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Abstract: The polyene antibiotic Amphotericin B (AMB) is one of the fi rst therapeutic agents to 

be marketed commercially as nanosized formulations in which the drug is associated with lipids 

as liposomes or complexes. In this way, its renal toxicity is reduced and its therapeutic index 

improved. This review summarizes the particular properties of AMB which justify this type of 

formulation and the early work leading up to their development. The clinical results obtained 

in the treatment of fungal infections are reviewed and their activity against leishmaniasis is also 

evoked. Some newer formulations of AMB, based on both lipids and polymers are described. In 

particular, their potential by the oral and pulmonary routes are discussed. Finally, the develop-

ment of targeted systems to deliver the drug to specifi c cells and tissues is considered.
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Introduction
The polyene antibiotic Amphotericin B (AMB) is one of the fi rst therapeutic agents 

to be marketed commercially as nanosized formulations. This review will summarize 

the particular properties of AMB which justify this type of formulation and the early 

work leading up to their development. The clinical results obtained in the treatment 

of fungal infections will be reviewed. Finally, some newer formulations, in which the 

drug has been associated with polymers as well as lipids, and new directions in the 

use of AMB will be considered.

Properties of AMB and early work with AMB
in liposomes
Properties of AMB
The antimicrobial properties of AMB, a macrolide extracted from Streptomyces 

nodosus, were fi rst noted in the 1950s (Vandeputte et al 1955–1956) and the antibi-

otic arrived on the market in 1958 (Utz et al 1958–1959). The drug possesses a wide 

spectrum of activity, encompassing a large number of fungal species as well as pro-

tozoan parasites (Leishmania species) and amoebae (Naegleria species) (for a recent 

review, see Kleinberg 2006). More recently, it was found to have some activity against 

prion diseases (Hartsel and Weiland 2003; Mangé et al 2000). Despite its therapeutic 

importance, the physicochemical properties of AMB lead to some diffi culties in its 

formulation and utilization, and solutions based on “nanotechnology” have been 

developed in response to these.

AMB (Figure 1) is an asymmetrical, cyclic molecule with one hydrophobic and 

one hydrophilic face, and an aminosugar (mycosamine) group. It has a very limited 

solubility profi le, being almost completely insoluble in water, sparingly soluble in 

alcohols and soluble in organic solvents such as DMSO and DMF (Brittain 1994). In 

water, AMB aggregates, forming fi rst dimers by apposition of two hydrophobic faces 
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followed by larger aggregates (Mazerski et al 1982). This 

insolubility in aqueous media also leads to low bioavailabil-

ity of AMB by the oral route. Its use is therefore limited to 

intravenous infusion and local application. The conventional 

formulation of AMB (Fungizone®) is mixed micelles with 

the detergent sodium deoxycholate, and in this form it is 

the drug of choice for systemic infections with sensitive 

fungal species (Georgopapadakou and Walsh 1996). It 

is usually administered by slow perfusion diluted in 5% 

glucose. However, dose-limiting side-effects are frequent, 

the most severe being renal toxicity (Brezis et al 1984).

Both the therapeutic and toxic effects of AMB derive 

from its interaction with lipids, and in particular, mem-

brane sterols. The antibiotic can form complexes with both 

ergosterol, the principal sterol in fungal cell membranes, 

and cholesterol in mammalian cell membranes. The result 

of this is the formation of pores leading to the leakage of 

electrolytes and other cell components (De Kruijff and De-

mel 1974). The selectivity for fungal cell membranes is the 

result of greater affi nity for ergosterol than cholesterol, due 

to the presence of a double bond on carbon 22 in the former 

(Cybulska et al 1986).

Given the affi nity of the antibiotic for biological mem-

branes, incorporation of AMB into lipid-based nanosystems 

in order to improve its therapeutic index has been studied 

since the 1980s. Three of these systems are now commer-

cially available.

