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Abstract: The demand for electric double-layer capacitors (EDLCs) has recently increased, especially
for regenerative braking systems in electric or hybrid vehicles. However, using EDLCs under high
temperature often enhances their degradation. Continuously monitoring EDLC degradation is
important to prevent sudden malfunction and rapid drops in efficiency. Therefore, it is useful to
diagnose the degradation at a lower frequency than that used in charge/discharge. Unused and
degraded EDLCs were analyzed using the alternating current impedance method for measurements
over a wide frequency range. Each result had a different spectrum up to 1 kHz. In addition, we
show the basic inside condition of EDLCs with equivalent circuit analysis. This paper explores the
possibility of degradation diagnosis at a high frequency and the basic physical mechanism.

Keywords: supercapacitor; electric double-layer capacitor; alternating current impedance method;
equivalent circuit analysis; modeling

1. Introduction

Electric double-layer capacitors (EDLCs) are energy storage devices that store energy
by forming an electric double layer between a porous electrode and an electrolyte [1,2].
EDLCs are characterized by their ability to rapidly charge and discharge. Moreover, they
have a long life and are virtually maintenance-free owing to no chemical changes [3–6].
Due to these advantages, EDLCs are increasingly used as energy storage devices for electric
vehicles, wind turbines, and solar power generators [4–8]. There has been an especially
dramatic increase in the application of EDLCs to the regenerative energy recovery of electric
vehicles.

However, the most serious problem when applying EDLCs to vehicles is their degra-
dation. The degradation of EDLCs is enhanced by harsh environments, such as high
temperature and voltage [9–15], and EDLCs are actually exposed to such environments in
vehicles. Therefore, it is necessary to continuously monitor and diagnose the conditions of
EDLCs; otherwise, sudden malfunctions or an efficiency drop cannot be avoided.

Measuring the impedance of EDLCs is likely the best technique to monitor their
condition as impedance reflects the internal states of devices and can be measured in a
straightforward manner. We especially focus on a higher-frequency impedance rather than
the timescale of charge and discharge. Electrical phenomena with different timescales can
be separated using filter techniques. Thus, a diagnosis circuit at a higher frequency can
work independently of charge/discharge circuits operated in a lower frequency range [16].
In addition, a diagnosis circuit at a higher frequency has the advantage of a high diagnostic
speed. Therefore, diagnosing the degradation at a high frequency is a groundbreaking
method to constantly observe the degradation; however, previous studies have yet to
report on these aspects.
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To understand the best frequency for diagnostic impedance measurements, we carried
out alternating current impedance measurements on unused and degraded EDLCs over
a wide frequency range, followed by a comparison of their impedance spectra [17,18]. In
addition, equivalent circuit analysis was also conducted to inspect the physical mechanism
behind the spectral change between unused and degraded EDLCs, which reinforces the
reliability of the diagnosis.

2. Materials and Methods

The EDLCs were measured using the alternating current impedance method. Figure
1a shows the unused EDLCs, which were provided by the Nippon Chemi-Con Company
(DLCAP DXE, 2.5 V, 400 F). Two EDLCs were used in this study. One of the EDLCs was
measured as received, while the other EDLC was degraded at 60 ◦C and 3.2 V for 9 weeks.
Figure 1b shows the structure of the EDLCs used in this study. The EDLCs were cylindrical
and composed of an electrolyte (1 M (C2H5)4NBF4/PC), activated carbon electrode, and
a separator (cellulose) [19]. Figure 2 shows the circuit for measuring the EDLCs with the
alternating current impedance method. The voltages applied to the EDLCs and the currents
flowing through the devices were measured by two channels of an oscilloscope (Tektronix
TDS 3021D, Tokyo, Japan). The former was amplified by a factor of 100 with a preamplifier
(TURTLE T-01LGA, Ibaragi, Japan), whereas the currents were transformed into voltages
using a transimpedance amplifier (nF CA5350, Kanagawa, Japan). The voltages applied to
the EDLCs were measured on Channel 1, and the currents that flowed into the EDLCs were
measured on Channel 2. To prevent the flow of a large current through the transimpedance
amp, a shunt was inserted before the transimpedance amp.

