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Abstract

Relay cells are prevalent throughout sensory systems and receive two types of inputs: driving and modulating. The driving
input contains receptive field properties that must be transmitted while the modulating input alters the specifics of
transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that
encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what
aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such
as attentional demands and a subject’s goals. In this paper, we analyze a biophysical based model of a relay cell and use
systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the
neuron’s electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the
modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-
pulse intervals obeying an exponential distribution. Our analysis applies to any nth order model as long as the neuron does
not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance
obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the
modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how
the biophysical properties of the neuron (e.g. ion channel dynamics) define the oscillatory patterns needed in the
modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds
predict experimentally observed neural activity in the basal ganglia in (i) health, (ii) in Parkinson’s disease (PD), and (iii) in PD
during therapeutic deep brain stimulation. Our bounds also predict different rhythms that emerge in the lateral geniculate
nucleus in the thalamus during different attentional states.
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Introduction

Relay neurons are found in various brain nuclei including the

thalamus [1–3]. Experiments have suggested that the inputs to a

thalamic relay neuron can be divided into two categories: driving

and modulating. The driving input typically contains sensory

information (e.g visual, motor) and the modulating input controls

relay of this sensory information back to cortex [4]. The driving

input is made up of a few synapses on the proximal dendrites

whereas the modulating input comprises all other synapses [5,6]

(see Figure 1 A).

For example, the lateral geniculate nucleus (LGN) in the

thalamus receives the driving input from the retina and projects to

the primary visual cortex. The modulating input comprises

descending inputs from layer 6 of the visual cortex and ascending

inputs from the brain stem. The function of the LGN is to

selectively relay sensory information from the retina subject to

attentional needs [4,7]. It has been observed that during different

attentional needs (which translate into different relay demands),

local field potentials (LFPs) in the LGN have a concentration of

power in different frequency bands (D?c) [8,9]. LFPs may be

reflected in the modulating input because they are believed to arise

from ensemble synaptic activity [10]. This would then suggest that

one mechanism that controls relay in the LGN cell is the

frequency of the modulating input.

Similarly, relay neurons in the motor thalamus receive driving

inputs from sensorimotor cortex, and modulating inputs from the

basal ganglia (BG), specifically the Globus Pallidus internal

segment (GPi) [4,11]. The driving input contains information

about the actual movement via proprioception, and the modulat-

ing input facilitates/impedes relay of this information to motor

cortex [12–16]. It has been observed that neural activity in the GPi

changes its oscillatory patterns when a subject’s cognitive state

moves from being idle to planning a movement [17]. In particular,

GPi activity has prominent beta band oscillations when the subject

is idle, which then get suppressed when the subject plans to move.

This suppression coincides with an emergence of gamma band

oscillations. This would suggest, again, that one mechanism that

controls relay in the motor thalamic cell is the frequency of the

modulating input.

In this study, we set out to quantify when and how these

thalamic cells relay driving inputs. Previous attempts to study relay

neurons are made in [15,16,18–20]. Specifically, in [18,19] in-

vitro experiments are used to understand how background

synaptic input modulates relay reliability of a thalamic neuron.

These studies suggest that the neuron’s reliability of relaying an

incoming spike is governed by the background synaptic input (the

modulating input) combined with intrinsic properties of the

neuron. In particular [19], showed that if the variance of the

background synaptic input increases, the transmission reliability
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goes down, and [18] showed that the feedback inhibition from the

nucleus reticularis modulates the excitability of the thalamic cell

membrane and hence gates transmission of spikes from the retina.

An attempt to analytically study relay neurons is made in [15],

where in they studied the effects of BG inhibition on the thalamic

relay reliability. They used a 2nd order non-bursting model and

phase-plane analysis to study relay neuron properties. However,

they only considered a constant and a low frequency periodic

modulating input. Additionally, only one deterministic periodic

waveform was considered for the driving input. A follow up study

with a similar objective is presented in [20], wherein the authors

analyzed a relay neuron driven only by a driving input (no

modulating input). Using Markov models, they studied how

different distributions of driving pulse arrival times affect relay

reliability. However, they did not present an explicit expression for

the dependence of reliability upon input distributions and relay

neuron properties.

The work presented here is different from the above compu-

tational studies in that we include classes of modulating and

driving inputs in our analysis, and we employ systems theoretic

tools to obtain explicit analytical bounds on reliability as a function

of the neuron’s electrophysiological properties (i.e., model

parameters), the modulating input signal, and the driving signal

parameters. Our analysis is applicable to any nth order model as

long as the neuron does not spike without a pulse in the driving

input and exhibits a refractory period. Consequently, our analysis

is relevant for relay cells whose electrophysiological dynamics,

including bursting, may be governed by several different ion

channels and is more rigorous than previous works. Our lower and

upper bounds contained reliability computed through simulation

of both a second- and third-order model, and suggest, for example,

that if the frequency of the modulating input increases and/or its

DC offset decreases, then relay reliability increases.

The methods used here are generally applicable to understand-

ing cell behavior under various conditions. In the discussion

section, we show how our analysis shed new insights into motor

signal processing in health and in Parkinson’s disease with and

without therapeutic deep brain stimulation. We also discuss how

our bounds predict neural activity generated in the LGN during

visual tasks with different attentional needs as well as during sleep.

In particular, we show how our bounds predict the following

observations in the LGN: (i) prominent c and b rhythms

(25{100 Hz) in the LGN LFPs during high attentional tasks

[9]; (ii) phase locking between a rhythm (12{15 Hz) in LFPs and

spiking activity in the LGN in awake behaving cats [21]; (iii) h
rhythms (3{5 Hz) in drowsy cats; and, (iv) even slower

0:2{0:5 Hz rhythms in sleeping cats [8].

Materials and Methods

In this section, first we describe a biophysical model of a relay

neuron, and then use systems theoretical tools to compute bounds

on relay reliability.

A Relay Neuron Model
A relay neuron receives two kinds of inputs: a driving input, r(t)

and a modulating input u(t), and generates one output, V (t), as

Author Summary

In cellular biology, it is important to characterize the
electrophysiological dynamics of a cell as a function of the
cell type and its inputs. Typically, these dynamics are
modeled as a set of parametric nonlinear ordinary
differential equations which are not always easy to analyze.
Previous studies performed phase-plane analysis and/or
simulations to understand how constant inputs impact a
cell’s output for a given cell type. In this paper, we use
systems theoretic tools to compute analytic bounds of
how well a single neuron’s output relays a driving input
signal as a function of the neuron type, modulating input
signal, and driving signal parameters. The methods used
here are generally applicable to understanding cell
behavior under various conditions and enables rigorous
analysis of electrophysiological changes that occur in
health and in disease.

Figure 1. A relay neuron. (A) Illustrating a relay neuron. Ensemble activity of all the distal synapses (stars) is modulating input u(t). The proximal
synapses (diamonds) form the driving input r(t). The output is the axonal voltage V (t). (B) A block diagram of a relay neuron showing two inputs and
output V (t).
doi:10.1371/journal.pcbi.1002626.g001
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shown in Figure 1 B. The function of this type of neuron is to

generate an output that relays the driving input at appropriate

times. The modulating input does as its name implies i.e. it

modulates the neuron’s ability to relay the driving input [4]. This

relay neuron model structure has been widely used to model

thalamic relay neurons [15,16,22–26].

We would like to understand exactly how the modulating input

affects relay reliability of the neuron. To do so, we use a

biophysical-based model to describe the electro-physiological

dynamics of the relay neuron. We first begin with a second order

model to highlight structure in the model dynamics, and then we

present an nth order generalization. Recall that the output of the

cell, V (t) [R, is the membrane voltage of the neuron. Then for

time t [Rz,

dV

dt
~

{1

Cm

(Iion{Iext){u(t)(V{Vsyn)zr(t), ð1aÞ

dh

dt
~a

(h ?(V ){h)

(th(V ))
, ð1bÞ

IT~gT m?
3 (V )h(V{VCa) ð1cÞ

IL~gL(V{VL) ð1dÞ

Iion~ITzIL: ð1eÞ

In (1), Cm,Iion,Iext,Vsyn [R are the membrane capacitance,

ionic current, external current and synaptic reversal potential,

respectively. Iion is composed of currents IT , which is a low

threshold calcium ion current, and IL which is the neuron’s

membrane leakage current. Iext is a constant external current, and

h(t) [ ½0,1�, is an internal state of the system representing the

probability that a calcium channel inactivation gate is open at a

time t. a,gT ,gL [Rz are temperature correction factor, maximum

calcium current and leakage current conductance, respectively.

