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Prediction of Radiation Pneumonitis
With Machine Learning in Stage III
Lung Cancer: A Pilot Study
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Abstract
Background: Radiation pneumonitis (RP) is a dose-limiting toxicity in lung cancer radiotherapy (RT). As risk factors in the
development of RP, patient and tumor characteristics, dosimetric parameters, and treatment features are intertwined, and it is
not always possible to associate RP with a single parameter. This study aimed to determine the algorithm that most accurately
predicted RP development with machine learning. Methods: Of the 197 cases diagnosed with stage III lung cancer and underwent
RT and chemotherapy between 2014 and 2020, 193 were evaluated. The CTCAE 5.0 grading system was used for the RP eva-
luation. Synthetic minority oversampling technique was used to create a balanced data set. Logistic regression, artificial neural
networks, eXtreme Gradient Boosting (XGB), Support Vector Machines, Random Forest, Gaussian Naive Bayes and Light
Gradient Boosting Machine algorithms were used. After the correlation analysis, a permutation-based method was utilized for as a
variable selection. Results: RP was seen in 51 of the 193 cases. Parameters affecting RP were determined as, total(t)V5, ipsilateral
lung Dmax, contralateral lung Dmax, total lung Dmax, gross tumor volume, number of chemotherapy cycles before RT, tumor size,
lymph node localization and asbestos exposure. LGBM was found to be the algorithm that best predicted RP at 85% accuracy
(confidence interval: 0.73-0.96), 97% sensitivity, and 50% specificity. Conclusion: When the clinical and dosimetric parameters
were evaluated together, the LGBM algorithm had the highest accuracy in predicting RP. However, in order to use this algorithm
in clinical practice, it is necessary to increase data diversity and the number of patients by sharing data between centers.
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Introduction

Lung cancer is the most common and mortal thoracic malig-

nancy.1 Thoracic radiotherapy (RT) is a part of treatment in

approximately 50% of cases diagnosed with lung cancer.2

Radiation pneumonitis (RP) is a potentially dose-limiting and
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clinically significant toxicity in thoracic RT.3 RP and more

subclinical changes occur at a rate of 15-40% in cases receiving

concomitant chemotherapy.4-6 Radiation-induced lung injury

can cause symptomatic RP and fibrosis. Symptomatic RP is

characterized by dyspnea, cough, and sometimes subfebrile

fever, which typically occur a few weeks to months after RT.7

Pulmonary effects caused by radiation may vary and include

edema, epithelial degeneration and regeneration, endothelial

damage, microvascular system disruption and atelectasis.

These effects are the result of the induction of free radicals and

accompanying oxidative stress. In some cases, this damage

cannot be completely repaired, and the tissue enters a progres-

sive process resulting in RP or fibrosis.5,8

Meta-analyses in the literature reveal that the risk factors for

patient-related RP are an advanced age, a history of chronic

lung disease and diabetes mellitus (DM), low lung function

before RT, and a history of smoking. In addition, concomitant

chemotherapy, especially carboplatin/paclitaxel has been

reported as a risk factor for RP development.9,10 Studies have

shown that various dosimetric parameters, such as lung volume

receiving 5 Gy (V5), lung volume receiving 60 Gy (V60), and

the mean lung dose (MLD) are associated with the develop-

ment of RP.11-14

Machine learning (ML) is defined as the ability of a machine

to learn and predict future events and outcomes based on large

data sets. In healthcare, ML aims to improve the interpretation

of medical data, thereby accelerating workflow, reducing

errors, eliminating unnecessary expenses, and ultimately

improving human health. ML has a major impact on the devel-

opment of new prediction models and calculation tools for

cancer diagnosis to improve patient care, in particular for the

purposes of patient stratification, disease rating, prognosis, and

treatment toxicities.15

As risk factors in the development of RP, patient character-

istics, dosimetric parameters, and treatment characteristics are

intertwined, and it is not always possible to associate RP with a

single parameter. In clinical practice, lung damage does not

similarly occur in all patients receiving the same V5-V60 dose

or similar chemotherapy. The prediction of patients that will

develop RP can reduce hospitalizations and drug use and

increase the patient’s quality of life by reducing the toxicity

rates. This can also lower healthcare expenditures. The current

study aimed to establish a RP prediction model by evaluating

patient-treatment characteristics and dosimetric parameters

with ML.

