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Abstract

Motivational influences on cognitive control play an important role in shaping human

behavior. Cognitive facilitation through motivators such as prospective reward or

punishment is thought to depend on regions from the dopaminergic mesocortical

network, primarily the ventral tegmental area (VTA), inferior frontal junction (IFJ), and

anterior cingulate cortex (ACC). However, how interactions between these regions

relate to motivated control remains elusive. In the present functional magnetic reso-

nance imaging study, we used dynamic causal modeling (DCM) to investigate effec-

tive connectivity between left IFJ, ACC, and VTA in a task-switching paradigm

comprising three distinct motivational conditions (prospective monetary reward or

punishment and a control condition). We found that while prospective punishment

significantly facilitated switching between tasks on a behavioral level, interactions

between IFJ, ACC, and VTA were characterized by modulations through prospective

reward but not punishment. Our DCM results show that IFJ and VTA modulate ACC

activity in parallel rather than by interaction to serve task demands in reward-based

cognitive control. Our findings further demonstrate that prospective reward and pun-

ishment differentially affect neural control mechanisms to initiate decision-making.
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1 | INTRODUCTION

Every action we take in our daily lives has potential consequences, which

we perceive as either positive or negative. These consequences shape

our future behavior substantially and fuel our motivation to make deci-

sions that lead toward desirable outcomes, such as the receipt of

rewards, and also the avoidance of punishments. Importantly, heightened

motivation facilitates executive functioning (for review, see Botvinick &

Braver, 2015). An illustrative example is the enhancing effect of mone-

tary incentives (i.e., potential gain or loss) on the performance in

cognitive tasks (Boehler, Schevernels, Hopf, Stoppel, & Krebs, 2014;

Engelmann & Pessoa, 2014; Etzel, Cole, Zacks, Kay, & Braver, 2015;

Guitart-Masip et al., 2012; Padmala & Pessoa, 2011; Tricomi, Delgado, &

Fiez, 2004; Wächter, Lungu, Liu, Willingham, & Ashe, 2009). Krebs,

Boehler, and Woldorff (2010), for instance, could show that

performance-contingent monetary reward improved cognitive control

such that participants named the color of a Stroop stimulus faster and

more accurately in prospective-reward compared to no-reward trials.

On a neural level, the beneficial effect of motivation on executive

control seems to depend on communication between structures
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within the dopaminergic system (Cools, 2008). Particularly, the ante-

rior cingulate cortex (ACC), inferior frontal junction (IFJ), and ventral

tegmental area (VTA) located in the midbrain have been suggested as

instrumental in the integration of cognitive control and motivation

(Aarts et al., 2010; Aarts, van Holstein, & Cools, 2011; Bahlmann,

Aarts, & D'Esposito, 2015; Parro, Dixon, & Christoff, 2017;

Westbrook & Braver, 2016).

The ACC takes the center stage in this setting (Shenhav, Cohen, &

Botvinick, 2016) and has consistently been associated with interactions

between motivation and control. In particular, it is thought to serve as

an integrative node, where input from other areas signaling the pros-

pect of reward or punishment on the one hand and the need for

enhanced control on the other hand is combined (Fujiwara, Tobler,

Taira, Iijima, & Tsutsui, 2009; Kahnt, Grueschow, Speck, &

Haynes, 2011; Mansouri, Egner, & Buckley, 2017; Vassena et al., 2014;

Wallis & Kennerley, 2011). According to the “expected value of con-

trol” theory (Shenhav, Botvinick, & Cohen, 2013), the ACC assesses the

estimated benefit and cost to expend cognitive effort and appropriates

control correspondingly. This account is substantiated by studies linking

ACC activity with both anticipated effort and anticipated reward

(Croxson, Walton, O'Reilly, Behrens, & Rushworth, 2009; Prévost, Pes-

siglione, Météreau, Cléry-Melin, & Dreher, 2010).

Besides the ACC, the VTA as a source of dopaminergic

neuromodulation in goal-directed behaviors is assumed to play a pivotal

role in the interaction between cognitive control and motivation

(Arias-Carri�on, Stamelou, Murillo-Rodríguez, Menéndez-Gonz�alez, &

Pöppel, 2010; Beier et al., 2015; Zellner & Ranaldi, 2010). For instance,

dopamine (DA) is key in implementing the influence of incentives on

executive control (Aarts et al., 2010; Adcock, Thangavel, Whitfield-

Gabrieli, Knutson, & Gabrieli, 2006). Activations of the VTA have been

associated with cognitive flexibility as well as both reward and punish-

ment motivation (Carter, MacInnes, Huettel, & Adcock, 2009;

D'Ardenne, McClure, Nystrom, & Cohen, 2008; Guitart-Masip

et al., 2012). Of particular interest in this context are DA projections

from VTA to the lateral prefrontal cortex (lPFC) via the mesocortical

pathway, which are thought to be essential in constituting cognitive

function (Durstewitz & Seamans, 2008; Goldman-Rakic, 1992). Like-

wise, VTA projects to the ACC and is assumed to thereby contribute to

reward-based cognitive processing (Haber & Knutson, 2010; Hauser,

Eldar, & Dolan, 2017; Köhler, Bär, & Wagner, 2016).