The details of h ?(V ), th(V ) and m ?(V ) and numerical values

used in our simulations are given in Tables 1 and 2. This is a

simplified model of a thalamic neuron that is driven only by

calcium ion and leak currents. We begin with this model because it

is simple and still contains low threshold calcium currents which

are shown to govern input selectivity of relay neurons, in a

computational study [23]. This model has also been used to model

neurons in the inferior olive for the purpose of studying sub-

threshold oscillations [27].

State space representation and nth order gener-

alization. By defining a state vector x~½(V{Vsyn),h�T , an

equivalent state space representation to (1) can be written as:

_xx~f(x)z
{u(t) 0

0 0

� �
xz

r(t)

0

� �
, ð2Þ

where f(x)~

{ 1
Cm

(gTfm?
3 (x1zVsyn)gx2(x1zVsyn{VCa)zgL(x1zVsyn{VL){Iext)

a
(h ?(x1zVsyn){X2)

(th(x1zVsyn))

0
BB@

1
CCA: ð3Þ

Note that f : R2?R2 is a non linear, continuous and

differentiable vector-valued function of x. In general, a state space

representation takes the form _xx~f(x,r,x), however, there is more

structure in (2). From (2), one can see that f(x) is only a function of

the system’s internal states. The modulating input, u(t), multiplies

the first component of the state x, while the driving input, r(t), is

an exogenous input to the system.

The 2nd order model (2) can be generalized to an nth order

model to include more ion channels as well as more complicated

spiking dynamics such as bursting. The nth order model is as

follows:

_xx~f(x)z
{u(t) 0

0 0

� �
xz

r(t)

0

� �
, ð4Þ

Here, x~ V{Vsyn,h1,h2, � � � ,hn{1

� �T
is the n-dimensional

state vector of the system, where V ,Vsyn [R are the membrane

and the synaptic reversal potential of the cell, respectively. Each

hi [ ½0,1�, denotes the probability that a ith ion gate is open.

f : Rn?Rn is a nonlinear, continuous and differentiable vector-

valued function of x with following form:

f(x)~

{ 1
Cm

(
Pl

i~1 gi P
ki
j~ki{1z1 xj

� �
(x1zVsyn{Vi){Iext)

a1
(h1

?(x1zVsyn){x2)

(t1(x1zVsyn))

..

.

an{1
(hn{1
? (x1zVsyn){xn)

(tn{1(x1zVsyn))

0
BBBBBBBB@

1
CCCCCCCCA
: ð5Þ

Table 1. Details of function in (1).

Function Value

h?(V ) 1

1ze
Vz85

8:6

m?(V ) 1

1ze
{61{V

5:2

th(V )
5z

1

1ze
Vz60

7:3

doi:10.1371/journal.pcbi.1002626.t001

Table 2. Parameter’s values in (1).

Parameter Value

Vca,Vsyn,Vl 120,{80,{63 mV

Iext
{5

mA

cm2

gT ,gL 3,0:8
mS

cm2

C
1

mF

cm2

doi:10.1371/journal.pcbi.1002626.t002
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Each gi is the conductance of the ith ion channel. Vi [R is the

reversal potential of ith ion. ki [N are such that kiz1{ki are the

number of gates in the ith ion channel and k0~0. Each ai is a

temperature correction factor. hi
?() and ti() are functions similar

to h ?() and th().
Inputs and outputs. For our relay reliability analysis, we

assume that the two inputs belong to the following classes of

signals:

N Driving Input(r): This input represents the spiking activity

from other neurons (e.g. cortical neurons), which the neuron

must relay. Synapses of the driving input occur on proximal

dendrites and are excitatory in nature. The driving input

synapses are fewer in number than modulating input synapses.

However, the magnitude of post synaptic potential of each

driving synapse is larger compared to a modulating input

synapse [4,6]. Therefore, we assume driving input belongs to

the following class of functions:

S~fr(t) [R D r(t)~I0

Xn

i~1

D(t{ti)g: ð6Þ

Here, I0,ti,t [Rz and i,n [N. D(t) is a Dirac delta function

[28]. The ti
’s are generated randomly such that

tiz1~tizT0zt’, where T0 [R is a constant that represents

the refractory period of driving input, and t’ [Rz is

exponentially distributed with probability density function:

ft’(t’)~
le{lt’ for t’ § 0

0 for t’ v 0

(
, ð7Þ

where l [Rz. The average inter-pulse interval is

T~E(tiz1{ti)~T0z1=l. Note that tis are characterized

completely by T and T0. A sample driving input is shown in

Figure S1 A (supplementary material).

N Modulating Input(u): This input modulates the dynamics of

the neuron and governs relay performance. Synapses of the

modulating input are generally inhibitory and occur on distal

dendrites. The magnitude of post synaptic potential of each

synapse is smaller as compared to a driving synapse [4,6].

Therefore, this input is represented in the biophysical model

(1) as a synaptic input and belongs to the following class of

sinusoidal functions:

N

U~fu(t) [R D u(t)~c1zc2sin(vt)g: ð8Þ

Here c1,c2,v, and t [Rz and c1§c2. Since u(t) represents a

conductance, we impose the constraint c1§c2 to ensure that

u(t) [Rz. Also, c2 is appropriately small so that the

modulating input does not make the relay neuron spike

without a driving input pulse. This property of the

modulating input will be useful when we linearize (1) for

the analysis.

N We model the modulating input in a deterministic manner as it

represents the ensemble sum of inhibitory post synaptic

potentials (IPSPs). These IPSPs are generally small because

inhibitory synapses activate the T-type Ca2z channels

allowing an influx of Ca2z thereby reducing the magnitude

of IPSPs at the soma. In relay cells, T-type Ca2z channels

have a higher density on distal dendrites [29], and this reduces

the magnitude of the IPSPs even further. An ensemble effect

[30] of these small IPSPs give rise to a deterministic u(t). Note

that excitatory postsynaptic potentials of driving input will not

get attenuated by the T-type Ca2z channels as these channels

get activated only when the cell is hyperpolarized.

N We choose the class of sinusoidal signals to shed insights into

the mechanisms of oscillatory behavior or rhythms of LFPs

which are often analyzed in experiments [8,9,21]. Note that

LFPs arise from ensemble synaptic activity and hence may

represent the modulating input. [10]. A sample modulating

input is shown in Figure S1 B (supplementary material).

N Output: The output of the relay neuron is its membrane

voltage V (t)~x1(t)zVsyn.

Properties of f(x). The function f(x) is assumed to have the

following 3 properties but is otherwise general:

1. Stable neuron: Consider the following undriven system:

_xx~f(x)z
{c1 0

0 0

� �
x ¼D F(x): ð9Þ

This system is the same as (4) where u(t)~c1 and r(t)~0.

Although, this system is nonlinear, we can study it via linearization

about trajectories and/or an equilibrium point.

In general, a non-linear system may have multiple equilibria with

different stability properties. But for our purposes, we choose f(x)
such that (9) has only one globally stable equilibrium point, �xx, for all

pragmatic c1. Such a neuron is called a stable neuron [27]. This

condition ensures that the neuron does not have any limit cycle,

therefore, the neuron does not spike without a pulse in r(t).

This further implies that if a small periodic modulating input

is applied to a stable neuron (4), u(t)~c1zc2sin(vt),r(t)~0,

then after a sufficient amount of time the system’s state vector

will lie within a small neighbourhood of the equilibrium point.

However, the state vector never reaches �xx due to the time

varying modulating input. The trajectory of the state in this

neighbourhood can be solved using linearization methods and is

periodic as we will show later. We define this periodic trajectory

as the steady state orbit of a stable neuron, xo(t). See

Figure 2 A.

Next, we define X ? as the collection of all points in the steady

state orbit. If the initial state of the system x(t~0) 6[ X ? then X ?

is not achievable in finite time. Therefore, we relax our definition

to the collection of all points inside a tube of E thickness around the

steady state orbit, and define this tube as the set Xr, i.e.