Materials and Methods

Patient Characteristics

A total of 197 cases that underwent RT and chemotherapy at

the Radiation Oncology and Chest Diseases Department of

University Faculty of Medicine between 2014 and 2020 were

included in the study, and the data of 193 cases were used to

create a balanced data set for the assessment of ML prediction

of RP. The inclusion criteria were having histopathologically

confirmed lung cancer, having a Karnofsky Performance Status

(KPS) score of�60, being aged >18 years, completing planned

treatment and regularly attending follow-up, and having stage

III non-small cell lung cancer (NSCLC) or small cell lung

cancer (SCLC) according to the AJCC Staging Manual, 8th

edition.16 Patients with a previous diagnosis of lung cancer who

had a history of RT and signs of infection at the beginning of

treatment were not included in the study. For staging purposes,

thorax-abdominal computed tomography (CT)/positron emis-

sion tomography (PET)-CT and brain magnetic resonance ima-

ging (MRI) were performed in each patient. After diagnosis,

the cases were evaluated in the Lung/Pleural Cancer Council of

the university, and the treatment decision of the cases was

taken in a multidisciplinary manner. Our study was approved

by Eskişehir Osmangazi University Clinical Research Ethics

Committee (approval no. E-25403353-050.99-122145). All

patients provided written informed consent prior to enrollment

in the study.

Treatment Characteristics

The patients were immobilized in the supine position with the

hands on the head using T-bar/ Wingboard. A planning CT was

taken with a Somatom Definition AS® device using a 3-5 mm

cross-sectional slices. The planned CT scans were fused with

the PET-CT/thoracic CT obtained at the time of diagnosis and

the current thoracic CT performed after chemotherapy if

applied before RT. The gross tumor volume (GTV) was deter-

mined after fusion. In cases receiving chemotherapy before RT,

GTVtumor was determined after chemotherapy and GTVlymph

node before chemotherapy. The clinical target volume (CTV)

margin was determined according to tumor histopathology, and

CTVtumor was recorded as 0.8 cm for adenocarcinoma, 0.6 cm

for squamous cell carcinoma, and 0.5 cm for other histologies.

CTVlymph node was determined as 0.5 cm. Elective nodal irra-

diation was not performed. For the planning target volume

(PTV), a margin of 0.5 cm was used for CTVtumor and

CTVlymph node, and the patients were treated with image-

guided radiation therapy. RT was applied at 1.8-2.5 Gy frac-

tion/day (total dose, 45-68 Gy) accompanied by 3-dimensional

conformal radiotherapy (3DCRT)/intensity modulated radia-

tion therapy (IMRT)/volumetric modulated arc therapy

(VMAT) using the Varian Trilogy®/ TrueBeam® device. Pro-

phylactic cranial RT at 25 Gy (2.5 Gy/day � 10 fractions) was

administered to cases with SCLC if they had complete response

to treatment.

Taking patient characteristics (age, KPS score, comorbid-

ities, etc.) into account, concomitant chemotherapy was applied

to appropriate cases. In NSCLC, cisplatin (40 mg/m2) or pacli-

taxel (45-50 mg/m2) þ carboplatin [area under the curve

(AUC): 2] was used on a weekly basis. In SCLC, cisplatin

(40 mg/m2) was applied weekly or cisplatin (75 mg/m2) þ
etoposide (100 mg/m2) once every 21 days. The patients

attended the outpatient clinic once a week.

Gemcitabine, paclitaxel or vinorelbine alone or combined

with platinum were used in first- and second-line
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chemotherapy in SCLC. The first-line chemotherapy of adeno-

carcinoma was undertaken with the same agents mentioned

above but pemetrexed was used in second-line chemotherapy.

