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ABSTRACT Here, we report the draft genome sequence of a new Pseudomonas
saudiphocaensis strain, AGROB56, with lipolytic potential, isolated from a sheep
dairy farm in New Zealand. The genome is 3.61 Mbp, with a GC content of 61.1%,
and the genome sequence was found closely related to Pseudomonas saudipho-
caensis 20 BNT.

P seudomonas species are ubiquitously found in environments, from soil to humans
and plants (1–5). This genus was first proposed in 1894 and so far consists of

around 254 species (6). They are Gram-negative bacteria, usually aerobic, but can be
facultative anaerobes (7–9). While some Pseudomonas species can be associated with
pathogenicity, some species have been applied as bioremediation agents (5, 10–14),
and some are known for their dairy spoilage potential, such as Pseudomonas fragi, P.
lundensis, and P. fluorescens (15, 16).

A new species of Pseudomonas, P. saudiphocaensis (type strain 20 BN), was isolated
in 2012 from air samples in the city environment of Makkah, Saudi Arabia. As yet, lim-
ited information is available on this strain, including any beneficial or pathogenic traits
(17).

Here, we report the whole-genome sequence of a new Pseudomonas saudipho-
caensis strain, AGROB56, that was isolated from woodchip bedding samples from a
sheep dairy farm in North Island of New Zealand. The new strain showed lipolytic ac-
tivity, indicating it to be a food spoilage bacterium. The sequences obtained will be
used to compare genomic data of the new strain to those of the type strain available.

Samples were processed using the methodology, with slight modifications, described
previously by Gupta and Brightwell (18). Briefly, woodchip bedding material (25 g) was
weighed in a stomacher bag, suspended in 100ml of phosphate buffer (PB), and ho-
mogenized well using a stomacher. The suspension was centrifuged at 3,466� g for
1 h, and the pellet was resuspended in 25ml of PB. One milliliter of the suspension
was serially diluted, plated onto cetrimide-fucidin-cephalosporin (CFC) agar plates,
and incubated at 25°C (Fort Richard, New Zealand) to isolate Pseudomonas strain
AGROB56 (19). Lipolytic activity was preliminarily investigated by visualizing a fluo-
rescent halo, under UV light, around the colony grown for 48 h at 25°C on rhodamine
B plates (20). The new strain was found to be lipolytic, indicating a potential food/
dairy spoilage bacterium. Genomic DNA from the pure culture grown in tryptic soy
broth at 25°C was extracted using the phenol-chloroform extraction method (21).
Quality and concentration of DNA were determined using a Qubit 2.0 fluorometer
(Thermo Fisher Scientific, USA).

The whole genome of Pseudomonas species strain AGROB56 was prepared via
the NuGEN Celero DNA enzymatic library and sequenced using the Illumina MiSeq
sequencing platform version 3 (Massey Genome Services, Palmerston North, New
Zealand) to produce 628,743 paired-end reads of 301 base pairs, giving a coverage
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of 104-fold. The reads were quality trimmed, filtered, and assembled via A5-miseq
pipeline version 20160825 with default settings (22). The assembly produced 20
contigs with a total genome size of 3.6 Mb, an N50 value of 481 kb, and a GC content
of 61.1%. A BUSCO version 3.0.2 (23) test using the bacterial reference produced a
completeness score of 99.3%.

Comparative genomic analysis was performed with the genome sequences of the
new strain and Pseudomonas saudiphocaensis 20 BNT using in silico DNA-DNA hybrid-
ization (dDDH) via the type (strain) genome server (TYGS; https://tygs.dsmz.de/) (24). A
dDDH (d6) value of 92.8% was obtained, indicating the same species but with probable
differences at strain level. Further studies are required to investigate these differences.
A two-way average nucleotide identity test (http://enve-omics.ce.gatech.edu/ani/) was
carried out as well, producing a 98% value matching with Pseudomonas saudiphocaen-
sis 20 BNT (25).

As part of the submission process, NCBI annotated the genomic scaffolds with
PGAP version 4.13 (26), resulting in 3,396 genes being annotated in total.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number JADDOO000000000. The version described
in this paper is the first version, JADDOO010000000. The raw sequencing data have
been deposited at the SRA under BioProject accession number PRJNA670249.
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