated is hard to overlook; notice from Fig. 1:
Y ¼ f(X) and X ¼ g(Y) give different lines despite having identical
coefficients of variation. Furthermore, there is a large body of
literature harshly critical of using X ¼ g(Y), primarily because it has
no theoretical justification. In other words, using X¼ g(Y) cannot be
sustained particularly because of the violations of the basic model
assumptions (e.g. Williams, 1969; Berkson, 1969; Montgomery
et al., 2001).

To help unravel the confusing terminology, we observe that the

so-called classic estimator bX0 of Eq. (13) is calculated using the
calibration regression method (sometimes called the inverse

method) of model Eq. (1); whereas the inverse estimator bX ðrÞ
0 of Eq.

(18) is calculated from the reverse regression method using model
Eq. (15).
1.4. Calibration problemdwhat is the CI for X0 given known
responses Y0?

Let us return to the question of calculating a CI for the classic

estimate bX0 developed in Section 1.2. (the abductive method-
dbased on Graybill's Method). In particular, it is difficult to obtain

Var(bX0). However, Graybill (1976) has shown that the CI is given by

Xþ d1 � X0 � bX þ d2; (20)

where di (i ¼ 1, 2) are the roots of the quadratic equation,

d2
"bb2

1�
t2v bs2Pn

i¼1ðXi�XÞ2
�2dbb1ðY0�YÞþ

"
ðY0eYÞ2�t2v bs2

�
1
m
þ1
n

�#
¼0:

(21)

Montgomery et al. (2001) have the same CIs except they assume

just one observation at Y0 (i.e., m ¼ 1), so that bY 0 ¼ Y0 and the
degrees of freedom in the t-distribution are n ¼ n � 2; whereas,
Graybill (1976) has a more generalm observations from this X0 with
m � 1 and uses s2c of Eq. (14) and so n ¼ n þ m � 3.



Table 1
Diet composition of starter from d 0 to 14 (%, as-fed basis).

Ingredients Content Calculated nutrients Content

Wheat 56.10 ME, kcal/kg 3,000
Soybean meal (dehulled) 29.70 Crude protein 23.96
Canola meal 5.63 Crude fat 4.42
Rice bran 3.87 Crude fiber 3.18
Canola oil 2.00 d Arg 1.33
Limestone 1.17 d Lys 1.24
Dicalcium phosphate1 0.38 d Met 0.53
Sodium chloride 0.17 d M þ C 0.90
Sodium bicarbonate 0.12 Calcium 0.85
Mineral premix2 0.10 Phosphorus avail. 0.43
Vitamin premix3 0.09 Sodium 0.17
Choline chloride (60%) 0.06 Chloride 0.20
L-Lysine 0.20 Choline, mg/kg 1,600
D,L-Methionine 0.21 Linoleic, 18%:2% 1.32
L-Threonine 0.05
Xylanase 0.02
Phytase 0.01
Total 100

1 Dicalcium phosphate contained: phosphorus, 18%; calcium, 21%.
2 The Zn-free trace mineral concentrate supplied per kilogram of diet: Cu (sul-

fate), 16 mg; Fe (sulfate), 40mg; I (KI), 1.25mg; Se (Na selenate), 0.3 mg;Mn (sulfate
and oxide), 120 mg; cereal-based carrier, 128 mg; mineral oil, 3.75 mg.

3 Vitamin concentrate supplied per kilogram of diet: retinol, 12,000 IU; chole-
calciferol, 5,000 IU; tocopheryl acetate, 75 mg, menadione, 3 mg; thiamine, 3 mg;
riboflavin, 8mg; niacin, 55mg; pantothenate, 13mg; pyridoxine, 5mg; folate, 2mg;
cyanocobalamin, 16 mg; biotin, 200 mg; cereal-based carrier, 149 mg; mineral oil,
2.5 mg.
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By using the so-called delta method (Miller, 1991; Parker et al.,
2010; Casella and Berger, 2002) and abductive reasoning, an
approximation is given by

VarðbX0Þz
s2

b21

"
1
m

þ1
n
þ ðY0 � YÞ2
b21

Pn
i¼1ðXi � XÞ2

#
: (22)

Hence, the CI is approximately

bX0±tv
s2bb1

"
1
m

þ 1
n
þ ðY0 � YÞ2
b21

Pn
i¼1ðXi � XÞ2

#1=2
: (23)

This is called the Abductive Method.