In cases with the epidermal growth factor receptor, anaplastic

lymphoma receptor tyrosine kinase gene translocation or ROS

proto-oncogene 1 receptor tyrosine kinase gene rearrangement,

the first-line chemotherapy was the same as given above while

the second-line therapy was performed with a targeted thera-

peutic agent specific to the genetic modification. In patients

with relapse/progressive disease, considering the KPS score

and comorbidities, a chemotherapy regimen that had not pre-

viously been used was applied, and the decision to continue this

therapy was based on patient response. In the treatment of

SCLC, etoposide combined with platinum was used as the

first-line chemotherapy regimen, and irinotecan or vincristine

þ cyclophosphamide þ adriablastina combination as the

second-line regimen in cases that did not respond to treatment

or relapsed. No patient received immunotherapy in this study.

Selected Variables

A total of 77 variables were evaluated to assess RP: age, gen-

der, KPS, smoking history, presence of chronic obstructive

pulmonary disease, presence of a diabetes mellitus (DM) diag-

nosis, asbestos exposure, emphysema/interstitial changes

before RT, histopathology, tumor location (right upper/

middle/lower lobe, left upper and lower lobe), tumor size, cen-

tral/peripheral localization of the tumor, lymph node localiza-

tion (mediastinal/hilar/supraclavicular), lymph node

involvement (multilevel/single level), T stage, N stage, TNM

stage, history of surgery, presence of concomitant chemother-

apy, concomitant chemotherapy protocol, number of che-

motherapy cycles before RT, GTV, PTV, total RT dose,

fraction dose, RT technique, pretreatment serum albumin and

hemoglobin values, pretreatment neutrophil/lymphocyte ratio,

total lung (t) V5-10-15-20-25-30-35-40-45-50-55-60, t minimum dose

(Dmin), t maximum dose (Dmax), mean lung dose (tMLD), ipsi-

lateral lung (i) V5-10-15-20-25-30-35-40-45-50-55-60, iDmin, iDmax,

iMLD, contralateral (c) V5-10-15-20-25-30-35-40-45-50-55-60, cDmin,

cDmax, cMLD, total lung volume, ipsilateral lung volume, and

contralateral lung volume. These variables were identified

from those reported as risk factors in RP studies in the litera-

ture.9-14 Out of 77 variables, 9 variables affecting RP were

selected using the permutation feature importance method. Per-

mutation Feature Importance technique is based on evaluating

the importance of each feature individually. Permutation Fea-

ture Importance measures the change in prediction quality

(measured by the coefficient of determination score decrease)

after processing on a single feature vector. The rate of reduc-

tion in the coefficient of determination indicates how important

the feature is.15 Permutation Feature Importance Plot is given

in Figure 1.

Figure 1. Permutation feature importance plot.
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Follow-Up After RT

In the first month after the end of treatment, anamnesis, phys-

ical examination, and patient response were evaluated with

thoracic CT. The first 3 years, the same evaluation was under-

taken every 3 to 6 months, followed by every 6 months in the

fourth and fifth years, and once a year thereafter. During rou-

tine follow-up, the cases were evaluated in terms of RP based

on their complaints, physical examination, and thoracic CT

findings. According to the general condition of the patients,

their complaints and test results, additional tests (erythrocyte

sedimentation rate, C-reactive protein, respiratory function

test, etc.) were performed, and the follow-up frequency was

increased when necessary.

Evaluation of RP

Various grading systems have been used to evaluate RP.17–19

These grading systems consist of a combination of clinical,

functional and radiographic changes that may occur after RT.

The most widely used rating system is the Common Terminol-

ogy Criteria for Adverse Events (CTCAE), version 5.0 pub-

lished by the National Cancer Institute (Supplementary

Table 1).16 Since the current study aimed to evaluate acute

RP, the cases with thoracic CT findings and/or symptoms up

to the first 3 months after the end of RT were considered to

have RP. The patients diagnosed with � grade 2 RP were

administered 60-100 mg/day steroids for 2 weeks, with the

dose being gradually decreased within 3 to 12 weeks, and they

were closely followed up clinically and radiologically. In the

presence of CT/lung radiography findings supporting a concur-

rent infection, broad-spectrum antibiotics were started.