Materials 2021, 14, x FOR PEER REVIEW 2 of 8 
 

 

To understand the best frequency for diagnostic impedance measurements, we car-
ried out alternating current impedance measurements on unused and degraded EDLCs 
over a wide frequency range, followed by a comparison of their impedance spectra [17,18]. 
In addition, equivalent circuit analysis was also conducted to inspect the physical mecha-
nism behind the spectral change between unused and degraded EDLCs, which reinforces 
the reliability of the diagnosis. 

2. Materials and Methods  
The EDLCs were measured using the alternating current impedance method. Figure 

1a shows the unused EDLCs, which were provided by the Nippon Chemi-Con Company 
(DLCAP DXE, 2.5 V, 400 F). Two EDLCs were used in this study. One of the EDLCs was 
measured as received, while the other EDLC was degraded at 60 °C and 3.2 V for 9 weeks. 
Figure 1b shows the structure of the EDLCs used in this study. The EDLCs were cylindri-
cal and composed of an electrolyte (1 M (C2H5)4NBF4/PC), activated carbon electrode, and 
a separator (cellulose) [19]. Figure 2 shows the circuit for measuring the EDLCs with the 
alternating current impedance method. The voltages applied to the EDLCs and the cur-
rents flowing through the devices were measured by two channels of an oscilloscope (Tek-
tronix TDS 3021D, Tokyo, Japan). The former was amplified by a factor of 100 with a pre-
amplifier (TURTLE T-01LGA, Ibaragi, Japan), whereas the currents were transformed into 
voltages using a transimpedance amplifier (nF CA5350, Kanagawa, Japan). The voltages 
applied to the EDLCs were measured on Channel 1, and the currents that flowed into the 
EDLCs were measured on Channel 2. To prevent the flow of a large current through the 
transimpedance amp, a shunt was inserted before the transimpedance amp. 

  
(a) (b) 

Figure 1. (a) Investigated electric double-layer capacitors (EDLCs) and (b) their configuration. 

 
Figure 2. Measuring circuit for the EDLCs. 

The impedance (𝑍) was derived from the voltages (𝑉) and currents (𝐼) measured on 
the oscilloscope via Equation (1). The capacitance (𝐶) was derived from 𝑍 with Equation 
(2) as follows: 𝑍 = 𝑉𝐼  and (1)

𝐶 = 1𝑗𝜔𝑍 (2)

Figure 1. (a) Investigated electric double-layer capacitors (EDLCs) and (b) their configuration.

Materials 2021, 14, x FOR PEER REVIEW 2 of 8 
 

 

To understand the best frequency for diagnostic impedance measurements, we car-
ried out alternating current impedance measurements on unused and degraded EDLCs 
over a wide frequency range, followed by a comparison of their impedance spectra [17,18]. 
In addition, equivalent circuit analysis was also conducted to inspect the physical mecha-
nism behind the spectral change between unused and degraded EDLCs, which reinforces 
the reliability of the diagnosis. 

2. Materials and Methods  
The EDLCs were measured using the alternating current impedance method. Figure 

1a shows the unused EDLCs, which were provided by the Nippon Chemi-Con Company 
(DLCAP DXE, 2.5 V, 400 F). Two EDLCs were used in this study. One of the EDLCs was 
measured as received, while the other EDLC was degraded at 60 °C and 3.2 V for 9 weeks. 
Figure 1b shows the structure of the EDLCs used in this study. The EDLCs were cylindri-
cal and composed of an electrolyte (1 M (C2H5)4NBF4/PC), activated carbon electrode, and 
a separator (cellulose) [19]. Figure 2 shows the circuit for measuring the EDLCs with the 
alternating current impedance method. The voltages applied to the EDLCs and the cur-
rents flowing through the devices were measured by two channels of an oscilloscope (Tek-
tronix TDS 3021D, Tokyo, Japan). The former was amplified by a factor of 100 with a pre-
amplifier (TURTLE T-01LGA, Ibaragi, Japan), whereas the currents were transformed into 
voltages using a transimpedance amplifier (nF CA5350, Kanagawa, Japan). The voltages 
applied to the EDLCs were measured on Channel 1, and the currents that flowed into the 
EDLCs were measured on Channel 2. To prevent the flow of a large current through the 
transimpedance amp, a shunt was inserted before the transimpedance amp. 