1.5. Specific objectives

The analyses reported in this paper compare 4 statistical
methods of evaluating bioavailability experiments and estimate the
CI of a new source of zinc for growing broiler chickens: 1) the
Counter-Intuitive Method compares the various points on the
standard curve and test samples with a multiple range test (there is
no estimate of the mean or CI of the test sample, only what stan-
dards the test sample is not different from); 2) the Intuitive Method
uses Eq. (3) to determine the mean value of each test sample
replicate, and the CI is calculated from those values; and 3) Gray-
bill's Abductive Method uses Eq. (3) to estimate the mean
bioavailability value, and Eq. (21) to calculate the CI; 4) the mean
values from the Sophistic Reverse Regression Method in Eq. (18)
were calculated to show the magnitude of differences between
mean estimates under different circumstances.

2. Materials and methods

2.1. Animal ethics

All the experimental procedures applied in this study were
reviewed and approved by the University of New England Animal
Ethics Committee.

2.2. Birds and diets

A total of 784 Ross 308 male chicks at 1 d old were from a
commercial hatchery (Darwalla Poultry Distributors Pty Ltd., Red-
land, Queensland, Australia). Chicks were weighed and randomly
assigned to 7 dietary treatments, each replicated 7 times in floor
pens, with 16 chicks per replicate. Basal wheat-soybean meal diets
were formulated to meet or exceed the requirements for starter (0
to 14 d) (Table 1; Aviagen, 2019). The 7 dietary treatments consisted
of the following: 1) a positive control diet (PC) with 50 mg/kg Zn as
ZnO and 50mg/kg Zn as ZnSO4, 2) a negative control basal diet (NC)
without any added Zn, and 3) to 7) 5 diets supplemented in basal
diet with 20, 40, 60, 80 or 100 mg/kg of supplemental Zn as zinc
hydroxychloride (Selko IntelliBond Zn, Trouw Nutrition,
Netherlands).

On d 14, 3 birds per replicate were each given (gavage) 1 mL of
fluorescein isothiocyanate-dextran solution (FITC-d) (100 mg MW
4000, Sigma Aldrich Co., Castle Hill, NSW, Australia). At 2.5 h after
inoculation, the birds were stunned and decapitated. Right tibias
were collected. All soft tissues and cartilage were removed before
drying in an oven for 24 h at 105 �C (Qualtex Universal Series 2000,
Watson Victor Ltd., Perth, Australia). The dried tibias were then
ashed in a Carbolite CWF 1200 chamber furnace (Carbolite, Shef-
field, UK). The ashing started at 300 �C and increased to 600 �C in
the first hour. Samples were in the oven for a total of 6 h. The
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mineral contents of the tibia ash and diet samples were determined
by inductively coupled plasma-optical emission spectrometer (ICP-
OES) (Agilent, Mulgrave, Victoria, Australia). Briefly, 0.1 g sub-
samples were weighed in Teflon tubes (Milestone, Sorisole, Italy)
and then subjected to digestion in 1 mL distilled water and 4 mL
concentrated HCl (70%) in an Ultrawave Microwave Digestion sys-
tem (Milestone, Sorisole, Italy) for 45 min. The solution was cooled
to room temperature and quantitatively transferred into a 30-mL
volumetric flask. The solution was made to 25 mL total volume
with distilled water and mixed well for analysis of trace mineral
concentration by the ICP-OES instrument.