Xr~fx [RnDEx{vEƒE for atleast one v [X ?g: ð10Þ

An illustration of equilibrium point �xx, steady state orbit xo(t) and

the orbit tube, Xr is shown in Figure 2 A.

2. Threshold behaviour: To define threshold behaviour of a

neuron, we first define a ‘‘successful response’’. A successful

response at time t is a change in V such that V (t)w{50 mV &
V (t{t)ƒ{50 mV Vt [ (0,L) ms. Note that both a single spike or

a burst of spikes, with intra burst interval less than L ms, are

counted as a single successful response under this definition. We

use this definition so that we can extend our analysis to bursty

neurons characterized by higher order models.

Now, we state the following Lemma which defines the critical

hypersurface.

Lemma 1: Given an nth order system (9), there exists a

critical hypersurface of the system, x1~S(x2, � � � ,xn)
ƒ{50{Vsyn, such that x1(t)w{50{Vsyn if and only if

Performance Limitations of Relay Neurons
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Figure 2. Properties properties of f(x). (A) Illustrates the equilibrium point �xx, the steady state orbit xo(t) and the orbit tube, Xr , for f(x) given by
(3) and c1~0:01. The orbit tube is shown for c2~0:01,v~20p rad=sec. (B) Illustrates xth , the threshold voltage Vth and threshold current Ith . Note
that these parameters are defined by the undriven system (9). (C) Illustrates the critical hypersurface x1~S(x2, � � � ,xn), a successful response
trajectory, an unsuccessful response trajectory, and the refractory zone, XR for the undriven system (9). The time it takes for the solution to leave XR

after generating a successful response is called the refractory period, TR . Note that refractory zone depends on I0 and therefore TR also depends on

Performance Limitations of Relay Neurons
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x1(t0)wS(x2(t0), � � � ,xn(t0)) for some t0ƒt: That is, the neuron

only generates a successful response if the voltage crosses the

critical hypersurface (see Figure 2 C and 3).

We leave a formal proof to the reader. Essentially, by definition

of S, one can show that the solution to (9) always moves away from

S, unless it is on S (see Figure 3). This means that at least one of

the eigenvalues of
DF(x)

Dx
D½S(x2,���,xn),x2,���,xn�T has a positive real part.

This threshold property is also used in other studies [31].

Now, we define xth~½S(�xx2, � � � ,�xxn),�xx2, � � � ,�xxn�T , which is a

point on the critical hypersurface. Note that xth1zVsyn, is the

traditional threshold voltage Vth that people refer to for neurons

[31–33]. In [31] it has been shown that spike threshold is

influenced by ion channel activation/inactivation and synaptic

conductance. In our case, the threshold x1~S(x2, � � � ,xn) shows

the same behavior as it is a function of the availability of

activation/inactivation gates. The effect of time varying synaptic

conductance is not captured by the hypersurface S. However, we

used linearization methods from systems theory in section

‘‘Response in xth Neighbourhood Under u(t)~c1zc2sin(vt)’’ to

include this effect. This yields a time varying threshold. Although

we never explicitly deal with time varying threshold, it is implicit in

our analysis. Finally, we define the threshold current, Ith, such

that �xxz½Ith,0�T~xth. Note, by definition both Ith and Vth have

the same units and hence can be added.

Illustrations of a successful response, unsuccessful response, the

critical hypersurface S, Ith, Vth, xth are shown in Figure 2 B, C, for

a second order system. Note that, Ith and Vth are functions of c1,

since different values of c1 result in different F(x) and hence

different �xx, xth. Figure 2 D, plots how Ith varies with c1 for f(x)
given by (3). Ith(c1) is essentially a linear function with slope

m~24 mVms, i.e Ith(c1)^Ith(0)zmc1.

3. Refractory period: Most neurons may generate a

successful response when they are depolarized. However, they

are unable to generate a successful response immediately after

generating one. The duration for which they cannot generate a

second successful response is called a refractory period [34]. This is

because when a neuron returns back to its equilibrium point after

generating a successful response, it becomes hyperpolarized,

requiring extra depolarization to generate a new successful

response. Additionally, due to inactivation of sodium and calcium

ion gates, extra depolarization is required for the state to cross S

and hence generate a successful response. This extra depolariza-

tion results in an unsuccessful response soon after a successful

response.

We define the refractory zone, XR5Xc
r as the region such

that if x(ti) [XR, the neuron of type (4) (with u(t)~c1) cannot

generate a successful response on the arrival of a pulse in r(t) with

height I0 at time ti. Note that Xc
r is the complement of Xr.The

time spent in this zone after a successful response is the

refractory period, TR. Note that, TR is not an absolute

refractory period as a stronger depolarization event may result in a

successful response even if x(t) [XR.

In Figure 2 C, we illustrate XR for a second order system with

f(x) given by (3) and c1~0:01. For this system, TR decreases with

I0, as shown in Figure 2 E. Note that XR and Xr are disjoint sets by

definition.

Relay Reliability
Before we define relay reliability, we first define a relayed pulse. A

relayed pulse is a successful response, V (t), that occurs within

W ms after a pulse in the driving input, r(t). See Figure S2

(Supplementary Material). Let,

a ¼D total # of relayed pulses and ð11aÞ

b ¼D total # of pulses in r(t), ð11bÞ

then the empirical reliability is defined as:

Remp~
a

b
: ð12Þ

This definition of reliability is similar to the one defined in [15]

and is not meaningful if V (t) spikes without a pulse in r(t). But

since our neuron is a stable neuron, this will never happen. In the

limit that we observe the neuron for an infinite amount of time, the

empirical reliability converges to

R ¼D Pr(Successful response to a driving pulse): ð13Þ

Let us define events

SR ¼D Successful Response to a driving pulse ð14aÞ

I0 . Additionally, note that the region shaded in the darker grey is also in the refractory zone, because if x(ti) is in this region then AtvL ms such that
x1(ti{t)w{50 mV : Therefore, a successful response cannot be generated if x(ti) is in this region by definition. (D) Dependence of Ith on c1 . Note
that Ith(c1) is approximately a straight line with slope m, i.e Ith^Ith(0)zmc1 . (E) Illustrates TR vs I0 and x(0).
doi:10.1371/journal.pcbi.1002626.g002

Figure 3. Threshold. Illustrates the critical hypersurface x1~
S(x2, � � � ,xn), which defines the threshold for a successful response.(9)
generates a successful response for any initial condition that is to the
right of the hypersurface i.e. x1wS(x2, � � � ,xn). Whereas, any initial
condition to the left of the hypersurface results in unsuccessful
response.
doi:10.1371/journal.pcbi.1002626.g003
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USR ¼D Unsuccessful Response to a driving pulse: ð14bÞ

We then see that

R~Pr(SRDx(t) [Xr):Pr(x(t) [Xr)

zPr(SRDx(t) [XR):Pr(x(t) [XR)

zPr(SRDx(t) 6 [Xr|XR):Pr(x(t) 6 [Xr|XR)

ð15Þ

Here we have used the total probability law and the definition of

conditional probability [35] to go from (13) to (15). Because we

cannot generate a spike in the refractory zone, XR, we get that

R~Pr(SRDx(t) [Xr):Pr(x(t) [Xr)

zPr(SRDx(t) 6 [Xr|XR):Pr(x(t) 6 [Xr|XR)
ð16Þ

For most neurons, the dynamics of the first component of the

state, x1, are faster than the other states in the region (Xr|XR)c,

see Figure 2 C. Therefore, when x(t) 6 [Xr|XR, it returns to Xr

only if it is close to Xr, otherwise it returns to XR. The return

process to XR is much faster as compared to the return process to

Xr, due to slower dynamics arising near Xr. Therefore, when

x(t) 6 [Xr|XR, it spends most of its time close to Xr, and hence we

assume that the Pr(SRDx(t) 6 [Xr|XR)^ Pr(SRDx(t) [Xr). Fur-

thermore, since the Pr(x(t) 6 [Xr|XR)^0, this assumption does

not affect our results much. We will convince the reader that these

assumptions are mild in the results section. Essentially, we will

show that our reliability expressions under these assumptions

match well to numerically computed curves for different relay

neurons. Finally, since Xr and XR are disjoint sets, we get:

R~Pr(SRDx(t) [Xr):Pr(x(t) 6 [XR) ¼D Presponse
:Ppulse ð17Þ

Although not explicitly in (17), relay reliability is a function of

the driving input parameters, I0 and T , the modulating input

parameters, c1,c2 and v and the neuron’s dynamics (i.e. model

parameters) denoted by H . In the next sections, we compute

closed-form approximations of lower and upper bounds of

reliability as a function of I0,T ,c2,c1,v and H, by computing

Presponse and bounds on Ppulse.