Mechanisms of action
In 1996, Hartsel and Bolard reviewed the mechanisms by 

which the selectivity of AMB towards fungal cells can be 

improved by association with lipid systems.  One mecha-

nism is related to the molecular state of the AMB when it 

is released from the formulation. It has been observed that 

while both monomeric and self-aggregated AMB associate 

with ergosterol, only self-aggregated AMB forms pores in 

cholesterol-containing membranes. It follows that a formula-

tion that can assure that AMB is released only as monomers 

will have an improved therapeutic index. On dilution in the 

plasma, AMB is rapidly released from Fungizone® in the 

aggregated form and toxicity to mammalian cells ensues. 

However, AMB can also bind to membrane phospholipids, 

so the relative affi nity for cell and drug delivery system lip-

ids may contribute to determining the reduction of toxicity. 

When AMB binds to cell membranes it has a pro-oxidative 

effect, and this may be as important as pore formation in 

generating cell damage (Bratjburg et al 1985).

Furthermore, the affi nity of AMB for lipids means that it 

is readily incorporated into plasma lipoproteins, particularly 

low density lipoprotein (Bratjburg et al 1984). Receptor-

mediated uptake of low density lipoprotein carrying AMB 

by renal epithelial cells is one mechanism of toxicity in 

this organ. Therefore, the rate of transfer between the drug 

delivery system and circulating lipoproteins will be another 

factor which determines the effi cacy of the system (Legrand 

et al 1996).

AMB also has effects on the immune system, and in 

particular can modulate the functions of macrophages. 

For example, it stimulates production of cytokines such as 

interleukin 1 (Chia and McManus 1990) and tumor necrosis 

factor alpha (TNF-α) (Tokuda et al 1993), reactive oxygen 

intermediates (Wilson et al 1991) and nitric oxide (NO) 

(Herrmann et al 1994; Mozaffarian et al 1997), as well as 

chemotaxis and phagocytosis. These properties could con-

tribute to the antimicrobial activity of AMB, but could also 

increase its toxicity, for example by causing fever and chills. 

Larabi et al (2001) compared the production of NO and TNF-

α induced in non infected mouse peritoneal macrophages 

by different lipid formulations of AMB compared with 

free AMB, in association with co-stimulants. At equivalent 

AMB concentration, mediator production was always less 

with the lipid formulations than with the free drug, and the 

liposomal forms (eg, AmBisome®) reduced this more than 

lipid complexes (eg, Abelcet®). In macrophages infected with 

Leishmania donovani, AMB also contributed to stimulating 

NO and TNF-α production, but the concentrations at which 
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Figure 1 Structure of Amphotericin B.
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this occurred were much higher than those causing parasite 

killing (Larabi et al unpublished results), suggesting that in 

this case at least, the immunostimulating effects contribute 

more to the side-effects of AMB than to its antiparasitic 

activity.

Early liposomal formulations
The fi rst study incorporating AMB into liposomes was 

performed by New et al in 1981. Their interest was in the 

antileishmanial properties of the antibiotic, and followed on 

from studies of encapsulated antimonial drugs. The fact that 

Leishmania parasites are located within phagocytic cells, and 

that liposomes are also preferentially accumulated by these 

cells made this approach particularly attractive (Heath et al 

1984). However, the main effect of the liposomal formulation 

was to reduce the toxicity of AMB, allowing higher doses 

to be administered and thus increasing “effi cacy”. Soon 

afterwards, similar results were obtained in infections with 

Cryptococcus (Graybill et al 1982) and in histoplasmosis 

(Taylor et al 1982). However, the antimicrobial activity of 

AMB per se was not increased by encapsulation. During this 

period, the infl uence of the liposome composition, and size, 

on the activity of AMB was studied. In one study (Lopez-

Berestein et al 1983), it was found that liposomes containing 

phospholipids alone were more effi cient than liposomes con-

taining sterols (cholesterol or ergosterol). One explanation 

for this could be that the strong binding of AMB to sterol 

prevents its release from the liposomes and its interaction 

with fungal cell membranes. A study by Szoka et al (1987) of 

a range of liposome sizes and compositions found that there 

was no correlation between the extent of reduction of toxic-

ity against mouse macrophages in vitro and the reduction of 

lethality in vivo. In vivo, small sterol-containing liposomes 

were less toxic than larger ones, and liposomes without 

sterol but containing phospholipids which were in a “solid” 

(liquid crystal) state at physiological temperatures were less 

toxic than ones in which the phospholipids were in a fl uid 

state. A large number of different AMB formulations were 

tested, leading to the commercialization of three of them. 