2.3. Statistical analyses

One-way ANOVA and Duncan's New Multiple Range Test were
performed using SAS (SAS 9.4, Carey, N.C. 2008) with the following
statements:

Data a; input Tibia Zn Treatment;
Datalines;
(…data lines…)
Proc glm; Class Treatment; model Tibia Zn ¼ Treatment; means
Treatment/Duncan; run;

The remainder of the calculations were made using MicroSoft
Excel for Mac Version 16.45 (Microsoft Corporation, Redmond WA
USA). An Excel workbook, the Calculation Curve Confidence
Calculator (CCCC.xlsx) is available from the authors.

2.4. Experimental power calculations

Them and n terms of Eq. (21) were varied together to predict the
expected standard error of the meanwhen using different numbers
of replicates for 6 levels of the calibration curve and one unknown
test sample. Total costs were based on experiments conducted in
Australia in 2020 and included housing costs at $1.28/pen per day,
chick costs at $3.33/chick, feed costs at $0.86/chick, bedding costa



G.M. Pesti, L. Billard, S.-B. Wu et al. Animal Nutrition 10 (2022) 294e304
at $5.60/pen, labor at $11.70/pen, transportation at $229/experi-
ment and miscellaneous at $103/experiment (gloves, containers,
laundry), tibia analyses at $6.00/sample and 3 samples/pen, and
$6.00/diet.
3. Results

The Counter-Intuitive Method results showed that the Test
Sample results were not different from Standard Sample results
from 51 to 136 mg/kg of diet (Table 2). The Intuitive and Abductive
methods estimated the samemean Zn value for this sample, but the
CI for the Abductive method was much smaller (Table 3). The mean
estimate using the Sophistic Method was less than the others,
because this Test Sample had responses above the average for the
Zn levels in the calibration curve (Table 3, Fig. 4). The CI for the
calibration curve was smallest at the average standard level,
resulting in different SD's of the predicted values using the
Abductive Method (Fig. 5), but not the methods.

When the test sample values were adjusted (by adding the same
value to each replicate) to have the same mean response as the
average of the Zn standards, the predicted Zn values were identical
for the Intuitive and Abductive methods (83.859; Table 4). This is
the single point where the calibration curves cross (Figs. 1 and 4).
When the test sample values were adjusted to have the same mean
response as the upper extreme of the Zn standards (worst case
scenario), the SEM of the test sample by the Abductive Method
increased compared to the best case scenario (6.764 versus 5.926),
but was still much smaller than for the Intuitive Method (6.764
versus 17.009; Table 4). Descriptive statistics not dependent on the
SD of the test sample were the same for the best case scenario
(average test sample response at mean of the Zn Standards) versus
worst case scenario (average test sample response at the extreme of
the Zn Standards) for Intuitive and Abductive Methods.

The experimental power estimations showed different re-
sponses if the samples were centered in the calibration curve or at
the ends of the standard curve (Table 5). The SDs and SEMs
exhibited a diminishing returns function to increasing number of
replicates: Adding one to the number of test sample replicates from
2 to 3 decreased the SEM from 28.82 to 17.61 (D¼ 11.21), increasing
replicates from 3 to 4 decreased the SEM from 17.61 to 13.10
(D ¼ 4.51), etc.
4. Discussion

4.1. Statistical theorist perspective

The Intuitive Method which gives Eq. (11) and the Sophistic
Reverse Regression Method which gives Eq. (19) are used exten-
sively in scientific practice. However, these are mathematically and
statistically incorrect. No amount of scientific usage, no matter how
extensive that usage might be, can ever justify the use of inaccu-
rate/incorrect results. The underlying assumptions of the
Table 2
One-way analysis of variance for the standard curve and an unknown zinc content test s

Dietary zinc Mean tibia zinc Standard devia

32 367.0 13.2
51 427.8 20.4
74 425.5 13.0
97 435.4 11.1
114 431.8 15.0
136 450.1 15.4
Test sample 437.0 24.8

1 Duncan's New Multiple Range Test (P < 0.05).
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experiment itself dictate how the predicted responses and model
parameters (b0, b1, s2) are to be estimated. These values in turn

mathematically dictate how to estimate a response bY 0 for a given
X0, or how to estimate an unknown X0 for m given responses Y0 at
that X0. These allow for the derivation of the relevant variances and
hence the CIs. For the particular problem motivating the present
work, there are m dependent values for which the single inde-
pendent X0 value is unknown. Therefore, the CI is given by Eq. (23).

