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Abstract

Summary:
The increasing prevalence and importance of machine learning in biological research have created a need for
machine learning training resources tailored towards biological researchers. However, existing resources are often
inaccessible, infeasible or inappropriate for biologists because they require significant computational and mathem-
atical knowledge, demand an unrealistic time-investment or teach skills primarily for computational researchers. We
created the Machine Learning for Biologists (ML4Bio) workshop, a short, intensive workshop that empowers bio-
logical researchers to comprehend machine learning applications and pursue machine learning collaborations in
their own research. The ML4Bio workshop focuses on classification and was designed around three principles:
(i) emphasizing preparedness over fluency or expertise, (ii) necessitating minimal coding and mathematical back-
ground and (iii) requiring low time investment. It incorporates active learning methods and custom open-source
software that allows participants to explore machine learning workflows. After multiple sessions to improve work-
shop design, we performed a study on three workshop sessions. Despite some confusion around identifying subtle
methodological flaws in machine learning workflows, participants generally reported that the workshop met their
goals, provided them with valuable skills and knowledge and greatly increased their beliefs that they could engage
in research that uses machine learning. ML4Bio is an educational tool for biological researchers, and its creation and
evaluation provide valuable insight into tailoring educational resources for active researchers in different domains.

Availability and implementation: Workshop materials are available at https://github.com/carpentries-incubator/
ml4bio-workshop and the ml4bio software is available at https://github.com/gitter-lab/ml4bio.

Contact: christopher_magnano@hms.harvard.edu or gitter@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning (ML) is a powerful tool for analyzing biological
data and is increasingly popular in biological research. Biological
publications using ML have increased exponentially over the past
decades (Walsh et al., 2021). In 2017, almost 90% of 704 NSF prin-
cipal investigators reported that they ‘are currently or will soon be
analyzing large datasets’ (Barone et al., 2017). However, the most
commonly reported unmet needs were training based. As of 2017,
only about a quarter of life-sciences training programs taught neces-
sary skills for data stewardship (Brazas et al., 2017). In the USA, the
National Science Foundation and National Institutes of Health have
recognized the need for training at the intersection of ML and biol-
ogy (National Institutes of Health, 2021; National Science
Foundation, 2020). The breadth of this gap means that biologists
often lack the computational skills that are prerequisites for existing
ML educational resources (Dinsdale et al., 2015). This gap can lead

to missed insights from biological data (Chang, 2015) and contrib-
utes to the improper use of ML in biology (Jones, 2019; Walsh
et al., 2021).

Many resources have been created to help researchers acquire
skills in ML. Comprehensive resources such as textbooks (Mitchell,
1997; Raschka et al., 2022) and online courses require significant
time investment, which may not be feasible for active researchers,
and teach to a depth that is often unneeded for biological research-
ers. Other resources such as graphical research and education tools
(Dem�sar et al., 2013; Elia et al., 2021; Roushangar and Mias,
2018), workshops (Teal et al., 2015) and written guides and reviews
(Greener et al., 2022; Liu et al., 2019; Vercio et al., 2020), still often
focus on coding, mathematics or running ML. Although these
resources are important, not all biological researchers will necessar-
ily need to code and run ML experiments independently (Mulder
et al., 2018).
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Thus, resources are needed that provide researchers with skills to
productively navigate partnerships and collaborations around ML
without necessarily directly executing ML research themselves.
When designing these resources, it is essential to consider what skills
are needed to interpret research that involves ML, communicate
with collaborators about ML and identify biological questions ML
can solve. Resources centered around coding, the mathematical
underpinnings of ML or practical advice for using a certain tech-
nique do not necessarily fulfill this role.

We created the Machine Learning for Biologists (ML4Bio) work-
shop to introduce ML to biological researchers. The workshop aims
to provide the skills biologists need to be active researchers in a
landscape where ML is increasingly prevalent. It focuses on practical
research skills such as reading academic papers that use ML and
drawing conclusions from ML experiments. We designed the
ML4Bio workshop to be approachable and a reasonable time invest-
ment; it requires minimal mathematical and computational back-
ground and runs for 5 h over 2 days. A key feature of the ML4Bio
workshop is custom software based on the scikit-learn (Pedregosa
et al., 2011) library, which allows participants to explore and ex-
periment with classification through a graphical interface without
computational fluency.

We used an iterative design process to refine the workshop over
a series of five sessions from 2018 to 2021. The first four sessions
were conducted in person, and the fifth was conducted online over
Zoom. These iterations gave us insight into how to better align the
workshop to our overall goals and address the needs of the work-
shop’s audience. We then evaluated the effectiveness of the work-
shop over three additional sessions in 2021.

Participants were generally able to achieve the learning goals of
the ML4Bio workshop and especially reported an increase in self-
reported beliefs that they can engage with ML research. We feel that
this success hinges on the workshop’s approachability, careful de-
sign and flexibility. The ML4Bio workshop effectively introduces
ML to biological researchers, preparing them for future learning,
collaboration and comprehension of ML experiments in biological
domains.