Alongside ACC and VTA, the IFJ, a subregion of the lPFC, recently

has come into focus as a critical neural substrate in the integration of

control demands and potential outcomes. Numerous studies have

demonstrated IFJ activation during reward-based executive control

(see Parro et al., 2017 for a meta-analysis). Modulations in effective

connectivity from IFJ to ACC have been associated with changes in

cognitive demand (Harding, Yücel, Harrison, Pantelis, & Breakspear,

2015; Hinault, Larcher, Zazubovits, Gotman, & Dagher, 2019). Evi-

dence further suggests that the IFJ is closely linked to the dopaminer-

gic system (Stelzel, Basten, Montag, Reuter, & Fiebach, 2010; Stelzel,

Fiebach, Cools, Tafazoli, & D'Esposito, 2013) and serves task demands

by selectively engaging brain regions related to control (Asplund,

Todd, Snyder, & Marois, 2010; Baldauf & Desimone, 2014;

Kim, 2014) and motivation (Paschke et al., 2015). In addition, func-

tional connectivity between IFJ and midbrain has been found to corre-

late with the individual enhancing effect of reward on cognitive

performance (Bahlmann et al., 2015).

All three regions—IFJ, VTA, and ACC—therefore appear to be

interconnected and involved in the interplay between motivation and

cognitive control. While the body of evidence suggests that both IFJ

and VTA direct ACC activity in motivation-based executive function-

ing, the exact pathways and in particular the direction of connectivity

between IFJ and VTA remains unclear. In an initial study using trans-

cranial magnetic stimulation, we could show that the left IFJ is caus-

ally involved in reward-related cognitive facilitation and suggest that

this effect may be realized via modulation of the dopaminergic net-

work (Hippmann et al., 2019). Likewise, previous evidence suggests

that the lPFC initiates motivated behavior by influencing VTA activity

in anticipation of reward (Ballard et al., 2011). These findings, there-

fore, support the notion that the lPFC, and particularly the IFJ, exerts

control over VTA and ACC to shape motivated cognitive control.

However, an alternative possibility is that interactions between moti-

vation and control are rooted in DA projections from VTA to the lPFC,

essential positing an influence in the opposite direction. For instance,

DA levels in the lPFC have been associated with cognitive control and

attention (Durstewitz & Seamans, 2008; Vijayraghavan, Wang,

Birnbaum, Williams, & Arnsten, 2007).

Another unsolved issue concerns potential differences in neural

processing between two main motivational goals: pursuing reward

and avoiding punishment. Even though activations in the aforemen-

tioned regions have been associated with both processes, it is unclear

whether they act via the same neural mechanism to produce cognitive

performance increments. Some researchers argue in favor of a com-

mon mechanism (Xue et al., 2013), while others support the idea of

opponent systems for reward and punishment (Palminteri &

Pessiglione, 2017; Wächter et al., 2009).

The goal of the present study, therefore, was to discern these

possibilities by means of dynamic causal modeling (DCM) within a

proposed network of ACC, IFJ, and VTA considering both, reward-

and punishment-driven influences on cognitive control. Even though

DCM has been criticized in terms of biophysical realism (Daunizeau,

David, & Stephan, 2011), it serves as a valuable tool to observe infor-

mation flow between critical structures as it allows to make inferences

about the strength and directionality of connections between regions

of interest (Friston, Harrison, & Penny, 2003).

We designed a functional magnetic resonance imaging (fMRI)

study using a task-switching paradigm that included motivational

manipulations through monetary incentives. Participants either

switched between or repeated two competing tasks (i.e., numbers

were judged either by parity or magnitude). These tasks were embed-

ded in two motivational conditions, in which participants received

performance-contingent monetary reward or punishment, and a neu-

tral condition without monetary incentives. We expected that

switching (compared to repeating) tasks would be facilitated through

both prospective reward and prospective punishment. Based on the

evidence outlined above, we hypothesized that both IFJ and VTA
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would exert control over ACC activity and that these modulations

would relate to interactions between motivation and cognitive

control. We also suspected that neural interactions between IFJ and

VTA would be modulated by cognitive control and motivation and

considered modulations in either direction to be possible scenarios.

Furthermore, we were interested in whether prospective reward and

punishment recruited these structures in the same manner.

2 | METHODS

2.1 | Participants

Twenty-nine right-handed participants took part in the present study

after giving informed consent. All reported normal or corrected-to-

normal vision and were screened for common fMRI exclusion criteria

as well as their personal and family history of neurological abnormali-

ties. They received compensation (7€/hr) for participation as well as

monetary rewards in accordance with their individual performance on

the task. Data from two participants had to be discarded due to struc-

tural abnormalities on the basis of a T1-weighted structural scan

evaluated by a neuroradiologist. Four additional data sets were

excluded because of technical issues during measurement (i.e., scanner

failure, no recording of responses, incorrect display of stimuli). The

remaining 23 participants (13 females, mean age = 23.0, ranging

between 19 and 29 years) were included in the behavioral and fMRI

analysis. The study was approved by the local ethics committee and

conducted in conformance with the principles of the Declaration of

Helsinki.