4.1.1. The importance of applying the right theoretical math to each
problem?

Calibration curve experiments should be designed with the
premise that the responses of the unknown test samples are
dependent on levels of the independent predictor variable (that is
known to be without error). If the values of X have error then it is a
different problem and neither line in Fig. 1 is appropriate to use
(Tellinghuisen, 2010). Improved methods of fitting regressions to
data with variation in both X and Y have been developed
(Tellinghuisen, 2010) and may prove helpful for estimating CI's in
the future for certain types of regression problems.

4.1.2. To minimally understand the methods advocated by the
statistical theorist

There are 2 fundamental mathematical/statistical concepts that
the practical researcher needs to firmly grasp to apply the proper
analyses to any research outcome. The first concept is the difference
between continuous and discrete variables. When dealing with
calibration curves, there is no need to test if any test sample is
different from any of the standard samples as is done with discrete
variables and one-way ANOVA. The standard curve should be in a
linear range of X and Y and each level of X results in a different level
of Y (extensions to non-linear models) should follow the same
principles. There is simply no need to determine if Y1 is significantly
different from Y2, their difference is an assumption of regression.
The second concept is that the predictor, or independent variable
(the standards), is assumed to be without error. Only the response
variables have error as in any standard regression model (see
Analytical Methods Committee (2006) for clarifying examples).

4.2. Practical researcher perspective

Practical researchers will apply the most familiar statistical
models to their data that they understand. They commonly apply
analysis of variance and mean separation techniques to their
experimental datawhen comparing the responses to various inputs
like environmental qualities including dietary nutrient levels, ge-
netic differences, and so on. When faced with a calibration curve
problem, some naturallywant to apply some form ofmultiple range
testing to see which standards and unknown test samples are not
significantly different. When bar graphs are used to represent the
standard curve with individual CI's on each bar, it is clear that the
practical researcher views the appropriate model to be a one-way
ample for estimating the zinc contents of broiler chicken feed (mg/kg).

tion Standard error Duncan grouping1

5.0 c
7.7 b
4.9 b
4.2 ab
5.7 ab
5.8 a
9.4 ab



Table 3
The descriptive statistics for the amount of zinc in a test sample estimated by 4 different statistical methods (mg/kg).

Method Characterization Upper 95% CL Mean Lower 95% CL Confidence interval SD SEM

Counter-Intuitive Multiple Range Test ? ? ? >32 ? ?
Intuitive Classic Regression & Inverse Prediction 191.67 107.47 23.26 168.41 41.66 15.75
Sophistic Reverse Regression & Direct Prediction ? 96.02 ? ? ? ?
Abductive Graybill's Equation 137.71 107.47 77.23 60.48 14.96 6.11

CL ¼ confidence limit; SD ¼ standard deviation; SEM ¼ standard error of the mean.
Question marks indicate the values are unknowable because they are not defined in the models by which they appear.

Fig. 4. Tibia zinc standard curve from feeding 6 levels of Zn with the Ordinary Least Squares fits of Y ¼ b1 X þ b0 in Eq. (1) and X ¼ b1 Y þ b0 in Eq. (15).

Fig. 5. Tibia zinc standard curve from feeding 6 levels of Zn with the Ordinary Least Squares fit of Y ¼ b1 X þ b0 and 95% confidence limits (CL).
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ANOVA. Unfortunately, this approach yields measures of neither
the mean bioavailability nor its CI. Although they know that they
would like to determine a value for their unknown test samples,
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their primary tool is often a multiple range test and they apply it
universally. For the example in Table 2, all the analyst can deter-
mine is that the test sample contains more than 32 mg Zn/kg.