Calculation of Presponse

To compute Presponse, we first find a solution for the orbit tube

Xr and then find a solution for the response to a driving pulse

given the state starts in Xr. This solution shows us when the

neuron generates a successful response. We later use this

information to compute Presponse.

The orbit tube: Response to u(t)~c1zc2sin(vt) and

r(t)~0. Here, we examine the state vector response to a periodic

modulating input when no driving input is applied.

The solution to (4) in the orbit tube is given by its steady state

solution with r(t)~0. This steady state solution can be approx-

imated using linearization (4) and linear time invariant (LTI)

systems theory. Specifically, we linearize (4) about the nominal

solution �xx(t)~�xx given the nominal input u0(t)~c1. Now, if the

input is perturbed such that u(t)~u0(t)zDu(t) and the initial

condition is perturbed such that x(0)~�xxzDx(0), the state

trajectory will also be perturbed to xo(t)~�xxzDxo(t). When we

substitute these values and perform a first order Taylor series

expansion of (4) about the nominal solution and nominal input, we

get:

d _xxo^
df(x)

dx
D�xxz

{c1 0

0 0

� �� 	
dxoz

{1 0

0 0

� �
�xx

� 	
du, ð18Þ

which can be equivalently written as:

d _xxo~AdxozBdu(t), ð19Þ

where

A~
df(x)

dx
D�xxz

{c1 0

0 0

� �
~

dF(x)

dx
D�xx, ð20aÞ

B~
{�xx1

0

� �
, ð20bÞ

du(t)~c2sin(vt): ð20cÞ

The solution to (19) with Dxo(0)~0, in the Laplace domain

[36] is

dxo(s)~(sI{A){1Bdu(s): ð21Þ

Substituting the laplace transform of Du from (20) and defining

(sI{A){1B ¼D {½H1(s),H2(s), � � � ,Hn(s)�T �xx1, ð22Þ

we get:

dxo(s)~{

H1(s)

H2(s)

..

.

Hn(s)

0
BBBB@

1
CCCCAc2�xx1

v

s2zv2
ð23Þ

From (23), one can compute the steady state solution of (19) by

taking inverse Laplace transform of (23) and taking the limit

t??. This gives:

dxo(t)~{

c2�xx1jH1(jv)jsin(vtz%H1(jv))

c2�xx1jH2(jv)jsin(vtz%H2(jv))

..

.

c2�xx1jHn(jv)jsin(vtz%Hn(jv))

0
BBBBBB@

1
CCCCCCA

¼D {c2

g1sin(vtza1)

g2sin(vtza2)

..

.

gnsin(vtzan)

0
BBBBBB@

1
CCCCCCA
:

ð24Þ
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Here, %(a) denotes the angle of complex number a. Note that

du(t)~c2sin(vt) for u(t) [U. (19) approximates (4) in steady state

when c2 is small, which is always the case by definition of U. Also

note that we will get the same steady state response even if

dxo(0)=0. Using (24), we can write the steady state solution of (4)

as:

xo(t)~�xxzdxo(t): ð25Þ

Now we can find the orbit tube using its definition. Figure 2 A,

4, plots the steady state orbit for a second order stable neuron with

f(x) given by (3).

Response to r(t) pulses and u(t)~c1zc2 in the orbit
tube. We now examine the neuron’s response to a driving input

pulse when the solution is in the orbit tube. It is straightforward to

see how a r(t) pulse affects the solution trajectory. Suppose that the

state vector is at the xo(ti) and at some time ti, when the driving

signal generates a pulse, i.e., r(ti)~I0D(0). Then, the state vector

‘‘jumps’’ out of the orbit tube, to the point, x(ti)~xo(ti)z½I0,0�T
(see Figure 4). This is shown by direct integration of (4), on the

time interval limDt?0½ti{Dt,ti�. Now, three cases arise:

1. If I0wwIth, then x1(ti)wwS(x2(ti), � � � ,xn(ti)) and therefore

the neuron always generates a successful response.

2. If I0vvIth, then x1(ti)vvS(x2(ti), � � � ,xn(ti)) and therefore

the neuron never generates a successful response.

3. If I0^Ith, then x1(ti)^S(x2(ti), � � � ,xn(ti)) or equivalently

x(ti) lies in the neighbourhood of xth. This case is biologically

interesting as only for this case does the modulating input

control relay reliability of the neuron. To determine whether

the neuron generates a successful response or not in this case,

we need to know the behaviour of the system in the

neighbourhood of xth.

Response in xth neighbourhood under u(t)~c1z

c2sin(vt). To approximate the response of the system in the

neighbourhood of xth, we first linearize (4) about the nominal

solution xS(t) (here S stands for the critical curve S) given the

initial condition xS(0)~xth and nominal input u0(t)~c1. Now, if

the nominal input is perturbed such that u(t)~u0(t)zdu(t) and

the initial condition is perturbed such that x(0)~xthzdx(0), the

state trajectory will also be perturbed to x(t)~xS(t)zdx(t). Note

that in our case du(t)~c2sin(vtzvti) and dx(0)~dxo(ti)z

½I0{Ith,0�T . When we substitute these values and perform a first

order Taylor series expansion of (4) about the nominal solution

and nominal input, we get:

d _xx^
df(x)

dx
DxS(t)z

{c1 0

0 0

� �� 	
dxz

{1 0

0 0

� �
xS(t)

� 	
du, ð26Þ

In the neighbourhood of xth this system can be further

approximated to:

d _xx^
df(x)

dx
Dxth

z
{c1 0

0 0

� �� 	
dxz

{1 0

0 0

� �
xth

� 	
du, ð27Þ

which can be equivalently written as:

d _xx~MdxzNdu(t), ð28Þ

Figure 4. Calculation of Presponse. Illustrates xo(ti), dxo(ti), x(ti), dx(ti), �xx and xth . When an r(t) pulse arrives, the solution jumps from xo(ti) to

x(ti)~xo(ti)z½I0,0�T . Now, whether the neuron generates a successful response or not is governed by the local dynamics. Therefore, we linearize (4)
about xth to analyze the behaviour of dx(t) for twti . If a successful response is generated, At0wti such that dx1(t0)w0 else if an unsuccessful
response is generated At’0wti such that dx1(t’0)v0.
doi:10.1371/journal.pcbi.1002626.g004
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where

M~
df(x)

dx
Dxth

z
{c1 0

0 0

� �
~

dF(x)

dx
Dxth

, ð29aÞ

N~
{xth1

0

� �
, ð29bÞ

du(t)~c2sin(vtzvti): ð29cÞ

We later show that this linear approximation does not

significantly impact our expression for relay reliability of the

neuron, as the numerically computed reliability fits the analytically

derived curve well.

The solution to (28) is:

dx(t)~eMtdx(0)z

ðt

0

eM(t{t)Ndu(t)dt: ð30Þ

Using the eigenvalue decomposition [37] of M, such that

M~VDV{1, V~½v1, � � � ,vn�, with each vi a right eigenvector,

V{1~½u1, � � � ,un�T with each ui a left eigenvector and D is a

diagonal matrix with eigenvalues li at the diagonal arranged in

descending order without loss of generality, we get that

dx(t)~
X

i

viu
T
i dx(0)zN

ðt

0

e{litdu(t)dt

� �
eli t

� �
: ð31Þ

Note that for most stable neurons of interest, all the eigenvalues

of matrix M are real. Therefore, we assume real eigenvalues for an

easier read (a more messy expression can also be derived for

complex eigenvalues). Recall, by the properties of f(x), that the

trajectories of (4) divert away from xth, therefore l1 must be

positive.