2.2 | Experimental paradigm

Participants performed a task-switching paradigm including different

motivational conditions while being comfortably placed in an MRI

scanner. Stimuli were numbers between 1 and 50 presented on a

black screen in random sequence (see Figure 1a) and viewed over a

mirror mounted on the MR head coil. The color of these numbers

F IGURE 1 Design and behavioral results. (a) Participants judged numbers according to either magnitude (blue) or parity (yellow). Switch and
repeat trials, defining the factor Control, were pseudo-randomized (not more than three in a row). (b) Three levels of motivation were linked to

monetary incentives. Reward = participants earned 7 Cent for correct responses. Punishment: Participants lost 7 Cent for incorrect responses.
Neutral: No money could be gained or lost. The factor Motivation was blocked and randomized within two fMRI runs. Each block was composed
of 50 trials and 10 null trials (white fixation cross). (c) Response times (mean ± SE) per task condition and switch costs (switch minus repeat) per
motivational condition in milliseconds. Switch trials were followed by slower responses compared to repeat trials. This effect was reduced in the
punishment condition. (d) Error rates (mean ± SE) in percent. Across motivational conditions, participants made more errors on switch compared
to repeat trials. *p < .05, **p < .001, FDR-corrected; n = 23. fMRI, functional magnetic resonance imaging; ITI, inter-trial interval; FDR, false
discovery rate
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established which of two tasks to perform. Blue required participants

to judge a number regarding its magnitude (smaller or greater than

25), while a yellow number constituted the parity task (even or odd).

If two subsequent trials obeyed the same task rule (parity following

parity or magnitude following magnitude) this sequence was defined

as a repeat. A switch was defined as a sequence of two trials

with diverging task rules (parity following magnitude or vice versa).

Participants gave responses on a fiber optic response pad with the

index (smaller/odd) or middle (greater/even) finger of their right hand.

A response map was displayed below the stimuli. Numbers were

chosen to create contrasting response patterns and thus avoid indis-

tinct responses. To that end, only even numbers smaller than 25 and

odd numbers greater than 25 were included (Hippmann et al., 2019).

The task was divided into blocks with different motivational condi-

tions: In the punishment condition, participants lost 7 Cents when

they gave an incorrect response but did not gain any money for

correct responses. In the reward condition, participants earned 7 Cents

for correct responses but did not lose any money for incorrect

responses. In the neutral condition no money was gained or lost.

Participants were instructed to respond as fast as possible. Each

response was followed by feedback displayed on the screen (“Plus
7 Cent”, “Minus 7 Cent”, “Correct,” or “False”).

The total of six blocks was divided by a short break into two scan

runs. Each run was composed of a reward, a punishment, and a

neutral block (order counterbalanced across participants, see

Figure 1b). An instruction screen (10 s) before each block indicated

which motivational condition would follow. After completing a block,

participants received feedback about the amount of money they

gained or lost (10 s). A block contained 50 trials and 10 null trials

(white fixation cross, randomized) and was composed of an equal

number of switches and repeats, presented in pseudo-randomized

order (not more than three in a row). Null trials were introduced for

jittering purposes in order to increase detectability of task-related

responses (Burock et al., 1998). A fixation cross presented for 3, 3.5,

or 4 s initiated each trial followed by the presentation of a stimulus

(3 s) and feedback (500 ms). Each stimulus was displayed for 3 s

regardless of response time (RT). A depiction of the trial structure can

be found in Figure 1a.

Prior to the MR session, participants familiarized themselves with

the task in a brief preparatory training outside the scanner, which con-

sisted of 25 trials without motivational cues. If participants had more

than 10 misses or errors, the training was repeated. The individual

mean RT from the training served as initial response window duration

(ranging between 900 and 1,400 ms) in the task. Over the time course

of the experiment the width of this window changed depending on

the individual performance in order to continuously tailor task

difficulty to each participant's ability. For each correct response,

15 ms were subtracted from the duration. For each false response,

85 ms were added. Missed responses had no influence on the

duration.

In the debriefing, we asked participants which strategies they

used to make judgments during the task. All participants reported

using parity and magnitude as criteria and neither participant

described strategies that were in conflict with our intended task

requirements. The whole experiment lasted approximately 60 min.

2.3 | Behavioral analyses

Reaction time (RT) and error rate (ER) were subjected to separate

repeated-measures analyses of variance (ANOVAs) with the factors

Motivation (neutral, punishment, reward) and Control (repeat, switch).

First trials of each block and those following null trials were excluded

from the analysis, since they could not be categorized as switch or

repeat trials. RT was analyzed on correct trials only. Post-hoc t-tests

were carried out on significant main effects and interactions and

corrected for multiple comparison using the false discovery rate (FDR)

method. Effect sizes for ANOVAs are reported as partial eta-squared.

Data were analyzed using R v3.3.2 (R Core Team, 2016).

2.4 | fMRI data acquisition

Structural and functional MR imaging was performed at the Center of

Brain, Behavior and Metabolism (CBBM, University of Lübeck) using a

3-T Siemens Magnetom Skyra scanner equipped with a 64-channel

head coil. Functional MRI data were acquired in two runs, each

containing three experimental blocks (reward, punishment, neutral in

randomized order). A gradient echo-planar imaging sequence sensitive

to blood oxygen level-dependent (BOLD) contrast was used with the

following specifications: TR = 1,690 ms, TE = 25 ms, flip angle = 80�,

parallel imaging acceleration factor 2 (GRAPPA), 3 � 3 mm2 in-plane

resolution, 192 � 192 mm2 field of view, 34 transversal ascending

slices of 2.5 mm thickness and 25% gap coplanar to AC-PC. Structural

images were collected using a 3D T1-weighted MPRAGE sequence

(TR = 1900 ms, TE = 2.44 ms, TI = 900 ms, flip angle = 9�,

1 � 1 � 1 mm3 resolution, 192 � 256 � 256 mm3 field of view).