Application of ML and Statistical Analysis

Patients with missing data were excluded from the study. In

ML, when the sample sizes of the subgroups of the dependent

variable to be predicted are not equal, this results in biased

predictions as a result of overfitting. In order to avoid this

situation, it is necessary to create a balanced data set.20

The synthetic minority oversampling technique (SMOTE)

was used to create a balanced data set. The unbalanced data set

problem is that there is no uniform distribution in the label of

the target variable. This situation creates difficulties in estimat-

ing a grade. Different methods are used to solve this problem.

SMOTE is the most preferred method. In SMOTE, each minor-

ity class sample is taken and synthetic samples are created by

looking at any or all of the k neighbors of this sample. For the

attribute to be sampled from the minority class, a sample from

the data set according to its closest neighbors and a vector

between this sample and one of its closest neighbors is taken.

This vector is added to the current data point by multiplying it

by a random number between 0 and 1. Thus, an artificial data

derived from its close neighbors is provided.21 By applying the

SMOTE method, the number of data with RP, which is a minor-

ity group, was approximately equal to the number of data

without RP. Thus, the number of data was increased and the

imbalance was eliminated. There are 154 cases (41 with RP,

113 without RP) in the training data set, and 39 cases (with 10

with RP, 29 without RP) in the test data set. After the SMOTE

process, 226 training data (113 RP, 113 RP) were obtained.

Results were obtained by applying cross validation (k ¼ 5) to

the complete model. The average of 5 success rates and confi-

dence intervals obtained with each algorithm were calculated.

With correlation analysis, excessively correlated variables

were detected and false high results were prevented.

Independent variables that significantly affect the RP depen-

dent variable were selected by the permutation feature impor-

tance method, which is based on a decrease in the model score

when a single variable value is randomly shuffled. This process

breaks the relationship between the variable and the target;

thus, a decrease in the model score indicates the dependence

of the model on the feature. This technique can be applied

multiple times with different permutations of the variables in

the model. Depending on whether the extracted variable affects

success, it is removed from the model or remains in the model.

When a variable in the model is removed, the success rate is

calculated by testing it with all algorithms. This process is

repeated (2n-1) times for all subsets except the empty set.

Models with the highest results of all algorithms are recorded.15

In the current study, the data set was divided into 2 at a ratio of

80-20 for training and testing. For the training purpose, predic-

tion models were created using the logistic regression (LR),

artificial neural networks (ANN)s, eXtreme Gradient Boosting

(XGB), support vector machines (SVM), random forest (RF),

Gaussian Naive Bayes (GNB), and light gradient boosting

machine (LGBM) methods.

LR focuses on predicting the probability of an event based

on previous data provided. It is used to close a binary depen-

dent variable. ANNs consist of units arranged in a series of

layers, each connected to the layers on the other side. ANNs

are inspired by biological systems, such as the brain and how

information is processed, and they basically refer to a large

number of interconnected process elements that work together

to solve specific problems. XGB is an efficient and scalable

implementation of the gradient enhancement framework pre-

pared by Friedman. This algorithm includes an efficient linear

model solver and a tree learning algorithm.22 XGB supports

various objective functions, including regression, classifica-

tion, and sorting.23 SVM algorithms are controlled learning

types that examine information used for categorization and

response analysis. RF is a learning method that combines mul-

tiple algorithms to produce better results for classification,

regression, and other tasks. Decision trees are familiar tools

used for medical decision making and resemble a flowchart

that guides a reader toward classifying a person as either higher

risk or lower risk for an outcome. The 2 most common methods

for overcoming the capacity for trees to overfit are gradient

boosting machines (GBM) and RF.24 The GNB classifier is

based on Bayes’ theorem and classifies each value indepen-

dently of other values. It allows predicting a category using

probability and based on a particular set of properties.25 LGBM
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is a gradient enhancement framework based on decision trees

to increase the efficiency of the model and reduce memory

usage.26

In the tests conducted with these models, the model success

rates were determined based on the accuracy, sensitivity and

specificity values; i.e. confusion matrix metrics, as well as the

area under curve (AUC) graph in the receiver operating char-

acteristic (ROC) curve analysis.22 In statistics, the ROC curve

is a graphical plot showing the diagnostic ability of a dual

classification system, and AUC indicates the classification per-

formance of the constructed model and takes a value between 0

and 1. An AUC value close to 1 means that the classification

performance of the model is high.25 In our study, we used the

accuracy ratio (Acc), which is a widely adopted success assess-

ment method based on the proportion of true positive and true

negative results in the whole number of samples. Error rate

refers to the proportion of the miscalculated number of samples

(false positive and false negative) in all evaluated samples.27

Statistical analysis and ML algorithm tests were performed

using Python software (Python Software Foundation. Python

Language Reference, version 3.5. Available at http://www.