2 Workshop design

2.1 Learning goals
The ML4Bio workshop began with the intention to create a short,
intensive workshop that empowers biological researchers to operate
in fields where ML is increasingly common and identify where they
might pursue ML collaborations in their own research. Rather than
tackling the entire field of ML, we chose to focus on classification to
limit the scope of the workshop to 1–2 days. The original topics we
selected for the workshop involved identifying problems in compu-
tational biology, understanding all parts of a typical ML workflow,
being able to compare specific classifiers, performing model selec-
tion, evaluating a model on new data and judging the use of ML in
biological contexts. These topics were defined based on our profes-
sional experiences interacting with biological researchers around
ML and through our observations of common challenges in pub-
lished biological papers that use ML.

Early iterations of the workshop using those topics revealed (i) a
mismatch between the selected topics and the coding and mathemat-
ical background that is typical of our biological researcher audience
and (ii) an incorrect scope of the selected topics (too large). To rem-
edy these problems, we employed backward design (Wiggins and
McTighe, 1998) to construct realistic learning goals, create assess-
ments for those goals and develop activities to support participants
in achieving those goals. In that process, we focused on preparedness
for ML research instead of fully equipping participants to perform
ML research independently. The result was the following four learn-
ing goals whose justification and purpose we discuss in detail below.
ML4Bio workshop participants should be able to:

1. Identify ML applications and differentiate aspects of a ML

workflow.

2. Examine a ML problem for common factors that influence

model selection and problem difficulty.

3. Discover major methodological flaws in a ML experiment pre-

sented in an academic paper.

4. Demonstrate the belief that they can engage with research that

uses ML in biology.

Learning goal 1: Characterizing common steps of ML work-
flows—data pre-processing, training and model selection and testing
and evaluation—gives participants a basis for understanding how
ML works and provides a framework for dissecting and understand-
ing unfamiliar ML concepts in the future. Thus, we consider charac-
terizing a ML workflow as an important objective for preparing
participants. Additionally, while familiarity with ML terminology is
important for research comprehension and communication with col-
laborators, participants do not need to deeply know all ML termin-
ology by the end of the workshop. As long as participants can
generally identify parts of ML and a ML workflow, they are pre-
pared to learn the terminology that is used by their collaborators
and is most relevant to their research.

Learning goal 2: Specific classifiers are another area of ML that
required careful consideration. We originally chose a number of
classifiers that we felt were a good introduction to the types of clas-
sifiers available and their limitations. General knowledge of what
classifiers can and cannot do, and facets of problems such as linear
separability that affect model selection, are required to evaluate
problem difficulty, but detailed knowledge of specific classifiers is
not. Ultimately, we felt that while the classifiers we had chosen do
help demonstrate classifiers’ range and limits, participants’ general
understanding of the factors that influence model selection will help
them irrespective of which classifiers are popular in problems they
are interested in.

Learning goal 3: ML in biological applications often lacks proper
validation or experimental design, especially when those who use it
lack a technical background (Littmann et al., 2020; Whalen et al.,
2022). Thus, we consider the ability to find major flaws in a ML ex-
periment, as presented in a research paper, an important part of pre-
paring participants. Since we focus on assessing instead of
performing experiments, we teach the types of evidence presented in
a paper that indicate overfitting, data leakage or improper evalu-
ation metrics. However, subtle errors in a ML workflow, such as in-
direct data leakage, are difficult to find. Researchers whose primary
field is ML often miss indirect data leakage, and consistently detect-
ing data leakage is considered an open challenge in ML (Ashmore
et al., 2021; Whalen et al., 2022). Therefore, while participants
learn the process of assessing a ML workflow, expecting them to be
able to consistently find all subtle methodological errors is likely
unrealistic.

Learning goal 4: Finally, a major focus of the workshop is the af-
fective objective of demonstrating a belief that they can engage in re-
search that uses ML. Affective learning outcomes are those that, as
opposed to skills or knowledge, relate to individual dispositions,
willingness, preferences and enjoyment (Buissink-Smith et al., 2011;
Pierre and Oughton, 2007). Given that the overarching purpose of
the workshop is for biologists to consider pursuing ML as a possible
way to solve a problem, including this affective goal is critical to
assessing our success. Specifically, while we do not expect them to
feel like confident experts, we want participants to believe they can
pursue collaborations with ML experts when they identify a prob-
lem well-suited to ML.

The resulting ML4Bio workshop that addresses these four learn-
ing goals is an online five-h workshop divided evenly between two -
days. Data from the initial workshops, coupled with our analysis of
the strengths and weaknesses of existing ML resources, led us to fol-
low three key design principles (Brown and Campione, 1996) for
our workshop. Specifically, we were committed to our workshop
(i) focusing on preparedness over fluency or expertise, (ii) necessitat-
ing minimal coding and mathematical background and (iii) requir-
ing low time investment. The workshop format is a mixture of
software activities, active learning (Freeman et al., 2014) activities
and lectures. Participants use their personal computers to follow
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along with the online workshop materials and run the ml4bio soft-
ware. The workshop introduces supervised ML workflows, evalu-
ation metrics, a few common classifiers, and how ML experiments
are presented in biological literature. Figure 1 shows the various
workshop activities and how they relate to the four learning goals.
Below, we explore three key features of the workshop design (soft-
ware, active learning and drawing on prior knowledge) that support
participants in achieving the learning goals.

