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Abstract
Chronic obstructive pulmonary disease (COPD) has been increasingly accounted for global morbidity and mortality
worldwide. Although it is partially reversible, the obstructive ventilatory schema of COPD often causes chronic
inflammation that primarily affects peripheral airways, pulmonary parenchyma, and the development of lung
lymphoid follicles. Among various T-helper (Th) cell types associated with COPD, Th1, Th2 and Th17 cell numbers
are increased in COPD patients, whereas Treg cell number is reduced. Here, we reviewed recent advance in un-
derstanding the roles of Th1/Th2 and Th17/Treg in the pathogenesis of COPD and discussed the potential underlying
mechanism.
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Introduction
As a cosmopolitan health issue, chronic obstructive pulmonary
disease (COPD) affects around 10% of the population over the age
of 40 [1]. It is primarily incurable due to progressive airflow ob-
struction involving emphysematous destruction of lung par-
enchyma and mucus hypersecretion with chronic bronchitis [2].
COPD also sets off chronic inflammation in the airways and lung
parenchyma, leading to progressive and irreversible airflow
limitation. The pathological outcome is reflected in multiple as-
sociated disorders, such as small airway obstruction, emphysema
andchronic bronchitis [3]. Dyspnea, cough, and sputum pro-
duction are the most common symptoms of COPD, however pa-
tients still can suffer from wheezing, chest tightness, and chest
congestion [4].
Smoking used to be the primary pathogenic factor for COPD. Now

due to recent social changes, some new factors appear to gradually
come into play, featured by indoor and outdoor air pollution, oc-
cupational exposure, and chronic infections. In addition, environ-
mental factors, such as dust, smog, haze, particulate matter (PM)
2.5, and pesticide residues (including defoliant and fungicide) are
emerging as the pathogenic factor for COPD [5]. Here, we reviewed
recent advance in understanding the roles of Th1/Th2 and Th17/
Treg in the pathogenesis of COPD and discussed the potential un-
derlying mechanism.

The Inflammatory Response of COPD
Inflammation is critical in the pathogenesis of COPD. The in-
flammatory response to COPD mainly involves innate immunity
(neutrophils, macrophages, eosinophils, mast cells, natural killer
cells, γδT cells, innate lymphocytes, and dendritic cells) and adap-
tive immune responses (T and B lymphocytes). It is also supported
by the airways structural cells, alveolar epithelial cells, endothelial
cells, fibroblasts, and activated dendritic cells [6].

T Cells Participate in Inflammatory Process
T lymphocytes
Despite the lack of mechanistic understanding, aberrant immune
response accounts for the alveolar destruction and associated in-
flammation, in which T cell-mediated adaptive immunity appears to
play important roles [7]. Specifically, CD4+ T-helper lymphocytes
can be activated by autologous peptide-major histocompatibility
complexes in the presence of co-stimulation signals and produce
proinflammatory cytokines that coordinate the inflammatory cell
net-works [8].
Being distributed throughout the airways and lung parenchyma,

lymphocytes consist of thymus-dependent T cells (CD8+ killer cells
and CD4+ helper cells) and bone marrow-dependent B cells [9].
CD4+ T cells regulate B cell differentiation and antibody production
against viral infection. They are also required for the activation of
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viral-specific CD8+ T cells, and the activation and recruitment of
innate immune cells. Upon activation, CD4+ T cells differentiate
into different subsets of functional T cells including T-helper type
(Th)1, Th2, Th17, Th22 and regulatory T (Treg) cells (Figure 1),
among which Th1, Th2 cells and Th17 cells are closely associated
with COPD [10–13]. As part of the COPD pathogenesis, smoking can
alter the antigens in lung, thereby activating CD4+ T cells for self-
targeting and destruction.