These have quite different physico-chemical structures (see 

below), but all reduce the toxicity of AMB compared with 

Fungizone®.

Commercial formulations of AMB
Three lipid-based formulations of AMB are at present 

licensed for clinical use. Their physico-chemical properties 

are listed in Table 1.

Physico-chemical properties
AmBisome® is the only true liposomal formulation of the 

three. It is composed of small, unilamellar vesicles composed 

of lipids which yield a very stable bilayer, in the gel state 

at physiological temperature. AMB is incorporated into this 

bilayer at 10 moles %. The size of the liposomes (about 

80 nm) means that they have a long circulating half-life and a 

good penetration into tissues. The stable bilayer composition 

should reduce exchanges with lipoproteins and contribute to 

the very low toxicity of this formulation (Adler-Moore and 

Proffi tt 2002).

Amphotec® (Amphocil™ in Europe and Amphotec® in the 

US) is composed of complexes between cholesteryl sulfate 

and AMB in equimolar proportions. These have the form of 

thin discs of about 120 nm in diameter. However, despite 

the small size, their circulation time is much less than that 

of AmBisome® and they deliver AMB rapidly to phagocytic 

cells (Guo 2001).

Abelcet® is composed of two synthetic phospholipids 

– dimyristoyl phosphatidylcholine and  dimyristoyl phos-

Table 1 Commercial formulations of AMB

Name Composition AMB/lipid Charge Form Size (μm) Reference 
  (mol%)    

AmBisome® Hydrogenated soy  10 Negative Small unilamellar  0.08 Adler-Moore 
 phosphatidylcholine:cholesterol:    liposomes  and Proffi tt 
 distearoylphosphatidylcholine:  AMB     2002
  2:1:0.8:0.4     
Amphotec® Cholestryl sulfate:  AMB 50 Negative Disc-like complexes 0.12 Guo 2001
(Amphocil®) 1:1     
Abelcet® Dimyristoylphosphatidylcholine:  50 Negative Ribbon-like complexes 1–10 Janoff et al 
 Dimyristoylphosphatidylglycerol:      1993
 AMB     
 7:3:10     
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phatidylglycerol in a 7 to 3 molar ratio with an equimolar 

amount of AMB. These components assemble in ribbons 

of 1 to 10 micrometers in length. These larger objects are 

rapidly accumulated in the mononuclear phagocyte system 

(Janoff et al 1993).

Clinical studies in fungal infections
Systemic fungal infections, dominated by Candida and 

Aspergillus infections, remain the leading cause of infec-

tion-related mortality and morbidity in many populations 

of immunocompromised patients. Azoles are often recom-

mended for Candida infection but the epidemiology of 

Candida infection has changed over the last few years. 

C albicans now comprises less than half of the isolates of 

candidemia worldwide (Eggimann et al 2003; Pappas et al 

2003). The other half is represented by a variety of non-albi-

cans species, for some of which the susceptibility to azoles, 

particularly fl uconazole, is decreased. For Aspergillus and 

other less common moulds, the mortality rates are greater 

than 60% and even higher in patients with disseminated in-

fection, although the extended-spectrum azoles represent a 

major advance as a fi rst-line treatment (Herbrecht et al 2002). 

Therefore, there is a need for more effective antifungal drugs 

with a wide spectrum.

In this respect, AMB has the advantage of covering most 

of the fungal pathogens involved in human disease. However, 

the use of AMB formulated with deoxycholate (Fungizone®) 

has been limited by infusion-related side effects and cumula-

tive nephrotoxicity which, in fi ne, actually increase overall 

healthcare expenses, despite its primarily low cost (Maertens 

et al 2001). For these reasons, and because other alterna-

tives are now available, primary therapy with Fungizone® 

is more and more challenged by new antifungal therapies 

for use in many systemic mycoses, including moulds, such 

as Aspergillus. These new antifungal therapies include 

extended-spectrum triazoles, the echinocandins, and also 

lipid formulations of AMB, as described above (Herbrecht 

et al 2003). Among the lipophilic formulations of AMB 

commercially available, the majority of studies have been 

carried out with liposomal AMB (AmBisome®).