2.5 | fMRI data analysis

Functional data were analyzed using the Statistical Parametric

Mapping software package SPM12 (available at http://www.fil.ion.

ucl.ac.uk/spm) implemented in MATLAB 2015a (Mathworks,

Sherborn, MA). Preprocessing included slice-timing correction to the

first slice, realignment to the first functional volume, co-registration to

T1 structural image, segmentation, normalization to Montreal Neuro-

logical Institute (MNI) space in native voxel space, smoothing with an

8 mm full width half maximum Gaussian kernel and high-pass tempo-

ral filtering (T = 128 ms). Autocorrelation in fMRI time series has been

accounted for by applying an autoregressive AR(1) model during

parameter estimation.

For each participant, event-related responses were estimated

using a general linear model approach. The model included separate

regressors for correct trials for the six conditions (punishment switch,

punishment repeat, neutral switch, neutral repeat, reward switch,
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reward repeat) convolved with the hemodynamic response function.

Events were time-locked to the onset of each trial (appearance of col-

ored number) and were modeled as having a duration of 0 s. Addition-

ally, for each run the model comprised six regressors for movement

and three regressors of no interest for error trials, null-trials, and feed-

back onsets.

Statistical analyses on the group level were specified as flexible

factorial design and implemented in SPM12 with each subject treated

as a random effects variable. The main effects of cognitive control

(switch > repeat) and motivation (punishment > neutral and

reward > neutral) were tested using t-contrasts, the interaction

between both factors was assessed via F-contrasts. Contrast weights

were assigned according to Gläscher and Gitelman (2008). An

uncorrected voxel-level threshold of p < .001 was selected for all ana-

lyses, with a family-wise error (FWE) correction threshold of

p < .05 at cluster level.

2.6 | Dynamic causal modeling

We used DCM (Friston et al., 2003) as implemented in SPM12 version

DCM12, to disentangle the directional interactions between brain

regions underlying the enhancing effect of motivation on cognitive

control.

DCM models describe changes in regional activity as:

dx
!

dt
¼ Aþ

Xm
j¼1

ujB
jð Þ

 !
x
!þCu

!

with x
!

representing a neuronal state vector and u
!

representing an

input vector. A describes latent connectivity between brain regions

irrespective of experimental conditions, B describes the modulatory

influence of experimental conditions on the intrinsic connections, and

C describes the extrinsic effects of input u
!

on activity. Since DCM is

considered a hypothesis-driven rather than data-driven approach

(Daunizeau et al., 2011), prior knowledge of, or hypotheses on net-

work connections and modulations are essential for inferring an opti-

mal, thus most plausible, model of effective connectivity out of an a

priori defined model space. For each model, the state equation is

transformed into a predicted BOLD signal by a biophysical forward

model of hemodynamic responses (Friston, Mechelli, Turner, &

Price, 2000; Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007),

which is then fitted to the actual BOLD signal through a gradient

ascent on the free-energy bound. Note that while interactions

between nodes in the network may occur on a millisecond level, the

predicted BOLD signal as the actual measured signal represents

changes on a second level. A “winning model” is subsequently

selected based on the posterior probability associated with each

model's evidence using the Bayesian model selection procedure (BMS,

Penny, Stephan, Mechelli, & Friston, 2004). We extracted connectivity

parameters from the winning model and used random-effects

parametric analysis across participants to estimate changes in modula-

tory effects on connectivity.

2.7 | Time series extraction

We specified left IFJ, left ACC, and left VTA as volumes of interest

(VOIs). We limited the DCM analysis to the left hemisphere since pre-

vious studies report hemispheric specialization in cognitive control

(e.g., Badre & Wagner, 2007; Serrien & Sovijärvi-Spapé, 2013; Step-

han et al., 2003). Regarding the research questions addressed in the

present study, previous work finds control and motivation effects

related to the IFJ in the left hemisphere (Bahlmann et al., 2015; Har-

ding et al., 2015; Hippmann et al., 2019). As there is limited knowl-

edge about interhemispheric interactions between the selected VOIs,

we wanted to avoid making unsupported assumptions about network

connections in order to narrow down the model space. Coordinates of

the VOIs for IFJ (x = �45 mm, y = 5 mm, z = 29 mm) and VTA

(x = �5 mm, y = �25 mm, z = �10 mm) were selected based on the

group level maxima in the task > baseline contrast (p < .05, FWE-

corrected, see Table 2B) in order to account for changes in BOLD sig-

nal related to all six task conditions. VOI coordinates for the ACC

(x = �10 mm, y = 8 mm, z = 41 mm) were isolated from the

task > baseline contrast with an anatomical mask (see Figure 2 for

visualization of VOIs). Time series for each VOI were extracted from

significant voxels (p < .01, uncorrected) in the individual

task > baseline contrasts. For each participant, the sphere center of

each VOI was moved to the closest suprathreshold voxel, which was

kept within a 10 mm radius from the group peak coordinates. Xjview

toolbox (http://www.alivelearn.net/xjview) and AAL brain atlas were

applied to verify that the individual sphere centers were located

within the regions of interest. This individualized peak approach

allows targeting those regions on the single-subject level that are

most likely to drive ongoing neural processes in the group level while

ensuring that individual regions remain comparable. The approach is

in line with prior comparable studies examining task-related DCM

effects (Heim et al., 2009; Kleineberg et al., 2018; Roswandowitz,

Swanborough, & Frühholz, 2021).