2.2 Software design
The first—and perhaps most fundamental—learning goal of the
workshop involves understanding a ML workflow. In fact, without
understanding that workflow, participants cannot successfully
achieve the other objectives. As a result, we wanted to create struc-
tural supports in the workshop for this learning goal. Specifically,
we wanted to scaffold participants’ learning about the workflow in
a way that did not rely on field-specific terminology or existing com-
putational skills. To do so, we created the ml4bio software so bio-
logical researchers could visually explore the ML workflow.

The ml4bio software is written in Python using the popular ML
library scikit-learn (Pedregosa et al., 2011). It uses PyQt5 (v5.15.4)
for the graphical user interface. Participants are asked to download
and install the Anaconda Python distribution and the ml4bio soft-
ware before the workshop using step-by-step instructions provided
on the workshop’s website. We use Anaconda to create a conda
Python environment for the ml4bio software via a script that installs
and runs the software. In doing so, our software instantiates our de-
sign principle of minimizing the need for extensive coding back-
ground. The ml4bio package is also available from GitHub (https://
github.com/gitter-lab/ml4bio) or PyPI (https://pypi.org/project/
ml4bio/).

Once installed, participants and instructors use the software
throughout the workshop to walk through ML workflows, compare
models and hyperparameters and visualize decision boundaries and
model performance. The software’s user experience is optimized for
education instead of other similar software that is designed to per-
form research-quality data analyses. Workshop participants are
warned that the software is not meant to be used in research and is
an educational tool. We purposefully limit certain user actions to en-
courage correct experimental setup and only show a subset of mod-
els and hyperparameters to avoid overwhelming users. These
restrictions are consistent with our design focus on preparedness (ra-
ther than expertise) and low time investment.

The software’s interface is laid out into the left and right halves
of the screen. The left half lets the user navigate through the steps of
a ML workflow: data selection, training and testing/predicting, thus
directly supporting learning goal #1 (Fig. 2). Laying out each of
these steps is a key part of the software’s design. At each step, the
user is presented with reasonable choices for how to proceed to the
next step of the workflow. The software allows users to move for-
ward to the next step, but users generally cannot go back a step
without fully resetting and choosing a new dataset. This prevents
users from accidentally causing data leakage by performing

additional model selection after viewing test set performance or
choosing a different test set that might include data from a previous
training set. Thus, the user can only perform a complete and stand-
ard ML workflow using the software, reinforcing the purpose and
flow of each step.

When selecting data, users can view a summary of the data
instances and features in a data summary window. The data are
assumed to already be pre-processed. This mirrors our decision to
keep detailed data pre-processing methods outside of the scope of
the ML4Bio workshop, as pre-processing methods are often domain
specific. Users can select a data splitting strategy for both a final test
set and a validation set for model selection and whether to use strati-
fied sampling.

In the training step, users can train and compare different classi-
fiers and hyperparameters on their training set and validation set.
The software includes popular classifiers such as decision trees, ran-
dom forests, support vector machines, neural networks, k-nearest
neighbors and logistic regression. A subset of hyperparameters avail-
able in scikit-learn can be changed for each model, and each config-
uration can be given a name and comment.

As each model is trained, it is added to a table summarizing all
trained models’ performances (top half of Fig. 3), where a number
of classification performance metrics can be viewed for each model
on either the validation set or the training set. Each model can be
selected, where it is then shown in more detail (bottom half of
Fig. 3). Here, users can choose to view evaluation curves, a confu-
sion matrix, or a plot of the data with the model’s decision bound-
ary for 2D datasets. Throughout the workshop, we especially focus
on the decision boundary visualization to show the differences be-
tween classifiers, the limits of different classifiers, how certain
hyperparameters can affect how a classifier learns. This focus allows
us to move away from the specific features of each classifier, which
we removed based on feedback from early sessions and refining our
learning goals, and instead to focus on how different facets of classi-
fiers and problems affect performance (Learning goal #2).

Finally, users can move to testing and predicting. In this step,
users can select one of the currently trained models for final classifi-
cation and evaluation. Users can select a model manually or select
the model that performed best on a certain metric. The software
presents a warning that after the test set performance is shown, no
more model selection can be performed. After acknowledging this,
the right half of the software interface will show only the selected
model, but training and validation set performance can still be
viewed.

2.3 Active learning
Although our early sessions involved mostly lecture and a summa-
tive assessment activity, our use of the backward design paradigm to
define learning goals also led us to redesign the workshop activities.
Specifically, we transformed the workshop to involve more active
learning opportunities for participants (Freeman et al., 2014).