python.org) and Scikit Learn library.28 All analyses and pro-

cesses were undertaken using a computer running 64 bit Win-

dows 10 operating system, with technical specifications of Intel

Core i7-9750 CPU, 2.6 GHz 12 MB cache and 16 GB 2666

MHz DDR4 RAM.

Results

Patient, Tumor and Treatment Characteristics

The median age was 63 (min: 37-max: 85) years, and the

female/male ratio was 11/182. The number of Stage IIIA/

IIIB/IIIC cases was 41 (21.2%), 117 (60.6%) and 35 (18.1%),

respectively. The median tumor size was 57 (min: 16, max:

125) mm. Patient and tumor characteristics are summarized

in Table 1.

The median RT dose was 60 (min: 45, max: 68) Gy, and 117

patients received concomitant chemotherapy. The median

GTV was 90 cc (min: 0, max: 540), and the median PTV was

314 cc (min: 72, max: 829). Treatment characteristics are sum-

marized in Table 2.

The median tMLD was 11.3 (min: 2.8-20.7) Gy, the median

tV5 was 45% (min: 8, max: 66), and the median tV20 was 19%
(3-36). RT dosimetric properties are summarized in Table 3.

Table 1. Patient and Tumor Characteristics.

Variable N (%)/median (max/min)

Age, years 63 (37-85)

Gender

Female 11 (5.6%)

Male 182 (94.3%)

KPS score 80 (60-100)

Smoking history

Present 174 (90.1%)

Absent 19 (9.8%)

COPD history

Present 30 (15.5%)

Absent 163 (84.4%)

DM history

Present 21 (10.8%)

Absent 172 (89.1%)

Asbestos exposure

Present 18 (9.3%)

Absent 175 (90.6%)

Emphysema/interstitial changes before RT

Present 76 (39.3%)

Absent 117 (60.6%)

Histopathology

SCC 119 (61.6%)

Adenocarcinoma 42 (21.7%)

Small cell 28 (14.5%)

NET

Sarcomatoid carcinoma

3 (1.5%)

1 (0.5%)

Tumor localization

Right upper 48 (24.8%)

Right middle 27 (13.9%)

Right lower 35 (18.1%)

Left upper 58 (30.0%)

Left lower 25 (12.9%)

Tumor position

Central 127 (65.8%)

Peripheral 66 (34.1%)

Tumor size (mm) 57 (16-125)

Lymph node localization

Mediastinal 57 (29.5%)

Hilar 18 (9.3%)

Mediastinal þ hilar 100 (51.8%)

Mediastinal þ supraclavicular 2 (1.0%)

Mediastinal þ hilarþsupraclavicular 8 (4.1%)

Lymph node involvement level

Multilevel 139 (72%)

Single level 46 (23.8%)

T stage

T1 4 (2.0%)

T2 11 (5.6%)

T3 51 (26.4%)

T4 127 (65.8%)

N stage

N0 12 (6.2%)

N1 16 (8.2%)

N2 127 (65.8%)

N3 38 (19.6%)

TNM stage

IIIA 41 (21.2%)

IIIB 117 (60.6%)

(continued)

Table 1. (continued)

Variable N (%)/median (max/min)

IIIC 35 (18.1%)

NLR before treatment 3.0 (0.5-30.8)

Abbreviations: KPS, Karnofsky Performance Status; COPD, chronic obstruc-

tive pulmonary disease; DM, diabetes mellitus; RT, radiotherapy; SCC,

squamous cell carcinoma; NET, neuroendocrine tumor, NLR, neutrophil-to-

lymphocyte ratio.
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RP

RP was observed in 51 (26.4%) of the 193 cases included in the

study. The number of cases with grade 1, 2 and 3 RP was 28

(14.5%), 22 (11.3%) and 1 (0.5%), respectively. Grade �4 RP

was not observed.