Using a singular value decomposition procedure implemented in

SPM12, we computed the first eigen variate across all suprathreshold

voxels within a 6 mm radius from the sphere center for each partici-

pant. We chose a larger radius for the spheres to avoid including sig-

nals in the DCM analysis, which are derived from VOIs with very few

voxels and thus are more susceptible to noise. Time series were then

adjusted for effects of interest and sharp improbably temporal arti-

facts were smoothed by an iterative procedure implementing a six-

pint cubic-spline interpolation. We could not extract time series in

three participants for all VOIs (one IFJ, two ACC) based on these

criteria. Since DCM requires time series from the full network, we

repeated the procedure for the respective participants and VOIs with

a more tolerant threshold of p < .05 (uncorrected), which allowed the

inclusion of all 23 participants in the analysis.
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We conducted a power analysis using G*Power v3.1.9.2 to esti-

mate the power that could be achieved on a one sample t test

(as applied to test the strength of intrinsic and modulatory connections

in DCM models). Analysis revealed that 23 participants suffice for 96%

power on strong effects (d = .8), 63% power on medium effects

(d = .5), and 15% power on small effects (d = .2) with an alpha of .05.

2.8 | DCM specification

Input vector u
!

was constructed as a stick function of the single events

of stimulus presentation. Given that distinct motivational states

(i.e., neural processes related to reward and punishment) may differen-

tially interact with task processing in the selected regions of interest,

we built separate model families for the three motivational conditions

(neutral, punishment, reward). These model families were based on the

same task, comprised the same number of trials and consisted of

models with identical architecture between the same set of regions.

They only differed in terms of the modulatory effect (B-matrix) mean-

ing, for instance, the modulatory input for the reward family derived

from “reward switch” and “reward repeat” trails. The DCM framework

allows to compare plausible models that are constructed based on a set

of predefined regions of interest and a priori knowledge on network

connections between those regions. We, therefore, made a few

assumptions regarding the model space in order to restrict the amount

of comparisons. First, we allowed bidirectional intrinsic connections

between the VOIs in all models. Second, we considered both IFJ and

midbrain to be plausible input regions, based on the evidence outlined

in the introduction. In order to avoid inflating the model space and

thereby decreasing the stability of results, we opted against establishing

the input region computationally by building separate models for differ-

ent input nodes. We decided to admit task input on both IFJ and mid-

brain in all models. This allowed us to identify each region's

contribution to the neural processes on the parametric level. Note that

it is plausible that an unmodeled region such as the visual cortex could

serve as better input node to the model. Still, the summed influence of

the input on the chosen input regions should be evident. Third, the

model space comprised all possible permutations of modulatory con-

nections between the VOIs, except for the connection from IFJ to

ACC. Since previous work on effective connectivity during cognitive

tasks showed that the IFJ directs activity in the ACC (Harding

et al., 2015; Hinault et al., 2019), the connection was operative in all

models. This amounted to 32 models per family (see Supplementary

Figure) and 96 models in total. Assuming variability across participants,

we compared models and model families using RFX BMS [Penny

et al., 2010]. After selecting a winning model based on the highest

exceedance probability, we extracted the estimated model parameters

in each participant and calculated an average parameter estimate for

each connection, which was then tested for strength using one-sample

t-tests. Multiple comparisons were corrected using FDR.

3 | RESULTS

3.1 | Behavioral results

3.1.1 | Response time

We found significant effects on RT for Control (F(1,22) = 67.34,

p < .001, ηp
2 = 0.75, repeat = 933 ms, switch = 1,044 ms) and Motiva-

tion (F(2,44) = 5.71, p < .01, ηp
2 = 0.21). Participants were significantly

faster in the punishment condition (957 ms) compared to the reward

(988 ms, p = .02) and neutral conditions (1,017 ms, p < .01). RT in the

neutral and reward blocks differed significantly (p = .04). Moreover,

we found a significant interaction between Control � Motivation

(F(2,44) = 3.74, p = .03, ηp
2 = 0.15). Post-hoc analyses revealed signifi-

cant differences between switch and repeat trials for all three motiva-

tional conditions with p < .001. Switch costs were significantly lower in

punishment (90 ms) compared to neutral (123 ms, p = .04) as well as

reward blocks (121 ms, p = .04, see Figure 1c). Neutral and reward

blocks did not differ significantly in regard to switch costs (p = .83). See

Table 1 for RT values of each task condition.

3.1.2 | Error rates

The significant main effect of Control (F(1,22) = 29.16, p < .001,

ηp
2 = 0.57) revealed that participants showed lower ERs on repeat

F IGURE 2 Clusters entering DCM analysis. Pooled participants' individual VOIs for anterior cingulate cortex (ACC, red), interior frontal
junction (IFJ, blue), and ventral tegmental area (VTA, violet); n = 23. DCM, dynamic causal modeling; VOIs, volumes of interest
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trials (8.7%) than on switch trials (14.5%, see Figure 1d). The main

effect of Motivation (F(2,44) = 1.17, p = .32, ηp
2 = 0.05) and the inter-

action between Control � Motivation (F(2,44) = 0.04, p = .96,

ηp
2 = 0.002) were not statistically significant. ERs for each task condi-

tion can be found in Table 1.

3.2 | fMRI results

Higher cognitive demand (switch > repeat, see Table 2A) was associ-

ated with significantly increased neural activity in the right insula, left

midbrain, supplementary motor area (SMA), precuneus, and inferior

parietal sulcus (IPS). For the reverse contrast (repeat > switch) a signif-

icant cluster was found in the right superior frontal gyrus. We found

no significant clusters associated with the main effect of Motivation

or the interaction between Control and Motivation.