Clinical effi cacy of liposomal AMB
Due to the paucity of diagnostic means for fungal infections and 

the poor prognosis of full-blown invasive fungal infections, clini-

cians use several strategies when faced with fungal infections. 

Antifungal drugs are given for demonstrated infections but in 

high-risk patients, they may be administered empirically, in the 

case of persistent fever despite appropriate antibacterials, or as 

prophylaxis, in every patient at risk of fungal infection whatever 

the clinical signs. The effi cacy of liposomal AMB has been 

studied in these different settings, both in open and randomized 

studies. Liposomal AMB has also proved effective in the treat-

ment of visceral leishmaniasis (see below).

Demonstrated infections
In full-blown fungal infections, initial open studies involving 

patients refractory to, or intolerant of, Fungizone® showed 

improvement or cure in 66% and 81% of patients with inva-

sive aspergillosis and invasive candidiasis respectively, with 

the liposomal form (Ringden et al 1991). Two studies have 

suggested a superior effi cacy of liposomal AMB compared to 

Fungizone® in probable or proven fungal invasive infections 

but were insuffi cient to give a defi nitive answer (Leenders 

et al 1997; Leenders et al 1998).

Another important issue is the dose to be adminis-

tered. It was expected that the good tolerance profile 

would allow high liposomal AMB doses to be given and 

achieve better efficacy without increasing toxicity. In 

a randomized trial comparing two doses of liposomal 

AMB (1 versus 4mg/kg/day) for the primary treatment 

of invasive aspergillosis, an overall response rate of 55% 

was observed, regardless of the dose, with no difference 

in either arm (Ellis et al 1998). This substantial response 

rate demonstrates evidence of the efficacy of liposomal 

AMB in first-line therapy of invasive aspergillosis. To 

determine the appropriate daily dose for the initial treat-

ment of invasive aspergillosis and other filamentous fun-

gal infections in immunocompromised patients, a phase 

3, multi-center, randomized, double-blind study of the 

safety and efficacy of an liposomal AMB loading dose 

regimen versus a standard liposomal AMB regimen was 

performed (Cornely 2005). The study compared a load-

ing regimen of 10 mg/kg/day × 14d versus the standard 

regimen of 3 mg/kg/day for 14 days. The standard regi-

men had a favorable overall response rate of 50% and a 

12-week survival rate of 72% comparable to those previ-

ously reported for voriconazole in a similarly designed 

trial (Herbrecht et al 2002). However, the high-dose 

regimen did not demonstrate any improvement in overall 

response or survival.

In an attempt to sum up the effi cacy of lipid formulations of 

AMB, not all in the liposomal form, a meta-analysis of seven 

randomized studies was performed (Barrett et al 2003). This 

analysis did not show any difference in the response rate between 

the lipid formulations of AMB and Fungizone® but showed a 

decrease in mortality (OR = 0.72; 95% CI = 0.54 – 0.97).
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The poor outcome of mould infections and the availability 

of several antifungal drugs of different classes have stimulated 

the evaluation of alternatives based on combinations of different 

antifungal drugs (Johnson et al 2004). Apart from the association 

of Fungizone® and 5-fl uorocytosine which has been the recom-

mended treatment for cryptococcal meningitis for a long time, 

the other associations, mainly between Fungizone® and azoles, 

raised several concerns about possible toxicities (Polak 1999). In 

vivo studies have shown encouraging results, for the associations 

of liposomal AMB with both voriconazole and echinocandins 

in models as different as rat models of invasive aspergillosis 

(Kirkpatrick et al 2006), a murine model of cerebral aspergillosis 

(Clemons et al 2005), or a murine model of C. glabrata systemic 

infection (Olson et al 2005). In humans, a few case reports and 

small series of benefi c results of associations have been reported 

but none are randomized studies (Aliff et al 2003; Kontoyiannis 

et al 2003; Marr et al 2004).