Table 4
Descriptive statistics for 3 methods of interpreting bioavailability data from calibration curve experiments.1

Parameter Symbol/formula Best case scenario Worst case scenario

Intuitive Abductive Intuitive Abductive

Calibration (standard) curve b1 0.5951 0.5951 0.5951 0.5951
b0 373.03 373.03 373.03 373.03
R2 0.5152 0.5152 0.5152 0.5152

Test sample replicates nu 7 7 7 7
Mean test sample response y0 422.93 422.93 453.92 453.92
Predicted test sample Zn x0 83.859 83.859 135.931 135.931
SD of x0 sx0 41.664 14.516 41.664 16.568
CV (sx0/x0) � 100 49.683 17.310 30.651 12.189
SEM of x0 sx0/(nu � 1)�2 17.009 5.926 17.009 6.764
SD about regression sx/y 21.161 21.161 21.161 21.161
SD of calibration slope sb1 0.0913 0.0913 0.0913 0.0913
SD of calibration intercept sb0 8.3219 8.3219 8.3219 8.3219
LOD 3sx/y/b1 106.67 106.67 106.67 106.67
LOQ 10sx/y/b1 355.58 355.58 355.58 355.58

SD ¼ standard deviation; CV ¼ coefficient of variation; SEM ¼ standard error of the mean; LOD ¼ lower limit of detection; LOQ ¼ lower limit of quantification.
1 For the best case scenario, the average test sample responses were at the center of the standard curve. For the worst case scenario, the average test sample responses were

at the upper extreme of the calibration curve.

Table 5
Power analysis showing how increasing the number of test sample replicates is expected to influence variations in the estimated level of zinc in feed from tibia zinc.1

Number of sample replicates Centered results (best-case scenario) Ends of range results (worst-case scenario)

Standard deviation Standard error Standard deviation Standard error

1 36.16 38.25
2 25.99 25.99 28.82 28.82
3 21.56 15.24 24.90 17.61
4 18.96 10.94 22.68 13.10
5 17.21 8.60 21.24 10.62
6 15.94 7.13 20.23 9.05
7 14.96 6.11 19.47 7.95
8 14.19 5.36 18.88 7.14
9 13.55 4.79 18.41 6.51
10 13.03 4.34 18.02 6.01
11 12.58 3.98 17.70 5.60
12 12.19 3.68 17.43 5.26

1 Centered results fall in the middle of the standard curve zinc levels. End of range results fall at the extremes of the standard curve zinc levels.

G.M. Pesti, L. Billard, S.-B. Wu et al. Animal Nutrition 10 (2022) 294e304
Multiple range test results are not helpful in finding a relative
bioavailability value, so the technique is really counter-intuitive
(Table 2).

Practical researchers, especially in biological fields (as opposed
to chemistry) may not be aware of theoretical problems with the
Intuitive Method (Figs. 1 and 2 versus 3). Grabill's abductive
method of estimating CIs in Eq. (23) is superior to the others,
because it is theoretically sound, and considers both the error in the
standard calibration curve and the different replicates of the un-
known test sample (Fig. 3). The 2 important features of Graybill's
equation in Eq. (23) are that: 1) the mean is predicted from the
appropriate equation; and 2) that test samples near the average of
the standard X values will have the smallest CIs, because that is
where there is the most confidence in the calibration curve (Figs. 3
and 5), and conversely.

The method of Graybill has achieved general acceptance, as
evidenced by the Royal Society of Chemists Technical Brief 22
(Thompson, 2006), and is commonly taught to analytical chem-
istry students (Harvey, 2019). The important question is “How
often is this equation used in and outside of analytical chemistry?”
There are excellent web resources explaining the use of Graybill's
method on the internet (Prichard and Barwick, 2003). Multiple
estimates of X0 likely leave practical researchers to apply the
simple statistics that they understand and regularly use the
incorrect Eq. (11) and not the more appropriate abductive method
correct Eq. (23).
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Refereed journals do not generally require methods of calcu-
lating simple statistics like the CI to be reported. It cannot be known
how often Eq. (23) is applied to calibration curve problems in
biology and agriculture. Our experience is that neither Graybill's,
nor any other, abductive method, is routinely taught to students
outside of analytical chemistry classes. We suspect that the
appropriate methods have rarely been applied to biological and
agricultural calibration curve problems. The obvious, potentially
large exception, is when practical researchers derive standard
curves and unknown test samples from automated laboratory
equipment that uses Graybill's method without the user even
knowing it.