3.3 | DCM results

Figure 3a depicts exceedance probabilities derived from the Bayesian

model comparison. Family level inference results showed that the

reward family had a higher exceedance probability (p_ex = .73) com-

pared to the punishment (p_ex = .10) or neutral family (p_ex = .17 see

Figure 3a) suggesting that interactions between IFJ, ACC, and VTA

are more prominent during reward blocks. The Bayesian omnibus risk

(BOR) indicator measuring the probability that all model frequencies

are distinguishable was 0.9 indicating that the models were not well

distinguishable (Rigoux, Stephan, Friston, & Daunizeau, 2014). Note,

however, that this is to be expected with a large number of models of

similar structure. BOR calculation further cannot consider family

grouping of the models. We thus continue to report the results from

the winning model and compare its modulatory parameters to those

of the models from the other families with the same architecture.

TABLE 1 Summary of behavioral
measures

Neutral Punishment Reward

Switch Repeat Switch Repeat Switch Repeat

RT in ms (SD) 1,079 (210) 956 (169) 1,004 (198) 914 (165) 1,050 (207) 929 (141)

ER in % (SD) 15.3 (6.8) 9.1 (5.2) 14.8 (5.9) 9.2 (5.3) 13.6 (5.6) 7.8 (4.6)

Note: Means of error rates in percent and response times in milliseconds separately for each

condition; n = 23.

TABLE 2 Whole brain imaging
results

MNI coordinates

x y z Cluster size T-value pFWE

Contrast/brain region (mm) (voxel) (peak) (cluster)

A switch > repeat

R insula 31 23 5 187 6.94 .000

L midbrain �2 �25 �13 157 6.55 .000

L SMA �5 2 56 144 4.68 .000

L IPS �30 �52 53 72 4.37 .022

L precuneus �7 �70 50 64 4.15 .036

Repeat > switch

R SFG 6 50 38 72 4.87 .022

B task > baseline

L precentral gyrus �30 �22 56 1,598 14.70 .000

L midbrain �5 �25 �10 443 11.83 .000

R insula 31 23 5 118 10.08 .000

R cerebellum 11 �52 �16 89 9.24 .000

R precentral gyrus 36 �7 50 77 8.73 .001

L insula �30 20 5 63 9.14 .000

R IPS 33 �46 47 27 8.22 .002

R middle occipital gyrus 31 �91 17 24 8.44 .001

L IFJ �45 5 29 24 7.66 .005

Note: Results are reported with a cluster defining threshold of p = .001 and FWE correction at p < .05. L,

left; R, right; SMA, supplementary motor area; IPS, inferior parietal sulcus; SFG, superior frontal gyrus;

IFJ, inferior frontal junction; n = 23.
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Accordingly, the winning model (Model 82) belonged to the reward

family with p_ex = .039 followed by the next best reward model with

p_ex = .031 (see Figure 3a, right panel). No neutral or punishment

model exceeded a posterior probability of .010. We found significant

positive intrinsic connections, independent of cognitive control or

motivation, from IFJ and VTA to ACC and significant negative intrinsic

connections from ACC to IFJ and VTA as well as from IFJ to VTA and

vice versa (Figure 3b, left panel). Moreover, we observed four modula-

tory connections in the winning reward model: both switch and repeat

significantly enhanced connectivity from IFJ and VTA to ACC. Switch

trials also significantly increased connectivity from VTA to IFJ, while

repeat trials did not. Modulations from IFJ to VTA were not significant

(see Figure 3b). Parameter estimates, T- and p-values of intrinsic and

modulatory connections of the winning reward model are listed in

Table 3. We compared connectivity strength of switch and repeat

input on these modulatory connections. We found significant

modulation differences in the connection from IFJ to ACC with stron-

ger positive modulation by switch trials (t = 2.32, p = .030). All other

modulatory connections showed no significant differences between

switch and repeat trials (all t < 1.8 and p > .09). We neither found sig-

nificant differences in the strength of driving input between IFJ and

VTA (all t < .73, p > .47) nor between switch and repeat trials (all

t < 1.5, p > .20). We further explored modulatory parameters of the

model from the punishment and neutral families with the same

F IGURE 3 DCM results.
(a) RFX family-wise inference.
Models were grouped into
families by motivational input
(neutral, punishment, reward,
32 models each). The reward
family attained the highest
posterior probability with .73.
Exceedance probability for the

winning reward model was .039
among all 96 models. No neutral
or punishment model exceeded a
posterior probability of .010.
(b) Architecture of winning model.
Under the prospect of reward,
cognitive control modulates the
connections from IFJ to ACC and
VTA as well as the connection
from VTA to IFJ and ACC.
(c) Modulatory parameters of
models from the punishment and
neutral families with same
architecture as winning model.
*p < .05, **p < .001, FDR-
corrected; n = 23. DCM, dynamic
causal modeling; IFJ, inferior
frontal junction; ACC, anterior
cingulate cortex; VTA, ventral
tegmental area
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architecture as our winning reward model (see Figure 3c). Parameter

estimates, T- and p-values of both models can be found in Supplemen-

tary Table. We observed that all three models display significant mod-

ulation with same valence on the same connections, except for

significant positive modulation from VTA to IFJ for switch trials, which

was exclusively found in the reward condition. Another unique char-

acteristic of the reward condition is a significant difference between

switch and repeat trials in modulation from IFJ to ACC.