Empirical therapy
In the setting of empirical therapy for persistent febrile 

neutropenia, comparative studies concluded that liposomal 

AMB is as effective as Fungizone® (Prentice et al 1997; 

Walsh et al 1999). A double-blind study compared the 

safety of liposomal AMB (3 or 5 mg/kg/day) and AMB lipid 

complex (5 mg/kg/day) (Wingard et al 2000). Neither of the 

two liposomal AMB dosages yielded a better outcome than 

AMB lipid complex.

Primary prophylaxis
Three randomized trials have assessed the effi cacy of low 

doses of liposomal AMB as prophylaxis in bone marrow 

transplant recipients, without demonstrating any benefi t 

(Kelsey et al 1999; Tollemar et al 1993a, 1993b). One study 

in liver transplant patients showed a signifi cant decrease in 

invasive Candida spp. infections in the liposome-treated 

patients, compared to the placebo-treated patients but the 

1-month survival was identical in both groups. However, 

long-term survival was increased in patients who received 

liposomal AMB (Tollemar et al 1995). Recently, a pharma-

cokinetic study of once-weekly high-dose liposomal AMB 

as fungal prophylaxis for immunocompromised children 

undergoing stem cell transplantation suggested that this dos-

age may provide useful protection against fungal infections 

(Mehta et al 2006).

Tolerability
Patients treated with liposomal AMB at 3 mg/kg/day had less 

infusion-related adverse events, needed less premedication, 

and had less nephrotoxicity than patients treated with Fun-

gizone® at 0.6 mg/kg/day (Prentice et al 1997; Walsh et al 

1999). The tolerability of high doses up to 7.5–15 mg/kg/day 

appeared satisfactory (Walsh et al 2001). These results justi-

fi ed comparing a liposomal AMB loading dose regimen versus 

a standard liposomal AMB regimen (Cornely 2005). Higher 

rates of hypokalemia and nephrotoxicity were seen compared 

with the standard dose regimen with no better effi cacy. In 

neonates, high doses (5–7 mg/kg/day) of liposomal AMB 

for a median of 18 days seem to be much better tolerated 

than in adults (Juster-Reicher et al 2003). Compared with 

AmB lipid complex at 5 mg/kg/day, liposomal AMB at 3 

and 5 mg/kg/day showed less infusion-related reactions and 

nephrotoxicity in febrile neutropenic patients (Wingard et al 

2000). This study clearly indicates that liposomal AMB was 

better tolerated than AMB lipid complex.

Conclusion
Liposomal AMB has been shown to be at least as effi cacious 

as Fungizone® and has a dramatically improved safety pro-

fi le compared with the traditional form. The recommended 

dose is 3–5mg/kg/day for demonstrated fungal infection 

and 3 mg/kg/day for empirical therapy, and doses up to 3 

mg/kg/day of liposomal AMB are well tolerated. Higher 

doses have not shown any therapeutic benefi t in invasive 

aspergillosis whereas they increased renal toxicity. For 

some rare fi lamentous fungus infections such as those due 

to zygomycetes and Fusarium spp, the liposomal formula-

tion may be considered as fi rst-line therapy because of the 

absence of an effective alternative, although new azoles may 

be effective towards some of these fungi. The in vitro models 

and the experimental data in animals show that combination 

therapy may improve outcome, but these experimental results 

remain to be confi rmed with clinical trials.

Lipid formulations of AMB
in the treatment of leishmaniasis
Leishmaniasis is a family of protozoal infections transmitted 

by sand-fl y bites, which affects about 12 million people in 

warm regions throughout the world. Visceral leishmani-

asis, in which the parasite – Leishmania donovani in India 

and Bangladesh, L. infantum in the rest of Asia, Africa and 

Europe and L. chagasi in the Americas – develops within 

tissue macrophages in the liver, spleen and bone marrow, is 

the most serious manifestation (Herwaldt 1999). It is endemic 

in India, Bangladesh and Sudan where it represents a major 

public health problem and is also becoming increasingly 

prevalent as an opportunistic infection in Western countries, 
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among individuals who are infected with the HIV virus or 