  
(a) (b) 

Figure 1. (a) Investigated electric double-layer capacitors (EDLCs) and (b) their configuration. 

 
Figure 2. Measuring circuit for the EDLCs. 

The impedance (𝑍) was derived from the voltages (𝑉) and currents (𝐼) measured on 
the oscilloscope via Equation (1). The capacitance (𝐶) was derived from 𝑍 with Equation 
(2) as follows: 𝑍 = 𝑉𝐼  and (1)

𝐶 = 1𝑗𝜔𝑍 (2)

Figure 2. Measuring circuit for the EDLCs.

The impedance (
.
Z) was derived from the voltages (

.
V) and currents (

.
I) measured on

the oscilloscope via Equation (1). The capacitance (
.
C) was derived from

.
Z with Equation (2)

as follows:
.
Z =

.
V
.
I

and (1)

.
C =

1

jω
.
Z

(2)



Materials 2021, 14, 435 3 of 8

3. Results
3.1. Equivalent Circuit Analysis of an EDLC

Figure 3 shows the measurement results for the unused and degraded EDLCs using
the alternating current impedance method. The unused EDLC capacitance measurements
showed a significant increase in the low-frequency region (10−3 to 10 Hz) and a maximum
value of approximately 10−2 Hz. In contrast, the degraded EDLC results were different
from those of the unused EDLC results in that there was a gradual decrease detected in the
range of 10−3 to 100 Hz. In addition, no maximum value was observed at approximately
10−3 Hz. As the capacitance increased, a peak likely existed below 10−3 Hz, which was
close to the value of the unused EDLCs results. While the degraded capacitance was totally
unchanged, a conclusive difference in the peaks was identified. This difference caused
a significant change in the charge/discharge rate, which is an advantage of EDLCs. The
rated capacity of this type of EDLC is 400 F, but the measured maximum capacity of the
unused EDLC was approximately 270 F. This discrepancy can be attributed to the voltage
dependence of the EDLCs. In particular, EDLCs have a fractal structure [20] and strong
voltage dependence [16,21]. In this experiment, the applied voltage amplitude was 2 V and
the impedance of the EDLC was very low; therefore, the voltage was not applied adequately.
This was the reason why the measurement results did not reach the rated capacity.
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The impedance measurements of the unused EDLCs showed a constant value in
the 10−3 to 103 Hz frequency range and a decrease at frequencies higher than 103 Hz.
In contrast, the degraded EDLC was observed to have a difference in impedance in the
low-frequency area, and the impedance was 600 mΩ. There was a gradual decrease with
the increasing frequency from 10−3 to 103 Hz, and a radical decrease occurred at more
than 103 Hz. The rated impedance of the EDLC is 2.5 mΩ, but the measured impedance in
the low-frequency range was approximately 40 mΩ. As the impedance of the EDLC was
very low, the contact resistance between the terminals affected the measured impedance
value. The decrease in resistance that occurred at values less than 103 Hz was the cause
of the degradation observed in this study. To analyze this degradation factor in detail, an
equivalent circuit analysis was performed by measuring the real and imaginary parts of
the impedance, and the internal condition was represented electrically.