Prediction of RP With ML

The study started with 197 cases (RP¼ 51, non-RP¼ 146), and

4 cases were excluded due to missing data. Of the 77 para-

meters initially evaluated, the following 9 were determined as

important variables: total(t)V5, ipsilateral lung Dmax, contral-

ateral lung Dmax, total lung Dmax, GTV, number of chemother-

apy before RT, tumor size, lymph node localization and

asbestos exposure.

The data set was divided into 2 as training and test sets at a

ratio of 80-20. Prediction models were created using the LR,

ANN, XGB, SVM, RF, GNB and LGBM methods on the train-

ing set, and the LGBM algorithm was determined to have the

best prediction ability with 85% accuracy [confidence interval

(CI): 0.73-0.96], 97% sensitivity, and 50% specificity. The

LGBM algorithm accurately predicted 5 out of 6 RP cases and

28 out of 33 non-RP cases in the test data set. The confusion

matrix is presented in Table 4 and the accuracy rates of the

algorithms are given in Table 5. The ROC-AUC graph of the

algorithms is shown in Figure 2.

Discussion

In the current study, patient and tumor characteristics and dosi-

metric factors were evaluated together, and significant variables

Table 3. Dosimetric Characteristics.

Variable Median (%) (max/min)

tV5 45 (8-66)

tV10 29 (5-55)

tV15 23 (4-43)

tV20 19 (3-36)

tV25 15 (3-32)

tV30 12 (1-30)

tV35 9 (1-27)

tV40 7 (0.1-24)

tV45 5 (0.1- 21)

tV50 3 (0-17)

tV55 2 (0-13)

tV60 0.9 (0-8)

iV5 61 (18-99)

iV10

iV15

51 (14-95)

44 (13-83)

iV20 38 (12-69)

iV25 32 (9-64)

iV30 25 (4-63)

iV35 19 (3-60)

iV40 15 (1-59)

iV45 10 (0-56)

iV50 8 (0-53)

iV55 5 (0-34)

iV60 2 (0-23)

cV5 33 (0.5-60)

cV10 9 (0-39)

cV15 3 (0-34)

cV20 1.5 (0-33)

cV25 0.4 (0- 33)

cV30 0 (0-32)

cV35 0 (0-29)

cV40 0 (0-29)

cV45 0 (0-16)

cV50 0 (0-9)

cV55 0 (0-5)

cV60 0 (0-3)

MLD (Gy)

tMLD 11.3 (2.8-20.7)

iMLD 18.2 (4.7-38)

cMLD 4.6 (1.2-16.3)

Maximum lung dose (Gy)

Total 63.1 (46.9-70.6)

Ipsilateral 63.0 (46.9-70.6)

Contralateral 42.2 (10.7-66.2)

Minimum lung dose (Gy)

Total 0.16 (0 -1.0)

Ipsilateral 0.35 (0-2.8)

Contralateral 0.19 (0-0.72)

Lung volume (cc)

Total 3935 (1487-7256)

Ipsilateral 1778 (852-3871)

Contralateral 2001 (486-3985)

Abbreviations: t, total; i, ipsilateral; c, contralateral, MLD: mean lung dose.

Table 2. Treatment Characteristics.

Variable

N (%) / median

(max/min)

Surgical history

Present 16 (8.2%)

Absent 177 (91.7%)

RT technique

3DCRT 21 (10.8%)

IMRT 42 (21.7%)

VMAT 130 (67.3%)

RT dose (Gy) 60 (45-68)

RT fraction dose (Gy) 2 (1.8- 4)

GTV (cc) 90 (0-540)

PTV (cc) 314 (72-829)

Concomitant chemotherapy

Present 117 (60.6%)

Absent 76 (39.3%)

Concomitant chemotherapy protocol

Cisplatin

Cisplatin þ etoposide

89 (46.1%)

12 (6.2%)