T cell subsets
Derived from the α:β lineage of T cells, Th1 cells play important
roles against microbial infections such as mycobacterium tubercu-
losis, mycobacterium leprae, and leishmania. They can identify
intracellular pathogens by recognizing major histocompatibility
complex (MHC) class I or class II molecules and mediate cellular
immunity primarily through secreting interleukin-2 (IL-2), tumor
necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), which also leads
to neutrophilic inflammation and tissue destruction under certain
circumstances.
Upon infection or allergy, Th2 cells produce IL-4, IL-5, IL-10 and

IL-13 that mediate humoral immunity. Specific subpopulations of
immune cells like eosinophils and basophils are recruited by Th2
cells upon infection or responding to allergens or toxins. As a result,
tissue eosinophilia sometimes occurs along with mast cell pro-
liferation, which further stimulates mucus production, goblet cell
metaplasia and airway hyperresponsiveness. Th2 cells impose sig-
nificant influence on antibody production and allergic reactions,
thereby contributing to the exacerbation of asthma and other al-
lergic inflammatory diseases.
Pro-inflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22

and IL-23 are derived from Th17 cells. Retinoic acid orphan receptor
(ROR)-γt expression facilitates the development of Th17 cells in
conjunction with IL-6, IL-1β and IL-23 and transforming growth
factor-β (TGF-β), whereas it is suppressed by IL-10 [14]. Th17 cells,
which are crucial to the pathogenesis of several inflammatory and
autoimmune diseases, induce epithelial cells to produce anti-
microbial peptides, chemokines, and granulocyte growth factors to
promote neutrophil accumulation in the airway [15].
Characterized by Foxp3 and CD25 expressions, Treg cells suppress

the proliferation and cytokine production of other T cells through
secreting anti-inflammatory cytokines such as IL-10 and TGF-β,
therefore they are important for immune tolerance and immune
homeostasis [11,16]. Furthermore, Treg cells are imperative in re-
spiratory viral infections by suppressing over-stimulated in-
flammatory responses and tissue damage introduced by other
innate and adaptive immune components [17]. Though Treg cells
are associated with the development of autoimmune diseases, their
role in COPD is still under debate.
In the respiratory tract, immune system homeostasis is achieved

through the balance between the pro-inflammatory cytokines and
anti-inflammatory cytokines which are primarily under the control
of CD4+ T cells, as well as Th1/Th2 and Th17/Treg cells. Therefore,
these cells collectively serve as the major factors in the pathogenesis
of COPD. Impaired immunity balance often results in excessive
proliferation of effector cells or decreased function of regulatory
cells, ultimately leading to inflammation.

Activation of T cells
Dendritic cells (DCs) serve as both innate lung sentinels and or-

chestrators of adaptive immunity. They drive the pathological
processes through the full course of COPD development, from the
initial to the final stages. Derived from adult hematopoietic pre-
cursors, DCs are separated into type 1 and type 2 classical/con-
ventional DCs (cDC1 and cDC2, respectively) and plasmacytoid DCs
(pDCs) [18]. cDC1s are found in the airway mucosa and vascular
walls and crucial for generating regulatory T cells, Th1 immunity,
and cytotoxic CD8+ T cells. cDC2s reside in the airway lamina
propria and are suggested to activate Th2 and Th17 responses,
though the mechanism is elusive [19]. DCs can also present antigen
cells and link the innate and adaptive immune responses by pha-
gocytosing microbes and migrating to regional lymph nodes to ac-
tivate lymphocytes including T cells and B cells [20].
Accurate signal transduction is crucial when facing complex

physiological and pathological conditions. It happens primarily in
the secondary lymphatic organs, including Pell’s spots, lymph
nodes, and spleen in a “face-to-face” manner. However, regional
command centers must be close to the menace. Accordingly,
chronic immune response induces abnormal tertiary lymphoid
structures within organs. In the distal lung parenchyma, tertiary
lymphoid structures are better known as lung lymphoid follicles
(LLFs) that are central to COPD pathogenesis, though the exact role
remains unclear [21]. Encountered by antigens, cDCs migrate to
draining lymph nodes to activate naive T cells. Also, they cross-talk
with other innate immune cells to initiate adaptive immune re-
sponses in the lung as COPD severity progresses [22]. In COPD
tissues, increased number of langerin+ DCs was observed in the
interface between LLF and the alveolar lumen. Such DCs simulta-
neously contacted both the alveolar surface and lymphocytes within
the LLF [23]. Tregs have been shown to limit LLF formation [24]. It
is possible that DCs fail to drive Treg differentiation in severe COPD,
leading to increased number of lymphoid follicles at later stages of
the disease. Since DCs can produce profibrogenic cytokines directly
and promote airway inflammation indirectly, it is also likely that
they are involved in airway remodeling. Thus, modulating DC re-
cruitment and function provides an attractive therapeutic approach
for limiting COPD progression [25].