The workshop now uses a variety of active learning strategies
such as scenarios, polls, discussions and problem solving. It is in an

Fig. 1. Timeline of the ML4Bio workshop. Activities are shown in addition to which non-affective learning goals (LGs) are addressed by that activity, as defined in Section 2.1
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HTML format derived from The Carpentries (Wilson, 2016) lesson
template and hosted on GitHub pages (https://carpentries-incubator.
github.io/ml4bio-workshop/). This allows anyone to access, propose
modifications to or reuse any workshop materials through GitHub.

As an example of how active learning was added to the work-
shop, the introductory lesson was changed from a lecture to a debate
activity. After sharing a textbook definition of ML (Mitchell, 1997),
three scenarios are presented to participants. One such scenario is a
person hand-writing a decision tree from personal knowledge. For
each scenario, participants are asked to individually rate how much
they do or do not think the scenario is an instance of ML and then
justify their position in discussion. We end each scenario by showing
how the instructors view the scenario.

Our redesign of the workshop to support participant prepared-
ness (Learning goal #3) led to the largest shift in the workshop to-
wards active learning. Specifically, we added a ML paper charting
activity, which is introduced in Day 1 and occurs on Day 2. On the
first day, we ask participants to choose a biological paper that uses
ML from a list or a paper they brought, but we make sure that each
paper is selected by two or more participants. We ask participants to
skim this paper before the second day of the workshop.

On the second day of the workshop, after working through an
example paper (Listgarten et al., 2004) as a group, participants at-
tempt to fill out a chart cataloging the steps of the ML workflow
(Learning goal #1), evaluating model performance (Learning goal

#2) and critiquing the experimental design (Learning goal #3).
Participants first spend some time individually, then in groups by
paper. Finally, we rejoin as a group and discuss issues or interesting
conversations that came up.

This activity gives participants a guided experience in the inter-
pretation of research involving ML. The transition from learning
about ML to having to interpret real ML experiments begins during
the workshop. In doing so, we scaffold the participants in moving
from lower levels of Bloom’s taxonomy (Crowe et al., 2008) to
higher levels. Additionally, the choice of paper allows participants
to select a paper that interests them. Most of the papers do not
cleanly fit into the standard ML workflow taught on the first day, as
is expected given the huge variety of ways ML is used. This ‘messi-
ness’ gives participants support in activities that look more like what
they will experience in their professional lives.

2.4 Drawing on prior knowledge
Learners come to learning environments with prior knowledge,
which can both help or hinder their learning (Ambrose et al., 2010).
The ML4Bio workshop is no exception: the workshop is intended
for those who are involved in biological research, typically graduate
students, postdocs and staff scientists. These participants come to
the workshop as trained researchers in a biological domain. Thus,
when designing the workshop, we considered an andragogical ap-
proach, where andragogy is an approach that specifically focuses on
adult learners (Chan, 2010). Adult learners tend to be motivated by
potential applications and learn through drawing on their own prior
experiences. We designed workshop lessons to be task-oriented and
use real biological applications of ML.

In the second lesson of the workshop, where participants are
introduced to the ml4bio software and walk through the ML work-
flow, we use a motivating example of classifying T cells as active or
quiescent using imaging data (Wang et al., 2020). Throughout the
workshop, we refer back to this dataset as well as synthetic datasets
with the same features and classes that are designed to specifically
show some facet of classifier behavior. Other real datasets are
included in the ML4Bio GitHub repository from the UCI Machine
Learning Repository (Dua and Graff, 2017). Using motivating bio-
logical problems leverages participants’ prior knowledge to help
them understand how classification works. Participants can more
easily see what is reasonable or unreasonable in a familiar problem
domain. Tailoring ML education to learners’ primary domains has
also been effective in undergraduate education (Sulmont et al.,
2019).

We use participants’ prior knowledge by centering the academic
paper critique activity in the workshop. We expect all participants
to be able to interpret and evaluate biological literature. This

Fig. 2. Different configurations of the left half of the software interface throughout a ML workflow

Fig. 3. The right half of the ml4bio software interface. The top shows a summary of

all classifiers created during model selection, and the bottom shows detailed infor-

mation on the performance of the selected classifier. Note that multiple classifiers

can only be viewed during model selection. The user must select a single model and

can no longer see the performance of other models once the test set is examined
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activity draws on participants’ existing abilities to read and analyze
academic papers and merely has them extend those abilities to
papers that include ML components. Introducing the skill of reading
academic papers from the ground up would take much more than
an hour or two to attain (Hubbard and Dunbar, 2017). We struc-
tured the ML paper charting activity to use this prior knowledge, as
participants are encouraged to choose a paper to chart that they are
interested in or come from their research area.

Although participants’ prior knowledge generally enhances their
learning, we also considered areas where prior knowledge could hin-
der it. Misconceptions can occur if participants incorrectly apply
their prior knowledge and we do not catch and confront the miscon-
ception. We were especially cautious when designing the lesson on
evaluation metrics. Many of the metrics used to evaluate classifier
performance, such as precision and recall, have different meanings
in laboratory settings. We directly address this and other possible
overlapping terminology to participants.