Carboplatin þ paclitaxel 15 (7.7%)

Carboplatin þ etoposide 1 (0.5%)

Number of chemotherapy cycles before RT 3 (0-6)

Abbreviations: 3DCRT, three-dimensional conformal radiotherapy; IMRT;

intensity-modulated radiation therapy; VMAT, volumetric modulated arc ther-

apy; RT, radiotherapy; GTV: gross tumor volume; PTV, Planning target volume
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affecting RP were determined to be total(t)V5, ipsilateral lung

Dmax, contralateral lung Dmax, total lung Dmax, GTV, number of

chemotherapy before RT, tumor size, lymph node localization

and asbestos exposure. LGBM algorithm was determined to

have the best prediction ability with 85% accuracy [confidence

interval (CI): 0.73-0.96], 97% sensitivity, and 50% specificity.

RP is an important toxicity that can result in death in

patients undergoing RT due to lung cancer. Predicting the

development of RP can lower toxicity rates. In this study, RP

was predicted by evaluating dosimetric and clinical factors

together.

In lung cancer RT, tMLD and certain dose volume para-

meters are used during treatment planning to reduce the risk

of RP.29–31 Dosimetric factors include dose volume histogram

parameters and threshold doses, such as the maximum point

dose. Non-dosimetric factors refer to other variables; e.g. age,

gender, and histopathology. Normal tissue complication prob-

ability and tumor control probability prediction models focus

on dosimetric parameters alone.32,33 However, the necessity of

also using non-dosimetric parameters was emphasized in the

Quantitative Analysis of Normal Tissue Effects in the Clinic

(QUANTEC).34

In a study using dosimetric, clinical, and tumor localization

parameters in a multivariate LR prediction model, presence of

concomitant chemotherapy, equivalent RT dose, tV60, and

tumor location were determined as significant variables.35

According to these results, rather than using a single factor to

distinguish between high-risk and low-risk patients for RP

development, dosimetric, clinical and tumor location factors

should be evaluated together. In the present study, these factors

were evaluated together.

In a study conducted by Valdes et al, 201 cases who under-

went stereotactic body radiotherapy (SBRT) with the diagnosis

of stage I lung cancer were evaluated. RP was observed in 4%

of the cases, and 61 variables were evaluated. The diffusing

capacity of the lungs for carbon monoxide, dose received by 15

cc of the heart, dose received by 4 cc of the trachea/bronchi,

and ethnicity were determined as important variables for the

development of RP. Decision trees, RF and RUSBoost algo-

rithms were previously evaluated, and it was reported that a

data set of at least 800 cases was needed to predict RP with an

error rate of less than 10%.36 In another study by Lee et al, a

Bayesian network (BN) approach was developed in a cohort of

54 NSCLC patients treated with 3DCRT. Clinical and hema-

tological biomarkers and dose volume histogram variables

were assessed, and the AUC was calculated as 0.83 for BN and

0.77 for LR.37 Chen et al conducted a study using the SVM

algorithm to predict the development of � grade 2 RP. In that

study, 219 cases with lung cancer were evaluated, and RP was

seen in 34 of these cases. While both the dosimetric and

non-dosimetric variables were evaluated with SVMall, the dosi-

metric variables were also evaluated with SMVdose. The sensi-

tivity/specificity rates using SVMdose and SVMall were

determined as 74%/75% and 68%/68%, respectively, and sig-

nificant variables for the SVMall algorithm were identified to

be MLD and history of chemotherapy before RT.38 In the cur-

rent study, the highest sensitivity and specificity rates were

achieved with the LGBM algorithm at 97% and 50%,

respectively.

In a study conducted by Luna et al with 203 patients with

stage II-III NSCLC, 32 variables were evaluated,� grade 2 RP

was observed in 17.7% of the cases. The algorithm with the

highest accuracy rate was determined as RF (AUC: 0.66), and

effective variables for the development of RP were reported to

be smoking pack/year, MLD, tV20, and maximum esophagus

dose.39 These factors were not determined as important vari-

ables in the present study, and tV5, one of the dosimetric para-

meters, was found to be an important variable.