Now, if the neuron does not generate a successful response,

dx1(t) will eventually become negative. On the other hand, if it

generates a successful response, then dx1(t) will become positive

after a sufficient amount of time (see Figure 4). The direction in

which dx1(t) eventually moves is decided by the sign of the first

component of the coefficient of el1t. Therefore, the neuron

generates a successful response if and only if

v11uT
1 dxo(ti)zv11u11(I0{Ith){

v11u11xth1c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1zv2

q sin vtizhð Þ§0:
ð32aÞ

h ¼D {%(l1{iv) ð32bÞ

Note that we substituted dx(0)~dxo(ti)z½I0{Ith,0�T and

du(t)~c2sin(vtzvti) in (31) and integrated it to get (32). Now,

we substitute dxo(ti) from (24) into (32) and get:

c2

Xn

j~1

v11u1jgjsin(vtizwj)z
v11u11xth1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
1zv2

q sin vtizhð Þ

0
B@

1
CA

ƒv11u11(I0{Ith):

ð33aÞ

This equation can be written as

c2G(v)sin(vtizw(v))ƒv11u11(I0{Ith) ð34Þ

where

G(v) ¼D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnz1

j~1

Xnz1

l~i

Gj(v)Gl(v)cos(wj(v){wl(v))

vuut ð35aÞ

w(v) ¼D tan{1

Pnz1
j~1 Gj(v)sin(wj(v))Pnz1
j~1 Gj(v)cos(wj(v))

 !
ð35bÞ

Gj(v) ¼D gj(v)v11u1jVj~1, � � � ,n ð35cÞ

Gnz1(v) ¼D v11u11Xth1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1zv2

q ; wnz1 ¼
D

h ð35dÞ

From (34), we see that the neuron generates a successful

response if and only if

vti [ p{sin{1 (I0{Ith(c1))

c2G(v)

� �
{w(v),2p

�

zsin{1 (I0{Ith(c1))

c2G(v)

� �
{w(v)

�
z2np:

ð36Þ

Finally, we can use (36) to calculate Presponse, which is the

fraction of the time in the orbit tube that the neuron spent in the

interval in (36). This is the length of the interval divided by 2p.

Therefore,

Presponse~

pz2sin{1 (I0{Ith(c1))

c2G(v)

� �
2p

: ð37Þ

Calculation of Bounds on Ppulse

In this section, we compute Ppulse in (17) to ultimately obtain an

expression for R. Since a driving pulse that arrives at time ti can

only result in either a successful response or an unsuccessful

response, we can equivalently write the definition of Ppulse as:
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Ppulse ¼D Pr(x(ti) 6[XR) ð38aÞ

~Pr(x(ti) 6[XRfat ti{1)

zPr(x(ti) 6[XRfat ti{1)
ð38bÞ

~Pr(x(ti) 6[XRjSR at ti{1):Pr(SR at ti{1)

zPr(x(ti) 6[XRjUSR at ti{1):Pr(USR at ti{1):
ð38cÞ

Here, we have used the law of total probability and the

definition of conditional probability [35] to arrive at (38c). We

know that after a successful response at ti{1, the system state

x(t) [Xr, only for t [ (ti{1,ti{1zTR). Therefore

Pr(x(ti) 6[XRDSR at ti{1)~Pr(ti{ti{1§TR): ð39Þ

Similarly, if Tus
R denotes time spent in refractory zone after

unsuccessful response, then we get:

Pr(x(ti) 6[XRDUSR at ti{1)~Pr(ti{ti{1§Tus
R ): ð40Þ

Now by combining (13), (38c), (39) and (40) we get:

Ppulse~R:Pr(ti{ti{1§TR)z(1{R):Pr(ti{ti{1§Tus
R ): ð41Þ

Since Tus
R has a complicated dependence on the input and

model parameters, it is difficult to calculate Pr(ti{ti{1§Tus
R ).

However, it is certain that Tus
R ƒTR. This implies that

Pr(ti{ti{1§TR)ƒPr(ti{ti{1§Tus
R ), by properties of cumula-

tive distributive functions [35]. Therefore, we get the following

bounds:

Pr(ti{ti{1§TR)ƒPr(ti{ti{1§Tus
R )ƒ1 ð42Þ

Putting (41) and (42) together, we get:

Ppulse§R:Pr(ti{ti{1§TR)z(1{R):Pr(ti{ti{1§TR) ð43aÞ

and PpulseƒR:Pr(ti{ti{1§TR)z(1{R):1 ð43bÞ

[Pr(ti{ti{1§TR)ƒPpulseƒ1{R 1{Pr(ti{ti{1§TR)ð Þ:ð43cÞ

Now, we calculate Pr(ti{ti{1§TR). Recall that the inter pulse

intervals of r(t), ti{ti{1~t’zT0, here t’ is generated from an

exponential distribution and T0 is the refractory period. There-

fore:

Pr(ti{ti{1§TR)~Pr(T0zt’§TR) ð44aÞ

~Pr(t’§TR{T0) ð44bÞ

~

ð?
TR{T0

ft0 (t
0)dt0 ¼D a: ð44cÞ

It can be easily shown that:

a~ e

{(TR{T0)
T{T0 TR{T0 § 0

1 TR{T0v0

8<
: : ð45Þ

T is the average inter pulse interval, E(ti{ti{1). Finally, by

combining (43c) and (44) we get:

aƒPpulseƒ1{R(1{a): ð46aÞ

Calculation of Bounds on R
Now we compute bounds on relay reliability i.e RlƒRƒRu.

Recall that:

R~Ppulse
:Presponse ð47aÞ

ƒ 1{R 1{að Þð Þ:Presponse ð47bÞ

[Rƒ

Presponse

1z(1{a)Presponse

¼D Ru: ð47cÞ

Similarly, we can write lower bound on reliability as:

R§a:Presponse ¼D Rl : ð48Þ

Combining (47) and (48) we get:

Presponse

1z(1{a)Presponse

§R§a:Presponse: ð49Þ

From (49) and (44), one can see that if TwwTR,a?1, which

makes Rl?Ru?Presponse. This result is intuitive because if pulses

in r(t) occur at a slow rate, then the solution of (4) has enough time

to return to the orbit tube after each pulse. Therefore,

Ppulse ¼D P(X (t) [Xr)?1 and R?Presponse.

Another interesting case emerges if 0vT{T0vvTR{T0. In

this case a?0 and Rl?0,Ru?
Presponse

1zPresponse

. This case has two

interesting extremes: 1. T0?0, making TvvTR, 2. T0?TR, and

both T{T0 and TR{T0 approach 0. In case 1, an average a

TR=T?? number of pulses occur in the TR time interval after a

successful response. All of these pulses generate unsuccessful

responses because the system state is inside XR during this interval.

Therefore, for each successful response, we get ? unsuccessful

responses making R?0~Rl . However, in the second case, exactly

one pulse occurs during the TR period after a successful response.
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Therefore, for every successful response we get at least 1
unsuccessful response. Now, if Presponse~1, we get exactly one

unsuccessful response for each successful response making

R?
Presponse

1zPresponse

~
1

2
.

Results

In this section we verify our reliability bounds by simulating a

second and third order model for a thalamic relay neuron.

2nd Order Model of a Thalamic Neuron
In Figure 5, we plot Rl and Ru vs v=2p for f(x) given by (3)

with c1~c2~0:01,I0~6:8537,T0~20ms,T~55ms,TR~30:5ms,
Ith~6:6537, and superimpose it with a numerically obtained

curve through simulation of the original model (1). TR is estimated

by doing repeated simulations on (4) with f(x) given by (3),

I0~6:8537 and c1~0:01. We see that empirical reliability plus

and minus its standard deviation are essentially within bounds Rl

and Ru. From Figure 5 B, we see that R increases with the

frequency of the modulating input, v. In Figure 6 A, we plot Rl

and Ru vs c1 for c2~0:005,I0~6:8537,v~80prad=s,T0~20,
T~55,TR~30:5ms,Ith~6:6537, along with empirical reliability

computed numerically. We see that reliability decreases as c1 (i.e.

the mean value of modulating input) increases. In Figure 6 B, we

plot R vs c2 for c1~0:01,I0~6:8537,v~80prad=s, T0~20ms,
T~55ms,TR~30:5ms,Ith~6:6537. Reliability again decreases as

c2 increases.

Dependence On Model Parameters
The dependence of reliability on the cell’s input parameters is

explicit in our bounds. However, dependence of reliability on the

model parameters is captured implicitly by the gain G, Ith and TR.

The refractory period, TR, is well studied in literature and depends

on inactivation gate time constants [38]. Therefore, in this section

we discuss how the gain G(v) and Ith depends on the properties of

a relay neuron membrane dynamics.