3 Study design

Participants. After we reformulated the workshop’s learning goals
and activities, we held 3 ML4Bio workshops online over Zoom on
May 4 and 6, August 2 and 5 and September 14 and 16 2021.
Participants were recruited to the workshops via email and could
choose to participate in the study after registering for the workshop
during the pre-workshop survey. A total of 10, 18 and 19 workshop
participants consented to participate in the study in the May,
August and September workshops, respectively. The study was
approved by the Institutional Review Board of the University of
Wisconsin-Madison (#2021-036), and we obtained electronic
informed consent from all study participants. Participants could par-
ticipate in the workshop and provide informal feedback on the
workshop without participating in the study. Here, we report only
on those who consented to study participation. A breakdown of par-
ticipant demographics is presented in Supplementary Table S1.

Data collection. To collect data on the workshop experience and
its efficacy in achieving its learning goals, we designed three differ-
ent data collection instruments: a pre-survey, a skills assessment and
a post-survey. The pre-survey was emailed to participants in the
week before the workshop; the assessment was given during the
workshop; and the post-survey was emailed to participants immedi-
ately after the workshop. No directly identifying participant infor-
mation was collected.

The pre- and post-surveys were designed to collect participant
demographic data, record their workshop experiences, and evaluate
the workshop’s affective learning goal (#4). In the pre-survey, we
collected participant demographic data including current career
stage; experience with statistics, ML, coding and the command line;
and overall goals and expectations for the workshop. In the post-
survey, participants were asked about their experience in the work-
shop with regards to their expectations, pacing, time allocation and
general feedback.

The post-survey also included embedded retrospective pre–post
questions that were used to assess the workshop’s affective learning
goal. Retrospective self-assessment has been shown to help prevent
response-shift bias, where understanding of the question being asked
can change between pre- and post-assessments, while still identifying
learning (Bhanji et al., 2012). For instance, a participant’s increased
understanding of ML could lead them to realize that they initially
understood less than they thought they did, thus resulting in a de-
crease in self-assessed knowledge after learning. One paired pre–
post question was included for verifying the retrospective questions.

In contrast to the surveys, the in-workshop assessment was
designed to ascertain whether or not participants had achieved the
content learning goals of the workshop (#1–3) and to verify partici-
pants’ self-assessment of their knowledge and confidence in ML
after the workshop. Participants were given a heavily modified ex-
cerpt from a paper that uses random forests to predict microRNA
targets (Mendoza et al., 2013). The modifications included feature
simplification and the changing model selection to be based on the
test set, introducing data leakage into the workflow. Participants

were asked to identify parts of the ML experiment such as the
model, features and data splitting strategy and to assess the experi-
ment for overfitting, choice of performance metrics and data leak-
age. This assessment allows direct measurement of participants’
ability to understand and assess ML as presented in academic
papers. Identifying parts of the ML experiment assesses achievement
of Learning goal #1, and evaluating the experimental design and
model performance assesses achievement of Learning goals #2 and
#3. Note that without a pre-assessment of learning goals, this assess-
ment strategy does not provide causal evidence that the workshop
caused learning goal achievement. We decided that requiring partici-
pants to complete a pre-assessment would significantly lower inter-
est in the workshop. Additionally, when paired with the
retrospective self-assessment, we can draw conclusions about self-
assessment of learning goal achievement and use the in-workshop
assessment to verify the level of knowledge post-workshop.

Data analysis. The first step in data analysis involved creating
matched datasets for each consenting participant. Four digit codes
for each participant linked their pre-survey, in-workshop assessment
and post-survey.

The second step involved analyzing the self-reported survey data.
Pre- and post-survey questions related to background, expectations
and experiences (rather than questions related to preparation for fu-
ture work with ML) were analyzed using basic counts and descrip-
tive statistics. However, both retrospective and paired pre–post
questions were compared with two-sided Wilcoxon signed-rank
tests. Tests were performed using the scipy.stats.wilcoxon method in
SciPy v1.7.1 with default parameters.

The in-workshop assessment was ‘graded’ for correctness.
Workshop designers (who are also ML researchers) determined cor-
rect answers for each question on the assessment. Author C.S.M.
coded all answers given by participants. Additionally, authors
C.S.M. and R.S.R. looked at the participants’ explanations for their
responses. From those explanations, we identified common themes
in correct (and incorrect) answers. Although many questions in the
assessment have straightforward answers, later questions are less
clear. The final two questions in particular, ‘How well did the model
perform?’ and ‘Do you trust the validity of these results?’, do not
have an obvious correct answer. We instead compare participants’
responses to possible factors they were asked to identify the presence
or absence of in other questions: data leakage, improper perform-
ance metrics and overfitting. How the presence or absence of these
factors, and the degree to which they occur, affects participants’
trust in the presented results provides insight into how the partici-
pant will engage with ML research.

4 Results

4.1 Attendees’ backgrounds and expectations
Over the 3 workshop sessions, there were 47 participants in total
who completed the pre-survey. A summary of participants is shown
in Supplementary Table S1. 15 participants only completed the pre-
survey, 6 completed only the pre-survey and assessment, and 26
completed all instruments. The 21 incomplete responses include par-
ticipants who did not return for the second day and participants
who completed the workshop but did not fill out the post-survey.