Aberrant CD4+ T Cell Subsets in COPD Patients
Th1/Th2 imbalance
The balance between Th1 and Th2 cells is critical in regulating
cellular and humoral immune responses, which is often disrupted in
the case of COPD [26–28]. As a result, the immune response is
disturbed and inflammatory reactions become persistent along with
airway remodeling and emphysema [29].
The number of Th1 cells was reported to be progressively in-

creased in stable phase of COPD and acute exacerbation of chronic
obstructive pulmonary disease (AECOPD), while IFN-γ expression
was elevated. In contrast, Th2 cells and serum IL-4 level were
substantially increased. However, in patients with stable COPD, the
Th2/Th1 ratio is decreased, which is opposite to that in the AECOPD
patients, and the activation and proliferation of Th2 cells is more
prominent in the peripheral circulation system. Consequently, the
Th1/Th2 ratio is shifted to Th1 responses in stable COPD, whereas it
is shifted to Th2 response in AECOPD [30,31]. When the respiratory
failure is corrected, the balance of Th1/Th2 begins to be restored
[27,32]. In the AECOPD patients’ airway, a large number of pa-
thogen-specific antibodies can be found, indicating active immune
response [33]. Meanwhile, Th1s subside and Th2s become domi-
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nant in delayed allergy, and the opposite scenario appears in cel-
lular immunity.
Viral infections frequently evoke a strong Th1 cells and/or cyto-

toxic T lymphocyte response, whereas weak Th1 immunity and
robust Th2-biased response is associated with allergic inflammation
[29]. In general, Th1 cells promote cell-mediated immunity and
phagocyte-dependent inflammation, while Th2 cells support strong
antibody responses and eosinophil accumulation. Th1-dominated
response is involved in the pathogenesis of organ-specific auto-
immune disorders, while Th2-dominated response plays a patho-
genic role in both progressive systemic sclerosis and cryptogenic
fibrosing alveolitis [34]. Both environmental and genetic factors act
in concert to determine the Th1 or Th2 polarization. Aberrant Th2
immune response superimposed on the chronic type 1 immunity of
COPD is responsible for further respiratory compromise. However,
systematic or topical corticosteroids administration can suppress
the production of IL-4 and IL-13, thereby alleviating the airway
hyperresponsiveness and mucus hyperproduction induced by these
cytokines [35].
ILC2 is involved in the pathogenesis of COPD [36,37]. In patients

with stable COPD, the levels of ILC2-associated transcription fac-
tors, including RORα, GATA-3, and CRTH2, were significantly in-
creased and surpassed those in AECOPD patients [30]. We reasoned
that ILC2s may promote Th2/Th1 balance towards Th2 in AECOPD
patients with high level of MHC II, in which it functions as antigen

presenting cells (APCs). Therefore, MHC II+ ILC2 can be included in
further studies as a new target for clinical immunoassay and treat-
ment of AECOPD (Figure 2).