In Figure 7 A, we plot Ith vs conductances gT and gL. We see

that Ith first decreases with increasing gL and then increases

forming a parabola. Furthermore, with increasing gT , Ith

decreases. In Figure 7 B, we plot the dependence of the gain

G(v) on gT and gL. G(v) is essentially a low pass filter whose

amplitude decreases as frequency increases. Consequently,

reliability increases with frequency (see (49)). From the Figure,

we can see that the gain, G(v), in the high frequency range

(v=2pw100Hz) increases with gL and decreases with gT . For

lower frequencies, vv100Hz, G(v) has a complex dependence

on gT & gL. This is an important result as we can increase/

decrease reliability of the relay neurons by increasing/decreasing

T-type Ca2z or leak channel conductances which can be further

used to treat diseases such as Parkinson’s disease (see discussion).

A 3rd Order Model of a Thalamic Neuron
In this section, we will apply (49) to a third order model of a

thalamic relay neuron. In this case, the parametrs Ith,G(v),TR in

the equation are computed from the third order model.

We chose the 3rd order thalamic model used in [15,16,22],

which is a simplification of model used in [39,40]. This model

exhibits bursting activity in the hyperpolarized state and non

bursty firing in the depolarized state. The two responses of the

model for an oscillating modulating input and a Poisson driving

input (inter-pulse interval is given by (7)) are shown in Figure 8 A

and 9 A. The equations and parameters of the model are the same

as those used in [15,22]:

dV

dt
~{(ILzINazIKzIT )zIext{u(t)(V{Vsyn)zr(t) ð50aÞ

dh

dt
~{a1

h{h ?(V )

th(V )
ð50bÞ

dr

dt
~{a2

r{r ?(V )

tr(V )
: ð50cÞ

In the (50), IL~gL(V{VL), INa~gNam?
3 h(V{VNa),

IK~gL(0:75(1{h))4(V{VL) are the leak current, sodium and

potassium current, respectively. IT~gT p ?
2 (V )r(V{VT ) and Iext

are the low threshold potassium current and external current

respectively. a1~1,a2~2:5 are the temperature correction factors.

All the parameters used are given in Table 3.

A thalamic neuron generates a single spike when depolarized in

the relay mode [15,41]. However, it generates a burst of spikes

when it receives a depolarizing input when it is in a hyperpolarized

state [42]. We used Iext~{0:56, to model the hyperpolarized or

bursty state. Whereas, Iext~0 models a single spike state of

thalamic neuron.

Figure 5. R vs v=2p. Plots the theoretical and numerically computed
reliability as a function of v=2p, with c1~c2~0:01,I0~6:8537,
T0~20ms,T~55ms,TR~30:5ms,Ith~6:6537. The dotted lines are the
lower and upper bounds on reliability from the (48) and (47),
respectively. The solid line is Remp calculated by running simulations
of (1), and the error bars indicate +std .
doi:10.1371/journal.pcbi.1002626.g005
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We can rewrite the (50) in the form of (4) by defining the state

vector X~½V{Vsyn,h,r�T with:

f (X )~:

{(ILzINazIKzIT )zIext

a1

(h ?(X1zVsyn){X2)

(th(X1zVsyn))

a2
(r ?(X1zVsyn){X2)

(tr(X1zVsyn))

0
BBBBBBBB@

1
CCCCCCCCA

ð51Þ

In Figure 8 A, we plot the time profile of the voltage for a bursty

neuron along with a zoomed in view of the burst in Figure 8 B.

Figure 8 C plots our reliability bounds (49) along with empirical

reliability computed numerically through simulation of the 3rd

order model. We see that our bounds predict reliability well even

for a bursty neuron. Note that we consider a burst response to a

pulse as a successful response.

In Figure 9 A, we plot the time profile of voltage for a non

bursty neuron along with a zoomed in view of a successful spike in

Figure 9 B. Figure 9 C plots our reliability bounds (49) along with

empirical reliability computed numerically through simulation of

the 3rd order model. Note that here TRvT0 therefore Rl?Ru.

We see that our bounds predict reliability well in this case also.

In general, our analytical bounds are applicable as long as the

model 1. does not generate a spike if there is no pulse in r(t), and

2. has a threshold behaviour as defined in Materials and Methods

section, and 3. shows a refractory period. The second condition is

true for most neurons that satisfy the first condition. Our analysis

may also be extended to include neurons that spike without any

driving input (see Discussion), but in this manuscript we neglect

such dynamics.

Discussion

In this manuscript, we studied the reliability of a relay neuron. A

relay neuron receives two inputs: a driving input, r(t), and a

modulating input, u(t). The neuron generates one output, V (t),
which relays r(t) conditioned on u(t). Our goal was to precisely

determine how the modulating input impacts relay reliability. To

calculate relay reliability, we used systems theoretic tools to derive

the analytical bounds (49) on relay reliability as a function of

different input and model parameters. Specifically, (49) implies

that if the modulating input is of the form u(t)~c1zc2sin(vt),
then increasing c1 or c2 decreases reliability. However, increasing

v increases reliability. In addition, our reliability curve (see

Figure 5) suggests that reliability first increases slowly with v and

then increases rapidly and plateaus. (49) is powerful as it

characterizes the multiple dependencies of reliability on u(t),r(t)

Figure 6. R vs c1 and c2 - A. Plots the theoretical and numerically computed reliability as a function of c1 , with c2~0:005,I0~6:8537,
v=2p~40 Hz,TR~30:5ms,T0~20,T~55. B. Plots the theoretical and numerically computed reliability as a function of c2 with
c1~0:01,I0~6:8537,v=2p~40 Hz, TR~30:5ms,T0~20ms,T~55ms. The dotted lines are the lower and upper bounds on reliability from the (48)
and (47), respectively. The solid line is Remp calculated by running simulations of (4), and the error bars indicate +std .
doi:10.1371/journal.pcbi.1002626.g006
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and relay neuron model parameters. Furthermore, analytic

bounds from (49) contain results obtained through simulation of

the 2nd and 3rd order models of a relay neuron. Our bounds

captured reliability under both the depolarized and hyperpolar-

ized states of the 3rd order neuron and shows the generality of our

analysis.

Comment on Spontaneous Firing in Relay Neurons
Our reliability bounds were calculated assuming that the relay

neuron does not fire spontaneously. However, many relay neurons

show spontaneous firing in the absence of any input. This

spontaneous firing is usually periodic (period Tn) because it arises

from the emergence of a limit cycle [43] and can be thought of as

responses to background noise. Our analysis can therefore be

extended to capture this by adding a periodic noise pulse train

n(t) ¼D
P

i InD(t{iTn) in the reference input r(t), therefore the

new reference input becomes:

rnew(t)~r(t)zn(t): ð52Þ

Since a successful response to a pulse in n(t) is undesirable, we

must modify our definition of reliability. To do this, we assume

that the arrival of a pulse in n(t) cannot coincide with an arrival of

a pulse in r(t) and thus successful responses to pulses in each signal

are disjoint events. This leads us to define reliability as

R~Pr(Successful Response to a r(t) pulse)

|Pr(r(t) pulse)

{Pr(Successful Response to a n(t) pulse)

|Pr(n(t) pulse)

ð53aÞ

With this approach, our analysis can be extended to spontaneously

firing neurons. We believe that the reliability will approximately be

bounded as:

Tn{T

TzTn

Presponse

1z(1{a)Presponse

§R§

Tn{T

TzTn

a:Presponse: ð54Þ

The above expression is reduced to (49) in the case TnwwT i.e

the noise period is much larger than the period of the driving

input. In the case when TnvvT , the reliability becomes negative

because noise pulses occur very frequently as compared to

desirable driving input pulses. This generates undesirable success-

ful responses making reliability negative. Note that (54) is only an

approximate solution for the reliability of spontaneously firing

relay neurons and we leave the exact solution to this problem for

the future work.