Of the 47 participants, 46 had never taken a ML course, and 6
had never taken a calculus or statistics course. Before the workshop,
13 self-reported as knowing nothing about ML, 27 as knowing a lit-
tle and 7 as knowing a moderate amount. Only 3 participants
reported having more than a little research experience with ML.
Half of participants had at least a moderate amount of coding ex-
perience and experience with the command line interface. These
data align with our experiences in the initial workshop sessions and
provide strong support for our design choice to minimize the need
for coding and mathematical background knowledge.

Participants’ expectations generally aligned with the workshop’s
learning goals. 33 participants were interested in generally learning
about ML with responses such as ‘basic overview of ML’ and
‘understanding how ML works’. 24 participants specifically
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mentioned wanting to learn about questions they could answer in
their own research using ML or how to apply ML to their research.
These expectations align with the current learning goals of the work-
shop and are consistent with our focus on preparedness rather than
ML expertise.

4.2 In-workshop assessment
In-workshop assessment results (Supplementary Table S2) show that
learning goals #1 to #3 were generally achieved, though identifying
subtle instances of data leakage proved challenging for many partici-
pants. When presented with an altered excerpt from an academic
paper, almost all responses correctly identified the target variable,
number of instances, model, data splitting strategy and performance
metrics.

Data leakage. A methodological error, data leakage, was added
to the excerpt. About half of responses correctly identified the pres-
ence of data leakage in the experiment (Supplementary Table S2).
Almost all of the responses that provided an explanation for the
presence of data leakage correctly cited the lack of validation set or
the choice of the final model based on test set performance as evi-
dence of data leakage.

Overfitting and performance metrics. Most participants who
provided an explanation for their response to the presence of overfit-
ting were correct in their reasoning. Participants’ critique of metric
choice also showed an understanding of the correct factors to con-
sider, such as how false negatives were more important than false
positives in this setting, so sensitivity was an important metric.

Trust. Finally, when asked whether or not they trusted the valid-
ity of the results, participants had split opinions. Participants who
provided an explanation for their response provided correct explan-
ations, such as the data splitting strategy or overfitting as reasons to
not trust the results. We are not sure how to interpret other partici-
pants’ lack of trust in the paper, and it suggests opportunities for
further learning may be necessary to differentiate the severity of dif-
ferent problems with ML workflows.

4.3 Affective outcome
In addition to achieving the content-based learning goals, the data
indicates that the workshop was also successful in helping partici-
pants achieve the affective learning goal (#4). Recall that our goal
here is to support participants in developing the belief that they can
engage with ML research. We looked at those beliefs for several
domains including training classifiers, reviewing a paper with ML, and
identifying a problem well-suited to ML. Based on the self-reported
data, participants’ comfort in training classifiers for a research project
generally increased after the workshop (p ¼ 2:2� 10�4, n¼26,
Wilcoxon signed-rank test) as shown in Figure 4. Before the workshop,
over half of participants reported being not at all or a little comfort-
able, whereas after, among those who responded the majority were ei-
ther a little or somewhat comfortable. Some participants who reported

being very comfortable training classifiers after the workshop might
show an overestimation of ML skills. We do not expect participants to
be able to use ML in their own research without assistance after the
workshop.

There was an almost universal increase in self-reported know-
ledge and confidence from before to after the workshop (Fig. 5).
Participants reported a marked increase in their confidence in identi-
fying a problem that is well-suited to ML in their research
(p ¼ 5:3� 10�6, n¼26, Wilcoxon signed-rank test). Participants
reported a significant but lesser increase in knowledge of ML
(p ¼ 6:4� 10�6, n¼26, Wilcoxon signed-rank test) and confidence
in reviewing a paper that uses ML (p ¼ 1:3� 10�5, n¼26,
Wilcoxon signed-rank test), with the majority of participants report-
ing that they were somewhat confident or knowledgeable after the
workshop. Finally, the most direct evidence we have in their belief
that they can engage in ML is the substantial and significant increase
in their likelihood to pursue ML for future problems in their work
(p ¼ 9:4� 10�6, n¼26, Wilcoxon signed-rank test). A majority of
participants reported that they had little or no interest in pursuing
and confidence in identifying ML before the workshop, whereas a
majority reported that they were at least very interested and very
confident after the workshop.

4.4 Workshop experiences and expectations
Participants generally reported that the workshop met their expecta-
tions. Satisfaction with the workshop was high. 10 participants
responded that the workshop exceeded expectations, 10 that the
workshop met all expectations, 6 that the workshop met most
expectations and none that the workshop met some or did not meet
expectations. There was no clear consensus on which expectations
were not met. More real-world examples, coding, clustering and
how to use ML were mentioned.