4 | DISCUSSION

We aimed to disentangle the interplay between IFJ, ACC, and VTA in

motivated cognitive control. Using DCM, we characterized dynamic

interactions between these brain regions during task switching under

different motivational states. Our results reveal fundamental differ-

ences in the behavioral and neural effects of prospective reward and

punishment on decision-making.

Participants performed a switch/repeat task embedded in three

distinct motivational conditions, namely, prospective monetary reward

or punishment, and a neutral condition with no external motivators.

For all motivational conditions, switching between tasks led to slower,

more error-prone responses compared to repeating tasks, indicating a

successful manipulation of cognitive control through our paradigm.

Such a disruption of performance is thought to represent the higher

cognitive demand inherent to shifts in attention from one competing

task to another (Monsell, 2003). This was also reflected on a neural

level. Switch trials elicited heightened activity in a number of cortical

and subcortical areas that are notably related to cognitive control,

such as the SMA, IPS, insula, and midbrain (Bahlmann et al., 2015;

Dosenbach et al., 2007; Köhler et al., 2016). Unlike evidenced in prior

studies (Derrfuss, Brass, Neumann, & von Cramon, 2005), the IFJ was

not differentially activated by switch and repeat trials in our paradigm.

Since it did, however, show robust activation across all trials, the area

was likely strategically involved in both conditions. Several explana-

tions are possible: First, due to the slow pace of our fMRI design, par-

ticipants may have treated each trial as a distinct event instead of

establishing continual task sets. Thus, the IFJ may have activated task

rules anew for every trial. This, however, seems arguable in light of

the robust behavioral switch costs observed in the experiment. Sec-

ond, as prior studies failing to demonstrate switch-related activity

(Brass & von Cramon, 2004; Crone, Donohue, Honomichl,

Wendelken, & Bunge, 2006), our paradigm may have diminished neu-

ral differences between switch and repeat trials by including approxi-

mately 50% trials of each type. This composition has been suggested

to induce different preparatory processes for task switches than clas-

sical task switching designs due to their high frequency (for relevant

discussion see Richter & Yeung, 2014).

Task performance differences between switch and repeat trials

were modulated differentially by prospective punishment and reward.

While a main effect of Motivation revealed that across Control tasks

(switch and repeat trials) response speed was enhanced when partici-

pants were motivated to avoid punishments as well as when pursuing

rewards (compared to the neutral condition), switch costs were

reduced exclusively in the punishment condition. This observation

concurs with studies showing that potential losses attract more focus

of attention and thereby affect decision-making more strongly than

equivalent gains (for review, see Yechiam & Hochman, 2013). Given

the large body of literature stressing the importance of reward in

executive functioning (Botvinick & Braver, 2015; Chiew &

Braver, 2014; Jimura, Locke, & Braver, 2010), it nevertheless is

remarkable that we found no effect of reward on switch costs. One

explanation for this finding might be the notion that the subjective

value of money changes depending on its perception as a loss or gain

(Tversky & Kahneman, 1979). Thus, in our study, unlike punishment

magnitude, reward magnitude (both 7 Cents) might have been too

small to effectively reduce switch costs.

Our DCM further suggests that reward and punishment rely on

different neural mechanisms to influence executive functioning. We

tested whether and how cognitive enhancements through prospective

punishment and reward relate to interactions between IFJ, ACC, and

VTA, and found that reward is more likely to modulate connectivity

between these structures during cognitive processing. Using RFX

TABLE 3 Average parameter estimates of intrinsic connections
and input modulations for the winning reward model

Strength (Hz) SD T-value p

Intrinsic connections

IFJ to ACC 0.037 0.040 4.39 .001

IFJ to VTA �0.020 0.027 �3.41 .007

ACC to IFJ �0.014 0.023 �3.01 .005

ACC to VTA �.012 0.018 �3.18 .008

VTA to IFJ �.016 0.033 �2.31 .030

VTA to ACC 0.045 0.046 4.69 .001

Modulation by switch

IFJ to ACC 0.047 0.051 4.38 .001

IFJ to VTA 0.001 0.002 0.75 .610

VTA to IFJ 0.002 0.003 2.93 .012

VTA to ACC 0.042 0.034 5.92 .000

Modulation by repeat

IFJ to ACC 0.038 0.046 3.95 .001

IFJ to VTA �0.002 0.002 �0.51 .610

VTA to IFJ 0.000 0.004 0.55 .610

VTA to ACC 0.034 0.036 4.49 .001

Switch input

IFJ 0.327 0.257 6.10 .000

VTA 0.358 0.193 8.88 .000

Repeat input

IFJ 0.326 0.232 6.74 .000

VTA 0.336 0.197 8.20 .000

Note: SD, standard deviation; IFJ, inferior frontal junction; ACC, anterior

cingulate cortex; VTA, ventral tegmental area. p-Values were corrected

using FDR; n = 23.
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family level inference (Penny et al., 2010), we show that changes in

causal connections within this network are best explained by models

that included modulations through reward-based decision-making.

While it is surprising that the obtained hemodynamic responses

were not reflected in behavioral results and vice versa, they support

accounts postulating separate motivational systems for reward and

punishment with distinguishable behavioral and neural signatures

(Camara, Rodriguez-Fornells, & Münte, 2009; Cubillo, Makwana, &

Hare, 2019; Galea, Mallia, Rothwell, & Diedrichsen, 2015; Palminteri,

Khamassi, Joffily, & Coricelli, 2015; Palminteri & Pessiglione, 2017).