Figure 7. Dependence of Ith and G(v) on model parameters. A. Plots Ith as a function of gL,gT B. G(v) (see (35) versus gL and gT . Note that
G(v) depends largely upon gL, whereas its dependence upon gT is minimal. gT changes the maximum value of G(v) but does not effect it much in
the high frequency range.
doi:10.1371/journal.pcbi.1002626.g007
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Figure 8. A. Voltage profile of the 3rd order model in the bursting mode (Iapp~”0:56) B. zoomed in view of a burst C. R vs v=2p for
the 3rd order model. In this Figure, we illustrate the results from a 3rd order model of a thalamic neuron. A. Plots the voltage profile obtained from
the model in response to pulses in r(t). Note that each pulse in r(t) either generates a burst of spikes or does not spike at all. B. Zoomed in view of a
burst. C. Plots the theoretical and numerically computed reliability as a function of v=2p, with c2~0:015,c1~0:075,I0~9:0,
TR~150ms,T0~120ms,T~220ms. The dotted lines are the lower and upper bounds on reliability from the (48) and (47), respectively. The solid
line is plots Remp calculated by running simulations of (4), and the error bars indicate +std . We estimated Ith~8:7126 as the minimum height of a r(t)
pulse that makes the neuron generate a successful response.
doi:10.1371/journal.pcbi.1002626.g008

Table 3. Parameters and functions for (50).

Function Value

m?(V ) 1

(1zexp({(Vz37)=7))

p?(V ) 1

(1zexp({(Vz60)=6:2))

th(V ) 1

(0:128 � exp({(46zV )=18)z4=(1zexp({(23zV )=5)))

h?(V ) 1

(1zexp((Vz41)=4))

r?(V ) 1

(1zexp((Vz84)=4))

tr(V ) 0:4(28zexp((Vz25)=({10:5)))

Vsyn,VNa,VK ,VL,VT {85,50,{90,{70,0 mV

gNa,gK ,gL,gT 3,5,0:05,5
mS

cm2

doi:10.1371/journal.pcbi.1002626.t003
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Motor Signal Processing
In the motor circuit, thalamocortical neurons receive a driving

input from the motor cortex and a modulating input from the GPi

segment in the basal ganglia (BG). See Figure 10 A. The function

of the GPi input is hypothesized to enable/disable thalamic cells to

relay cortical stimuli related to movement when movement is

intended/not intended [14]. This is consistent with evidence that

the BG both inhibits unwanted movements and enables intended

movements in a timely manner [12,13]. This GPi modulated

thalamic relay ultimately enables reliable transfer of information

from higher cortical layers to lower layers which then command

the musculoskeletal system to generate planned movements [44].

The thalamic relay hypothesis is supported by previous studies

[4,16,22]. In [16,22], it is shown that relay reliability computed

from a data-driven computational model of a thalamic neuron is

low in Parkinson’s disease (PD), and high in both healthy and

when therapeutic DBS is applied to the BG in PD.

Previous works emphasize the inhibitory projections from GPi

to motor thalamus [45–48]. They argue that when movements are

intended/not intended, appropriate task-related GPi neurons

decrease/increase their firing rates. This in turn disinhibits/

inhibits thalamus and consequently enables/disables thalamic relay,

respectively. Our analysis as well as recent experimental observa-

tions show that the story is a bit more complicated. GPi firing rates

alone may not be the mechanism for thalamic relay, rather, the

dynamics of the GPi activity control thalamic relay. In particular, it

appears that the oscillatory dynamics of GPi activity control relay. Our

relay bounds predict that if one intends to move, then the GPi

neurons that project to motor thalamus should initially generate

LFP activity that has prominent low frequency oscillations which

allows the subject to remain idle, and then generate activity that has

prominent high frequency oscillations which allows the subject to

plan an intended movement and then move.

We first discuss how our analysis concurs with observations

obtained from a computational model of the motor circuit that

characterizes neural activity dynamics in the BG and motor

thalamus in health and in PD with and without therapeutic DBS.

The computational model simulates neural activity when move-

ments are planned and hence when motor thalamus should relay

information from the cortex at all simulated times. We then discuss

how our relay bounds accurately predict how GPi activity

recorded from two healthy primates modulates during a structured

Figure 9. A. Voltage profile of the 3rd order model in the tonic mode (Iapp~0) B. zoomed in view of a spike C. R vs v=2p for the 3rd

order model. In this Figure we illustrate the results from a 3rd order model of a thalamic neuron. A. Plots the voltage profile obtained from the
model in response to pulses in r(t). Note that each pulse in r(t) either generates a successful spike or generates unsuccessful spike. B. Zoomed in
view of a successful spike. C. Plots theoretical and numerically computed reliability versus v=2p, with c2~0:015, c1~0:075, I0~7:3, TR~80ms,
T0~120ms, T~220ms. The dotted line is plotting the lower and upper bounds on reliability from the (48) and (47), respectively. Note that here
TRvT0 , therefore Rl?Ru. The solid line plots Remp calculated by running simulations of (4), and the error bars indicate +std . We estimated
Ith~7:0155 as the minimum height of a r(t) pulse that makes the neuron spike.
doi:10.1371/journal.pcbi.1002626.g009
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behavioral task that forces an idle phase, and a planning phase

during each task trial.
Predicting data from a computational model. In PD, the

GPi input to thalamus becomes pathological and prevents the

thalamus from properly relaying information back to the cortex. In

particular, people have observed pathological 10–30 Hz beta

rhythms and synchronization emerging throughout the BG in PD

[49–52]. High frequency DBS (HFDBS) modulates activity in the

BG structures, including GPi, and may restore thalamic reliability

leading to clinically observed reversal of symptoms in PD [51,53].

To better understand how HFDBS may restore relay reliability,

we first consider a computational study [15] of basal-ganglia-

thalamic neural signal processing. In [15], a biophysical-based

model of multiple BG structures and motor thalamus is

constructed and parameters are tuned to generate 3 states:

healthy, PD and PD with HFDBS applied to the subthalamic

nucleus (STN) in the BG. In Figure 10 C, we reproduce plots from

this study that illustrate the simulated GPi modulating input to

thalamus in the 3 states. We then discuss how our reliability

bounds predict what is observed in these simulations.

N According to the computational model in [15], in the healthy

case, relay reliability is high. When we look at the simulated

Gpi activity, the amplitude of the GPi modulating input, c2, is

small enough to generate reliable thalamic relay of cortical

inputs in accordance to our bounds (49). As Figure 10 D

shows, the orbit tube is small for such a c2, which results in less

time spent in the unsuccessful response region, Xus. Physio-

logically, a small c2 may be due GPi neurons being

uncorrelated so that when they add they do not produce large

LFP amplitudes. Gpi neurons have been observed to be

uncorrelated in healthy primates [54,55].

N According to the computational model in [15], in PD,

reliability is low. When we look at the simulated GPi activity,

the amplitude of the GPi modulating input is larger than in the

healthy case, which leads to a lower relay reliability at the

thalamus according to our bounds (49). As Figure 10 D shows,

the orbit tube is large for a larger c2 and results in more time

spent in the unsuccessful response region, Xus. In Figure S3

(Supplementary Material), we have plotted R versus c2 and v.

From the Figure S3, it is clear that when c2 increases,

reliability decreases, whereas when v increases reliability

increases. Physiologically, a large c2 may be due to GPi

neurons being synchronized so that when they add their peaks

sum producing large LFP amplitudes. Synchronization of

neurons in the BG has been observed in PD patients [56] and

parkinsonian primates [49,55].

Figure 10. Thalamocortical loop in motor signal processing. (A) Simplified view of basal ganglia thalamo-cortical motor signal processing.
Sensorimotor cortex generates the driving input and projects to the motor thalamus. The thalamus relay of cortical input is modulated by the basal
ganglia (BG). (B) Relay reliability curves computed from our analysis as a function of c2 and v from (49). (C) Simulations of u(t) (basal ganglia output)
from the computational study [15] for the Healthy, PD and PD with high frequency deep brain stimulation (HFDBS) cases. As we can see in the
healthy case, the amplitude of the BG output, c2 , is smaller compared to the PD BG output, resulting in a higher relay reliability. HFDBS increases the
frequency, v, of the BG output, resulting in a higher relay reliability. (D) Intuition of how reliability changes in the three cases. In PD, c2 is larger,
therefore, the diameter of the orbit tube is larger compared to the orbit tube for healthy. This results in more time spent in the unsuccessful response
region Xus, which leads to poor reliability. In contrast, in PD case with HFDBS applied, v is larger and the gains gi(jv) decrease, which generates a
smaller orbit tube. In this case, the state spends more time in the successful response region Xs of the orbit tube, resulting in high reliability.
doi:10.1371/journal.pcbi.1002626.g010
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N According to the computational model in [15], HFDBS

applied to the PD model restores thalamic relay. When we

look at the simulated GPi activity under HFDBS applied to the

STN, the frequency of the GPi modulating input increases and

the amplitude, c2 decreases and is more comparable to that in

the healthy state. This combination (increased v and

decreased c2) restores relay reliability according to our bounds

(49). As Figure 10 D shows, the orbit tube is small for a larger

v because a larger v results in a smaller gi(v)s and hence a

small G(v). Recall that G is proportional to the diameter of

the orbit tube (see Figure 10 D).This results in less time spent

in the unsuccessful response region, Xus. Note that the

frequency of DBS is not directly related to frequency of

modulating input. One can see from Figure 10 C, that

modulating input frequency is only 80 Hz while HFDBS

frequency is 140 Hz.