When asked which workshop topics were most valuable, almost
every part of the workshop was named by at least some participants.
The two most commonly named parts of the workshop were lessons
that involved classifiers and the paper charting activity, with 12 and
7 participants naming those parts, respectively. Participants general-
ly valued learning the variety of classifiers available. Typical
responses were focused on ‘different classifiers and how they com-
pare’ or ‘discussing the different classifiers’. Three participants spe-
cifically mentioned that being able to visualize data or how
classifiers work was particularly helpful.

A number of the responses mentioning the paper charting activ-
ity noted that it was particularly valuable because of its applicability
and realism:

Working through the topics with the ML4bio sample where we

could see all the different graphs and assessment statistics to

understand how they relate. Also discussing papers where not

everything is laid out the same way or fully documented and

Fig. 4. Sankey diagram of participants’ responses pertaining to comfort with ML before and after the workshop across all three sessions. Note that a proportion of those who

completed a pre-survey and not a post-survey did not attend the workshop at all. 47 completed the pre-survey, 6 completed only the pre-survey and assessment, and 26 com-

pleted all 3 instruments
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learning to recognize that. I thought the research paper exercise

was helpful. Specifically because we could bring in articles that

interest us.

Two participants said that the in-workshop assessment was the
most valuable part of the workshop for them. Their responses men-
tion that performing an assessment, then checking it as a group,
gave immediate feedback on their learning. Other participants noted
that scenarios and polls used throughout the workshop also helped
them check their own learning:

I found all of it really valuable. I especially liked the knowledge

check at the end through literature evaluations. This course sol-

idified a lot of the ideas behind ML for me.

Participants were asked which workshop topics they would find
difficult to explain at a high level. Details of classifiers were reported
as the most common topic participants would have the most trouble
explaining. 13 responses mention classifiers in some form in their re-
sponse. Most responses name specific classifiers and focus on more
detail: ‘The details of how each algorithm works’, ‘Logistic regres-
sion versus neural networks’ and ‘Explaining how a neural network
works’. Other common areas of confusion were model selection and
data leakage, with five and three responses mentioning them, re-
spectively. Despite these continued areas of confusion, participants
highlight that the workshop met their goals and provided them with
valuable skills and knowledge around ML.

5 Discussion

5.1 Lessons learned
Provide flexibility for participants to bring their own goals. When
asked in the pre-survey what they were hoping to learn from the
workshop, most participants named a specific research question
they were interested in exploring with ML. This aligns with previous
literature on adult learners; adult learners are typically more moti-
vated than non-adult learners by real problems (Chan, 2010). Thus,
we found it especially important to ground workshop activities in
real or at least realistic data wherever possible.

Although having a problem in mind for the workshop can motiv-
ate participants, it also complicates meeting participant expecta-
tions. The research questions participants bring likely require tools
and knowledge beyond a general introduction to ML. Therefore, in
workshops geared towards active researchers, it is more likely that
the workshop’s learning goals may not perfectly align with a partici-
pant’s needs.

We mitigate this possible misalignment in a number of ways. We
provide a variety of applications throughout the workshop, so that
participants are likely to see at least one problem that is similar to
their research area. However, we do not cover application-specific
pre-processing and feature generation. This is evidenced by multiple

participants mentioning that they would want more information on
image analysis techniques with ML, even though the first presented
dataset is an image classification problem.

Additionally, we provide resources for participants to continue
learning about ML. These resources allow participants, even if their
goals were not fully met during the workshop, to have an accessible
next step for learning about their specific application. We present
these resources to participants in the final workshop lesson. The
resources include online textbooks, a Jupyter notebook demonstrat-
ing a ML workflow, ML-focused code tutorials and Carpentries
workshops for participants interested in learning more technical
skills. We plan to continue to grow this list of resources as we are
presented with new participant interests.

Finally, during the workshop, we give participants space to ex-
plore what they find to be interesting. This exploration is clearest
during the literature charting activity where participants can choose
from a variety of papers to investigate or bring their own. Multiple
participants found this activity to be the most valuable part of the
workshop. Participants can explore a specific application of ML
with support from fellow participants and workshop instructors.

Participants bring their own goals to the workshop.
Accommodating these goals can be seen as counter to the
backwards-design paradigm, where learning goals are chosen in ad-
vance. Incorporating application breadth, resources for participants
to continue to learn on their own and flexibility in the workshop
structure are effective tools for creating room for these goals while
still conducting a learning goal-driven workshop.

Assessments are worth the time. Participants found both forma-
tive and summative assessments valuable throughout the workshop.
Despite assessment being a well-known tool in school-based learn-
ing environments (Black and Wiliam, 2009), we were initially hesi-
tant to include assessments because we felt they might lower interest
from participants. However, multiple participants named the in-
workshop assessment the most valuable part of the workshop,
though this assessment was originally designed for the study and not
directly as a learning tool. Reviewing the assessment afterwards
allowed participants to catch misconceptions they otherwise would
have taken away from the workshop.

Participants mentioned that other in-workshop assessments,
polls and scenarios throughout each lesson were valuable checks of
their knowledge. These quick assessments also allowed the work-
shop instructors to notice and spend extra time on areas participants
were especially confused about.