Th17/Treg imbalance
Th1 response drives inflammation in COPD. Emerging evidence
began to add Th17 response into the inflammatory reaction in
COPD. Th17 cells accumulate in the bronchial submucosa, airway
epithelium, lung tissue, bronchoalveolar lavage and peripheral
blood in COPD patients [38,39]. IL-17 enhances the production of a
variety of chemokines, such as IL-1β, IL-6, TNF-α, CXCL8, granu-
locyte colony-stimulating factor (G-CSF), and granulocyte-macro-
phage-CSF (GM-CSF) in the lung, thereby orchestrating the
recruitment of neutrophils and macrophages [40,41]. In addition,
IL-17A was found to contribute to cigarette smoking-induced lym-
phoid neogenesis of late-stage COPD, suggesting its critical role in
chronic inflammation and adaptive immune responses in COPD
[42]. Meanwhile, Di Stefano et al. [13] demonstrated that Th17 cells
and/or the associated cytokines may participate in the airway in-
flammation of COPD and tissue remodeling. The activation of Treg
secretion has also been suggested to play a role in inflammation
[43]. Compromised Treg cell response was found to be associated
with persistent inflammation in COPD [44].
Th17/Treg balance is closely related to the pathophysiological

changes of inflammatory response and development of the auto-

Figure 1. Illustration of the development and differentiation of T cells Once activated, CD4+ T cells differentiate into Th1, Th2, Th17 and Treg cells
via different signal pathways, and then these Th cells secrete various cytokines to participate in inflammatory response.
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immune disorders [45]. The ratio of Th17/Treg in both lung tissues
and peripheral blood is significantly shifted in COPD patients
[44,46,47]. Smoking can lead to the imbalance of Th17/Treg, which
prompts Th17 cells to secrete inflammatory cytokines [48,49].
Smoking also suppresses the protective functions of DCs, airway
epithelium, natural killer cells, and damages the balance between
mDCs/imDCs and Th17/Treg [49]. Furthermore, inflammatory cy-
tokines inhibit FoxP3 expression, suppress the differentiation of
Treg cells, and trigger the conversion to Th17 cells [50].
As a multifunctional cytokine, TGF-β is involved in a variety of

human diseases [51], and plays a pivotal role in the differentiation
of naive CD4+ T cells into Treg or Th17 cells. This function is de-

pendent on inflammatory microenvironments and epigenetic mod-
ifications [52]. In COPD patients, TGF-β1 expression is elevated in
the small airway epithelium, lung tissue, and peripheral blood
[53,54], and tissues of COPD patients have stronger expression le-
vels of bone morphogenetic protein (BMP) and activin membrane-
bound inhibitor (BAMBI) [55] which acts as a competitive receptor
antagonist for TGF-β type-I receptors (TGF-β RI) and the subsequent
Smad signaling pathways [56,57]. An enhanced plasmaBAMBI level
in COPD is positively correlated with increased plasma TGF-β1 level
and Th17/Treg ratio, suggesting a functional link between Th17/
Treg imbalance and TGF-β-BAMBI signaling pathway alteration.
Thus, it is possible that impaired TGF-β/BAMBI pathway fuses in-

Figure 2. High expression of MHC II, ILC2 may function as APC, promoting Th2/Th1 balance to Th2 shift in AECOPD patients AECOPD patients
with inflammation have rapidly deteriorated lung function, ILC2s which highly express MHC II are likely to perform APC-like functions, promoting
the secretion of IL-4, IL-5 and IL-13 through the interaction of MHC II-like molecules with T-cell receptors, leading to elevated differentiation of Th2
cells and ultimately resulting in Th1/Th2 balance to Th2 shift.
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flammation, which leads to the imbalance of Th17/Treg in COPD
patients with smoking history, ultimately shifting Th17/Treg bal-
ance away from a regulatory role towards an inflammatory role [7].

Conclusions
Research on the function and mechanism of immune balance in
COPD provides a novel way for guiding the treatment of COPD.
Restoring Th1/Th2 balance may also be beneficial to AECOPD pa-
tients where GATA-3 pathway could be primarily targeted to reduce
the expression of MHC II+ ILC2 and the proliferation and differ-
entiation of Th2 cells. In addition, the repair of the damaged TGF-β/
BAMBI pathway could also impose positive impacts on Th17/Treg
balance, and thereby alleviating the inflammation of COPD. If ef-
fective and safe anti-inflammatory therapies are developed, they
should be introduced at the early stages of COPD to prevent disease
progression and potentially to reduce the burden of concomitant
comorbidities.
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