The working mechanisms of HFDBS in PD are thought to be (i)

suppression of pathological beta oscillations in the BG [49,51], and

(ii) desynchronization of BG neurons [22,57]. Our analysis

accurately predicts this, but also highlights new possible therapies.

For example, as discussed in section Dependence On Model

Parameters, the conductance of leak channels is critical for a relay

neuron because it decides the size of the orbit tube for a given v.

In particular, for smaller v, the gain G(v) decreases as we

decrease gT , which results in increased reliability. This suggests

that if we could pharmacologically decrease gT , a lower frequency

(hence lower power) DBS signal may be therapeutic. A low power

DBS option would save battery power as well as minimize side

effects associated with high power stimulation [58–61]. There are

many ways to regulate the conductance of T-type calcium

channels, reviewed in [62]. These methods include (1) hormonal

regulation by dopamine, serotonin, somatostatin, opioids, ANP,

and ANG II. (2) Guanine nucleotides (3) Protein kinases (4)

voltage. To be target specific, these methods may require injecting

the chemical directly into the thalamus.

Predicting data from experiments. The computational

model in [15] does not capture the subject’s intent. It is assumed in

[15] that the subject is moving and that the sensorimotor cortex

sends a driving input to a thalamic cell accordingly. In reality, a

subject’s motor program is coordinated in time. When a subject is

idle, then the activity of GPi neurons (modulating input) should

have slower oscillatory patterns according to our analysis so that

the thalamus does not relay information. Furthermore, when the

subject plans to move, the task-related GPi neurons should then

generate more high frequency oscillations to enable relay of this

movement via the thalamus. This can be understood more clearly

by looking at the Figure 10 A. When the subject is idle, u(t) should

be a low frequency signal and when the subject plans to move, u(t)
should change to a high frequency signal.

This has been observed recently, when we showed that task-

related GPi neurons indeed exhibit a ‘‘crossover effect’’ during

movement planning in two healthy macaque monkeys executing a

directed hand movement task [63] (see Figure S4, Supplementary

Material). Initially, when the monkey is idle, there are prominent

10–30 Hz beta oscillations in the neuronal spiking activity. Then,

when a final cue is given to indicate what movement should be

executed, gamma band oscillations (30–70 Hz) emerge in the spike

trains of GPi, displaying the ‘‘crossover’’ (beta gets suppressed

while gamma emerges) [63].

Futhermore, if GPi’s mechanism in motor control is to

modulate its oscillatory rhythms in a timely fashion as our relay

analysis predicts, then the prominent beta oscillations observed in

PD [49,52,55,56] may partially block this mechanism. That is, in

PD it may be more difficult to suppress beta during movement

planning as it is so prominent, leading to poor thalamic relay and

poorly generated movements.

Finally, we highlight another recent study of ours that showed

that when therapeutic DBS (w100 Hz) is applied to the STN of a

parkinsonian and healthy primate, then the propensity of GPi

neurons to spike in the gamma band increases [17]. This finding,

along with the above observations, indicate that perhaps the

mechanism of HFDBS is to re-enable the crossover effect in GPi

(i.e. increase gamma oscillations to overcome the prominent beta

oscillations) that controls thalamic relay and movements in PD.

Visual Signal Processing
As mentioned in the Introduction, neurons in the LGN receive

driving input synapses from the retina and modulating input

synapses from layer 6 of the visual cortex and the brain stem. The

LGN then relays the driving input to visual cortex for perception.

The LGN functions as a ‘‘gatekeeper’’ and allows only the relevant

information to go through depending on attentional demands

[7,64]. In the LGN, the spatial map of the visual field is conserved

[64,65].

Here, we hypothesize that the LGN functions as a filter of the

spatial map which shows a high relay reliability in spatial areas

requiring high attention and lower reliability otherwise. Our

analysis suggests then that LGN neurons relaying attended areas of

the visual field receive higher frequency modulating inputs as

compared to LGN neurons relaying areas which are ignored. Note

that the modulating input represents the synaptic background

activity, which is a major contributor to LFPs and EEG recordings

[10]. Therefore, the frequency content of LFPs and EEG reflect

the frequency of the modulating input.

This hypothesis is supported by [8], where it was shown that the

frequency of the LFPs in LGN depends on the arousal state of the

cat. Specifically, they showed a prominent a rhythm (12{15 Hz)

in awake and naturally behaving cats, a h rhythm (3{5 Hz) in

drowsy cats and a slow rhythm (0:2{0:5 Hz) during sleep.

Additionally [21], showed that, in wakeful naturally behaving cats,

the spiking activity of relay-mode (non-bursty) neurons in the LGN

is correlated with the phase of the alpha rhythm of the LFPs.

Specifically, some neurons spike more at the peaks of the alpha

wave while other neurons spike more at the valleys of the alpha

rhythm. Using (36), we may be able explain why such phase

locking occurs. In words, this equation says that relay neuron

reliably relays the driving input only during a fixed phase interval

of modulating input, and this phase interval depends on neuron

membrane properties [21].

Finally, during deep sleep slow delta rhythms are observed in

the EEG which are believed to be of thalamic origin [66]. This

may cause even lower reliability in LGN and filter out all the visual

information, resulting in deep sleep.

On the other hand, high frequency b (16{24 Hz) &

c (30{45 Hz) rhythms are observed during visual attentional

tasks in the LFPs of cat LGN [9]. Our analysis shows that

reliability increases with modulating input frequency, therefore we

propose that the reliability during these tasks is greater than during

natural wakeful behaviour for most LGN neurons. This results in

larger relay of information which increases general productivity.

In addition to the observed relationship between the LGN LFP

oscillations and attention, it has been observed that during sleep,

LGN neurons become hyperpolarized [42,67]. In our model, this

means that the DC offset of the modulating input, c1, is large

which decreases reliability according to our analysis. The LGN

neurons relay poorly and also exhibit a bursty behaviour (see

Figure 6 A and 8). The lower reliability may result in less
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information relay from the LGN to the visual cortex, inducing

sleep whereas the bursty behaviour may only be a by-product of

hyperpolarization and may have nothing to do with information

suppression. This agrees with [68] where in it is shown

experimentally that although all bursts combine carry lesser

information than all single spikes, individual burst is more

informative than a single spike in the LGN output. The

information carried in the bursty mode may be critical for waking

up [42].

Supporting Information

Figure S1 Driving and modulating inputs. (A) Driving

Input. Each arrow denotes a delta pulse with height I0. The inter-

pulse interval is ti, which is an exponential random variable. B
Modulating Input. A sinusoidal wave with DC value c1, amplitude

c2 and frequency v.

(TIFF)

Figure S2 The relayed pulse and the non-relayed pulse.
A pulse is called a relayed pulse if it generates a successful response

in V (t) within a W ms window, otherwise it is called an ineffective

pulse.

(TIFF)

Figure S3 Reliability vs c2 and v. Note that increasing c2

decreases reliability whereas increasing v increases reliability.

(TIFF)

Figure S4 Neurons in GPi show a crossover effect
during the planning phase. In this experiment, two primates

executed a directed hand-movement task. From the figure, we can

see that the percentage of neurons displaying more power in

gamma band compared to beta band increases just after the final

command is given. This may be because the GPi output is the

modulating input to the relay neurons in motor thalamus, and a

increase in the frequency of the modulating input may allow a

certain motor plan to be relayed back to cortex and downstream to

brain stem to ultimately get executed. This figure has been taken

from [63]. The thin solid and dotted lines are the 5% and 95%
confidence bounds obtained by randomization of the spike trains.

(TIFF)
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