An additional possible positive effect of the assessments was pro-
viding a mastery experience: a challenge that is successfully com-
pleted, demonstrating improvement. Mastery experiences lead to
increased efficacy and confidence (Bandura, 1977). In the final as-
sessment, almost all participants were able to correctly identify parts
of the presented ML experiment. This may have helped demonstrate
to participants their new knowledge of ML and helped lead to the

Fig. 5. Participant responses to self-reported knowledge, confidence and interest in ML before and after the workshop. Note that these questions used a retrospective design,

meaning that participants were asked about both before and after the workshop in the post-survey
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marked increases in self-rated confidence and knowledge of ML par-
ticipants expressed.

Set expectations as clearly as possible. Every iteration of the
workshop included more information about what participants
should expect. However, while the number of participants who
noted they had misaligned expectations decreased over subsequent
iterations of the workshop, every workshop still had some partici-
pants who noted something they were hoping or expecting to learn
from the workshop that was not covered.

The nature of the workshop’s audience may have exacerbated
this issue. Participants may have come to the workshop having al-
ready heard of methods that are popular in their field and expected
to learn about them during the workshop. Beyond more general
expectations, it may help set expectations if we had noted specific,
popular concepts that would not be covered in the workshop.
Explicitly stating popular terms and buzzwords can help communi-
cate with participants and manage expectations.

Participants were also uncertain about how deeply they should
understand some of the workshop content. This confusion was espe-
cially apparent during the lesson on logistic regression and neural
networks. Multiple participants expressed that they felt they did not
understand all the details of how logistic regression and neural net-
works work in their post-survey. However, we did not expect partic-
ipants to understand the mathematics behind these models. Better
delimiting what we expected participants to learn about these mod-
els and what was out of scope may have reduced this confusion.

5.2 Future directions
We plan to continue to refine and expand the ML4Bio workshop.
One area of improvement is to further pare down the knowledge
participants need to achieve the workshop’s learning goals.
Although we have already adapted the scope of some lessons, for in-
stance, by removing the mathematical details of how logistic regres-
sion works, it would be productive to systematically approach this
refinement. This streamlining could free time to explore more
nuanced examples of experimental design flaws like data leakage.

Further clarifying the limitations of the workshop and ML in
general would aid participants in choosing their next steps. This
could include adding additional cautionary language to the conclud-
ing lesson and emphasizing the importance of data cleaning and pre-
processing, which often require domain-specific strategies, to help
participants leave with a correct understanding of their current skills
in ML.

Although we are able to determine the achievement of learning
goals through the current set of surveys and assessment, some of the
questions on the assessment do not encourage useful feedback.
Questions on whether or not the results are valid or if the metrics
are appropriate do not have a definitive answer, but a large propor-
tion of participants answered them with a one-word ‘yes’ or ‘no’.
Ideally, these questions would encourage participants to rephrase
their answer or to change the question so that it has a clear correct
answer. A large proportion of participants’ answers were not useful
for analysis, though they did still appear to provide a valuable learn-
ing experience for participants.

A tool to export workflows in the ml4bio software to Jupyter
notebooks would provide a powerful link to technical skills.
Participants interested in coding could see how workflows they per-
form in the ml4bio software are expressed as code, giving a smooth-
er transition to coding ML workflows. Currently, we provide a
Jupyter notebook with Python code demonstrating an example ML
workflow similar to those implemented in the ml4bio software.
Participants can run this notebook in a web browser with Binder.

A few participants in each workshop consistently struggled with
software installation before and during the workshop. Some issues
arose from installing and configuring Anaconda. Others were due to
the scripts we provided to create the required conda environment or
the environment itself. Including more details about expected behav-
ior and installation screenshots in our setup instructions partially
alleviated but did not eliminate these issues. A cross-platform install-
er that provides the ml4bio software and required datasets, possibly
using the conda constructor tool, would make the workshop more

accessible and reduce the amount of command line troubleshooting
required. Rewriting the ml4bio software to run in a web browser
would minimize the technical requirements and help scale the work-
shop to larger audiences. However, this would require substantial
software development. There are also numerous ways to improve
the ml4bio software such as support for more classifiers, visualiza-
tion of datasets with more than two features, saving models and set-
tings, more interface tooltips and better text scaling.

We plan to expand our current instructor notes to the point that
we could provide the ML4Bio workshop as a full lesson plan others
could teach. Although all activities in the workshop are laid out in
the online materials and current instructor notes, they are not
detailed enough for someone to teach the workshop without first
observing it. The workshop could also be scaled up to larger sessions
if additional helpers were present to lead group activities and
troubleshoot software issues. The ML4Bio workshop has joined The
Carpentries Incubator to gain additional support and feedback and
to expand the audience and possible future instructors. Our work-
shop design and instruction have already benefited from the princi-
ples taught in The Carpentries Instructor Training and specific
suggestions from Carpentries instructors. We hope to expand and
improve the ML4Bio workshop so that it continues to be an effect-
ive tool for helping biologists participate in an increasingly compu-
tational research world.
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