Figures 4 and 5 show the results for the equivalent circuit analysis of the unused and
degraded EDLCs. The results for the equivalent circuit analysis of the unused EDLCs
can be divided into three processes corresponding to the low-, mid-, and high-frequency
regions [16]. In the high-frequency region, data indicate that the orientational polarization
had an effect. This phenomenon occurred because orientational polarization is a relatively
fast polarization reaction, and the results for the capacitance measurements were quite low,
i.e., less than 1 mF. In the mid-frequency region, the space charge polarization, which was
slower than the orientational polarization, was considered to have exerted an effect. The
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formation of the electric double layer affected the devices in the low-frequency region. The
capacitance measurement results in the low-frequency region show the highest capacitance,
which was the closest value to the rated capacitance. The time required for the formation
of the electric double layer was longer than that of the other two polarizations. By taking
these factors into account, an electrical equivalent circuit model was created. The internal
models of the EDLCs and the resistance of the pores are represented electrically with
capacitors, resistances, and Warburg impedances [9,22–25]. Figure 6a shows the created
equivalent circuit model. The impedance, Z3, in the high-frequency region, where the
orientational polarization had an effect, is represented by the parallel circuit of a capacitor
(C3) and resistor (R3). Here, C3 represents the action of the oriented polarization, and
R3 represents the equivalent series and contact resistance. The impedance, Z2, in the
mid-frequency region is represented by the parallel circuit of a capacitor (C2), resistor
(R2), and constant-phase element (ZCPE2). Here, C2 represents the action of space charge
polarization, and R2 represents the solution resistance. Furthermore, ZCPE2 represents the
fractal structure of the EDLC, as well as the relationship between the pores on the electrode
surface and electrolyte. The impedance, Z1, in the low-frequency region is represented by
a capacitor, C1. Here, C1 affects the formation of the electrical double layer. This unused
EDLC impedance, ZU , is expressed by the following equation:

ZU = Z1 + Z2 + Z3 (3)
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1

jωC1
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Z2 =
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1 + jωC3R3
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+
R3

1 + jωC3R3
(8)

Figure 6b shows the equivalent circuit model of the degraded EDLC. As mentioned
previously, there was a notable difference between the impedance of the unused and
degraded EDLCs in the low- to mid-frequency region, and this factor played a role in the
degradation. The degradation factor can be expressed by a new constant-phase element,
i.e., ZCPE4. The ZCPE4 parameter represents the slope of the impedance of the degraded
EDLC in the low- to mid-frequency region, and the position of ZCPE4 is between Z1 and Z2.
The degraded EDLC impedance, ZD, can be expressed as follows:

ZD =
1

jωC
+ ZCPE4 +

R2R0(jωτ0)
−α

R2+R0(jωτ0)
−α(1 + jωC2R2)

+
R3

1 + jωC3R3
(9)

Here, ZCPE4 can also be represented as follows:

ZCPE4 = R′0
(

jωτ0
′)−α′ (10)

Therefore, ZD is as follows:

ZD =
1

jωC
+ R′0

(
jωτ0

′)−α′
+

R2R0(jωτ0)
−α

R2+R0(jωτ0)
−α(1 + jωC2R2)

+
R3

1 + jωC3R3
(11)

3.2. Internal Model of EDLC Degradation

Figure 7 shows the internal model of the cathode side of the degraded EDLC, il-
lustrating the equivalent circuit model proposed in the previous section. The models of
the unused and degraded EDLCs were created in the previous section, and the location
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of the degradation was identified. As the degradation element, i.e., ZCPE4, was located
between Z1 and Z2, degradation was considered to occur between the electrode surface
and electrolyte inside the degraded EDLC. Moreover, as the degradation of the EDLC
was greater on the cathode side than on the anode side, the degradation of the EDLC was
considered to be dependent on the cathode side [26–31]. The degradation tests showed
that pores were the main degradation sites. The degradation factors were identified as gas
generation [32–34] and pore reduction [2,26,27,30,35,36] due to chemical reactions. In this
experiment, gas generation due to the high temperature increased the internal pressure
and amount of water. In addition, the high voltage may have caused the pores to melt and
shrink. In either case, the internal condition of the EDLC should be observed to identify
the causes of degradation.
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4. Conclusions

In this study, the impedances of degraded and unused EDLCs were measured over a
wide frequency range. Comparing each impedance measurement, there were differences of
up to 1 kHz. Therefore, our method is able to diagnose degradation in the high-frequency
range, which is lower than the frequency range used for charge/discharge.

In addition, equivalent circuits were created from these measurements, allowing us to
depict the basic data within the EDLCs. Comparing the basic data to the degraded EDLCs,
we were able to examine the degradation factor.

Our results allow the possibility of diagnosing degradation in the high-frequency
range and internal conditions of the EDLCs. Future studies should focus on creating a
degradation diagnostic circuit and observing the surface of the active carbon electrode.
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