The CI's from the Sophistic, or reverse regression, method are
not presented, because they are not appropriate for calibration
curve bioassays. There continues to be interest in using the So-
phistic method, finding X as a function of Y in Eq. (18) for calibration
curve problems (Krutchkoff, 1967; Parker et al., 2010; Demidenko
et al., 2013; Watters and LaMotte, 2020) despite compelling rea-
sons why it is not appropriate (Eisenhart, 1939). Evaluating simu-
lations not consistent with theory is irrational. From the very
beginning of simulations seemingly supporting alternative ap-
proaches to the calibration curve dilemma, Krutchkoff (1967)
should have questioned his simulations or explained what was
wrong with current theory (Eisenhart, 1939). Instead, he advocated
using a method contrary to the idea that Y should be dependent on
X. If the purpose of an experiment is to estimate some property of
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test samples by comparing them to responses of known quantities,
the X's, then Eqs. (1) and (23) are the appropriate ones to use to
determine means and CI's of the quantity Y. That is, the solid line in
Fig. 1 is the correct one to use to estimate the amount of X in the
unknown test sample Y.

When estimates of the test sample compositions' variation are
desired, the reverse regression or Sophistic Method is still often
considered (Halperin, 1970; Kannan et al., 2007; Parker et al., 2010;
Demidenko et al., 2013; Watters and LaMotte, 2020). Parker et al.
(2010) concluded from a series of simulations that both Intuitive
and Sophistic methods have bias. When the R2 of the Y ¼ f(X) and
X ¼ f(Y) regressions are very high, there is little difference in pre-
dictions, and mean estimates are very similar, or practically indis-
tinguishable, but still different except for one point, the intersection
of the red and blue lines in Fig.1. For many applications in analytical
chemistry, the calibration curve has little associated error making
discrimination between simulation methods very difficult. How-
ever, when R2 values are lower, as in Figs. 4 and 5 and Tables 3 and
4, the predicted means will be clearly different. The predicted CI is
for any method not accurately predicting the mean, because
incorrect methods/models were used, are irrelevant.

The origin of misunderstanding of the relationship of Y ¼ f(X)
and X ¼ g(Y) may be introductory texts that inadequately explain
the fitting of linear equations. The excellent text of Kutner et al.
(2005) explains and “proves” the Gauss-Markov theorem: “Under
the conditions of regression model (1.1), the least squares estimators b0
and b1 in (1.10) are unbiased, and have minimum variance among all
unbiased linear estimators”. This relationship can be proven, but
only when the R2 ¼ 1, a condition never achieved when dealing
with biological systems. This misconception naturally leads re-
searchers to assume that Y ¼ f(X) and X ¼ g(Y) will give identical
results, which they actually do not (Fig. 1).

Using the Intuitive Method has a drawback: the curve itself is
correct and the average X0 is predicted correctly. Near the average
of the range of standards, where the lines cross in Fig. 1, the CI will
be over estimated, but near the extremes of the standard levels the
CI will be underestimated (Tables 3 and 4). Nonetheless, the results
do not appear unreasonable to most researchers, and the method is
rarely questioned beyond analytical chemistry. The variation in the
Fig. 6. Predicted experimental power from expected SEM of one unknown test sample (solid
costs of the experiment (dashed line).
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results (X0's) is highly proportional to the variation in the responses
(Y0's) for most assays with relatively high R2 values, so the results
appear reasonable, even if theoretically unsustainable.