Wächter et al. (2009), for instance, showed that reward improved

implicit learning and retention mediated through the dorsal striatum,

while punishment facilitated online motor performance by modulating

insula activity. Others have reported increased amygdala activity in

response to prospective punishment, while prospective reward was

associated with activity in the ventral striatum (Murty, LaBar, &

Adcock, 2012; Yacubian et al., 2006). Relatedly, it has been suggested

that unlike reward, punishment does not operate through the dopami-

nergic but serotonergic neurotransmitter system to enhance executive

control and that these systems act as mutual opponents (Daw,

Kakade, & Dayan, 2002; den Ouden et al., 2013; Guitart-Masip

et al., 2014). However, since we found no neural activations associ-

ated with punishment, it is unclear whether this rationale can be

applied to our findings. Future studies could shed light on this issue

by probing the influence of serotonin and DA antagonists on the

effects of punishment and reward on task switching and its neural

substrates.

In our winning reward model, intrinsic connections were signifi-

cantly positive from IFJ and VTA to ACC and significantly negative

from ACC to VTA and IFJ as well as between VTA and IFJ. While both

switch and repeat trials modulated the connection from IFJ to ACC

positively, the modulation was significantly stronger for switch trials.

This supports previous studies associating signaling from IFJ to ACC

with increased cognitive effort (Harding et al., 2015; Hinault

et al., 2019). Importantly, this difference in cognitive modulation was

exclusively found in the reward condition suggesting that distinct

motivational settings differentially affect neural interactions between

IFJ and ACC. The connection from VTA to ACC was positively modu-

lated by switch and repeat trials alike, potentially due to dopaminergic

projections between the two areas playing a fundamental role

irrespective of task demands (Haber & Knutson, 2010; Hauser

et al., 2017; Köhler et al., 2016). Our findings thereby concur with the

notion that the ACC receives and integrates signals carrying informa-

tion about prospective reward and the need to expend control from

other brain regions (Shenhav et al., 2013; Shenhav et al., 2016). Com-

plementing prior research (Bahlmann et al., 2015; Hippmann

et al., 2019), we found a positive modulatory connection from VTA to

IFJ exclusively for switch trials, suggesting that the VTA exerts causal

influence on the IFJ when cognitive demand is high. This was

observed exclusively in the reward condition emphasizing the impor-

tance of projections from the VTA as a source of dopaminergic

neuromodulation to the prefrontal cortex in the integration of pro-

spective reward and control demands. However, note that the

modulation is comparably weak, and we did not find differential IFJ

activation with respect to switch versus repeat trials. As discussed

above, our design encompassed a high frequency of switch trials,

which may also have decreased a potential interaction between IFJ

and VTA. Future studies using revised study designs (i.e., less frequent

switches, cued task-switching) are clearly warranted to further corrob-

orate our results.

Taken together, our DCM results show that the IFJ and VTA mod-

ulate ACC activity independently to serve task demands in reward-

based cognitive control. They further emphasize differences in neural

processing of reward and punishment related to executive functions.

5 | LIMITATIONS

A few limitations of the current findings should be noted. First, the

paradigm used in our study consisted of incongruent stimuli only

(i.e., numbers smaller than 25 were even, numbers greater than

25 were odd). Given the time constraints of fMRI experiments, we

wanted to ensure a reasonable number of trials to include in the anal-

ysis. Therefore, we chose this task to obtain responses that could

unmistakably be classified as correct or incorrect and thus avoid inter-

pretational problems of congruent stimuli. This, however, allows par-

ticipants to use stimulus features to predict responses in both task

sets. Even though none was reported in the debriefing, we cannot rule

out that participants applied such strategies, and commend future

studies to implicate both congruent and incongruent stimuli to rule

out a potential use of alternative strategies.

Second, motivated by specific assumptions about neural interac-

tions between motivation and cognitive control and limited by techni-

cal constraints of DCM, we only included a small number of brain

regions in the DCM analysis thereby neglecting other areas presum-

ably involved in motivated control, for instance, the ventral striatum

(Aarts et al., 2011; Asci, Braem, Park, Boehler, & Krebs, 2019;

Cools, 2008). Note, however, that effective connectivity does not

reflect anatomical connectivity. Rather, DCM allows to reveal a net

effect between relay regions and is intended to answer hypothesis-

driven questions. We further recognize that neither of our candidate

regions was associated with the main effect of cognitive control. Nev-

ertheless, DCM can detect changes in effective connectivity between

VOIs even when void of significant clusters regarding specific con-

trasts and thus does not depend on activation analysis. In the present

study we were particularly interested in disentangling neural interac-

tions with respect to the interface between cognitive control and

motivation. We therefore aimed at including areas in the DCM analy-

sis that would relate to all aspects of the task. The results of this study

could allow future studies to explore a more extended network.

6 | CONCLUSION

The current study explored the neural interactions between executive

functions and distinct qualities of motivation by means of DCM. We
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found that structures from the dopaminergic system—specifically the

IFJ, VTA, and ACC—contribute to the integration of cognitive control

and reward but not punishment. Our findings, therefore, point to dif-

ferent neural mechanisms underlying the influence of reward and

punishment on cognitive control.
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