In a metanalysis covering 31 studies, Vogelius et al evalu-

ated clinical factors affecting RP and reported that advanced

age (P < 0.0001) and pulmonary comorbidities (P ¼ 0.007)

were risk factors for RP development.9 These variables were

also evaluated in the present study, but they did not contribute

to the development of RP. Lung volume exposed to radiation is

one of the important parameters in the possible pathogenesis of

RP. There is a large body of literature reporting the correlation

between dosimetric parameters and RP. Although tV20 and

Table 5. Results of Algorithms.

Algorithm LR ANN XGB SVM RF GNB LGBM

Accuracy 0.51 0.51 0.79 0.54 0.77 0.46 0.85

ROC AUC 0.47 0.53 0.62 0.50 0.67 0.54 0.73

Positive predictive value (Precision) 0.75 0.73 0.84 0.76 0.81 0.90 0.85

Sensitivity (Recall) 0.52 0.55 0.90 0.55 0.90 0.31 0.97

Specificity 0.50 0.40 0.50 0.50 0.40 0.90 0.50

Confidence interval 0.36-0.67 0.36-0.67 0.67-0.92 0.38-0.70 0.64-0.90 0.31-0.62 0.73-0.96

Abbreviations: LR, logistic regression; ANNs, artificial neural networks; XGB, eXtreme Gradient Boosting; SVM, support vector machines; RF, random forest;

GNB, Gaussian Naive Bayes; LGBM, light gradient boosting machine, ROC, receiver operating characteristic, AUC, Area under the Curve.

Table 4. Extreme Gradient Boosting Classifier Confusion Matrix.

Actual

RP � RPþ

Predicted RP� 28 5

RPþ 1 5

Abbreviation: RP, radiaton pneumonitis.
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tMLD are confirmed to be the most frequently associated para-

meters in most studies, some other dosimetric variables, includ-

ing tV5, tV13, tV25 and tV30, are also related to RP

development.10 In our study, most of the significant variables

were dosimetric parameters.

The contribution of RT techniques to the development of RP

has also been previously investigated. In lung cancer, IMRT is

superior to 3DCRT since it can increase the therapeutic rate by

reducing the organ at risk (RAO) doses while providing a better

fit for the tumor. Retrospective studies conducted to date show

that IMRT decreases the RAO dose.40,41 The RT technique was

also evaluated in the present study but it was not observed to be

a significant variable.

In a study by Avenzo et al, it was aimed to correlate radia-

tion dose to the risk of severe radiologically-evident radiation-

induced lung injury (RRLI) using voxel-by-voxel analysis of

the follow-up CT of 32 patients treated for lung cancer with

hypofractionated RT. Follow-up CT scans were obtained after

7.4 months average from the end of RT. Follow-up CT scans

were registered to pre-treatment CT using deformable image

registration. The change in density was calculated for each

voxel within the combined lungs minus PTV. The AUC was

0.581 (0.575–0.583) for fractionated and 0.579 (0.577–0.581)

for hypofractionated patients. According to this study, this

model can improve treatment planning by identifying dose

levels likely to cause RRLI, or help distinguish recurrence from

benign changes based on knowledge of lung locations at risk of

intensity changes after RT.42

With successful ML models, toxicity rates can be reduced,

oncological results can be improved, and hospitalization and

healthcare expenses due to toxicity can be reduced. There is

still no consensus on an optimal algorithm for predicting toxi-

city. Algorithms to be used are determined according to various

factors, such as experience, use in the literature, and data

characteristics.

Conclusion

In recent years, the increasing interest in artificial intelligence

in all fields of science has led to the development of innovative

tools in RT. The development of prediction tools with a wide

variety of variables and models limits the comparability of

existing studies and the use of standards. Prediction algorithms

can be standardized by sharing data between centers, data

diversity, and creating big data. In addition, models can be

made clinically applicable through updating by entering new

data. In the current study, when the clinical and dosimetric

parameters were evaluated together, LGBM was determined

as the algorithm with the highest accuracy rate to predict RP.

However, in order to use this algorithm in clinical practice, it is

necessary to increase data diversity and the number of patients

by sharing data between centers.
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