Abductive methods are the only ones to approximate different
CI's for the calibration curve at different levels of X, the true situ-
ation. They should therefore be the most appropriate to use
(Table 3). The regression parameter estimates are exactly the same
for the Intuitive and Abductive Methods, as are the average pre-
dicted test sample Zn values. The observed variation (SD's) from the
Abductive Method are only about 1/3 of those from the Intuitive
Method for the worst case scenario. This demonstrates that re-
searchers using the Intuitive Methods are overestimating the
variation in their results. The degree of overestimation depends on
the error in the standard curve. When the R2 is 1.000, the difference
in the predictions is zero.

4.3. Power analysis

Power analysis is usually associated with hypothesis testing
(Berndtson, 1991; Dem�etrio et al., 2013; Shim and Pesti, 2014). It is
an estimate of the number of replicate observations of each treat-
ment that are necessary to find a specified mean difference at some
probability b (usually 0.80), if there truly is a difference between
treatments. Experimental power for the calibration curve problem
is different, because hypothesis testing is not the objective. The
objective is only to find the mean and CI of some property of an
unknown test sample. The importance of having a small CI depends
on the value of the property being quantitated.

Experimental power for the calibration curve problems is
complicated, because the CI for X0 will have different ranges
depending on the value estimated for X0. If the value of an un-
known test sample X0 is at the average of the standard values
making up calibration curve, it will have the smallest CI (best case
scenario). If the value of X0 is nearer the extremes of the calibration
curve, the CI will be wider (worst case scenario).

The starting point to estimate the CIs for different numbers of
replicates for a future experiment is Eq. (23) with the estimated s2;

b0; b1; etc. from a previous experiment. Then the values of n and m
can be varied to produce the dashed line in Fig. 6. For the Zn
line) conducted with different numbers of experimental observations versus the total
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bioavailability example (Table 4), the SD of worst case scenario is
only about 6% greater than the best case scenario with one test
sample replicate (38.25 versus 36.16), but almost 43% greater with
12 test sample replicates (5.25 versus 3.68; Table 4). Using the
worst case scenario for experimental power considerations for
calibration curves should result in smaller than expected CI's,
because all the unknown test samples should have values closer to
average of the standards (the best case scenario).

Research designers must decide on the best use of resources in
determining the number of replicates (Fig. 6). There is no number of
replicates that give the best or optimum level of confidence in the
results. A value judgment must be made to balance expenses with
expected outcomes. Increasing replication from 2 to 4 pens per
standard level and test sample results in a much greater decrease in
the expected SEM than increasing from 8 to 10 replicates per
standard level and sample. For calibration curve experiments when
relatively low R2 values are expected, using the worst case scenario
to determine replication needs should help prevent disappoint-
ment (and repeatability problems) in research results. Power ana-
lyses add some level of objectivity to experimental planning since
costs versus expected outcomes can be quantified. The researcher
must still balance expenses with needed outcomes (e.g. the ability
to provide enough of the quantity being measured). Cost and
benefit analyses can be greatly improved by choosing the correct
method to predict outcomes.

5. Conclusions

Using Graybill's Abductive Method for calculating confidence
intervals in calibration curve experiments is prudent, based on: 1)
its adherence to the underlying assumptions of the experimental
situation and hence to proper statistical theory; and 2) its ability to
predict accurately sample error along the calibration curve. There
are clear reasons not to use the Counter-intuitive, Intuitive, or So-
phistic methods, not least because they are mathematically and
therefore scientifically incorrect. Graybill's method (Eq. (23)) is
scientifically sound and has wide acceptance among analytical
chemists. It should be even more helpful to biologists who often
deal with higher levels of variation in their experiments than do
chemists. With modern computers practically ubiquitous, there is
no extra effort (programming) involved in using Graybill's Abduc-
tive Method. Practical researchers need not understand the finer
points of mathematical theory, any more than mathematical the-
orists need appreciate the finer points of biologists' practical
problems. It is important for the 2 groups to learn some funda-
mental aspects of each other's discipline to have meaningful
communication.
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