are immunocompromised for other reasons. Cutaneous leish-

maniasis, characterized by skin lesions, is more common but 

less serious. Muco-cutaneous and disseminated cutaneous 

manifestations also occur (Herwaldt 1999). Early treatment 

options were pentavalent antimonials and pentamidine, which 

have shown problems of toxicity and resistance (Murray, 

2001). AMB was found to be an effective treatment for 

visceral leishmaniasis in the 1990s (Murray 2004; Singh 

and Sivakumar 2004). Lipid formulations of AMB are a 

particularly attractive alternative in this context because 

they are accumulated in the same cells as the parasite. Thus 

AmBisome® was approved by the FDA in 1997 (Meyerhoff 

1999). Despite the reduced toxicity of the lipid formula-

tions, their high cost is prohibitive in the zones in which 

visceral leishmaniasis is endemic. A comparative study by 

Sundar et al (2004) showed that although the higher doses 

that could be given with the lipid formulations reduced the 

total time for cure and therefore the cost of hospitalization, 

this only partly offset the high purchase price of the drug. 

On the other hand, in a European situation, when cost is not 

such a preponderant issue, lipid formulations of AMB have 

become the treatment of choice (Gradoni et al 2004).

Cutaneous leishmaniais can also be treated effectively 

with lipid formulations of AMB (Amato et al 2004, Yardley 

and Croft 2000). In this case, the smaller formulations 

(AmBisome®, Amphocil™) are the most effective, because 

of their small size.

Recently, a new drug, miltefosine (hexadecylphospho-

choline) has been shown to be effective against visceral 

leishmaniasis by the oral route (Murray 2001; Sundar et al 

2002). This is a defi nite breakthrough and shows an obvious 

advantage over the current formulations of AMB, which 

are administered intravenously. Associations of AMB and 

miltefosine may have some therapeutic advantage (Seifert 

and Croft 2006).

Other formulations of AMB and 
new trends in their administration
Lipid-based formulations
An adhoc solution to the problem of AMB toxicity is to mix 

Fungizone® with Intralipid®, a preparation for parenteral 

nutrition, which consists of an oil-in-water emulsion sta-

bilized with lecithin. The AMB is complexed by the phos-

pholipids on the surface of the oil globules and its toxicity 

is reduced compared with Fungizone® alone. However, this 

method does not give reproducible results (Tomii 2002).

More recently, AMB has also been mixed with another 

proprietary lipid emulsion formulation, Lipofundin®. AMB 

was added as a powder, and the use of a high-pressure 

homogenizer promoted its dissolution in the interfacial layer, 

according to the patented SolEmuls® technology. However, 

no toxicity data are available for this formulation (Müller 

et al 2004).

De novo emulsion formulations of AMB have also been 

described, for example, those studied by Egito and collabora-

tors (1996a). The emulsion form reduced the toxicity of AMB 

considerably, compared with Fungizone®, although less than 

AmBisome®, and allowed higher doses to be given, allow-

ing a better cure rate of infections with Candida albicans. 

Circular dichroism studies showed that the AMB remained 

in the monomeric form within the emulsions, over a wide 

range of dilutions (Egito et al 1996b).

Seki and co-workers have formulated AMB into nano-

sized emulsions called “Lipid Nano Spheres” which attempt 

to imitate lipoproteins. These small particles (25–50 nm) 

reduced AMB toxicity compared with Fungizone®, and showed 

similar activity against Candida albicans. Like AmBisome®, 

these small particles showed reduced uptake by macrophages 

and persistence in the circulation (Fukui et al 2003).

Heat-treatment of AMB is a simple method of reduc-

ing toxicity. Heating the Fungizone® formulation to 70° C 

provokes the formation of superaggregates, as detected by 

spectrophotometric methods, rather than aggregates, which 

are less toxic to mammalian cells while retaining almost 

equivalent antifungal activity (Gaboriau et al 1997). Cryo-

transmission electron microscopy revealed that while the 

native product was composed mainly of micelles of about 

4 nm in diameter, with some threadlike aggregated micelles, 

the heated formulation contained much larger networks of 

about 300 nm (van Etten et al 2000).

Another approach to modulating the solubility, and 

therefore the toxicity of AMB was the use of ions from 

the Hofmeister series which alter water properties. While 

kosmotropes increased AMB aggregation, the chaotrophic 

ions thiocyanate and trichloroacetate were found to allow 

solubilization of AMB as monomers (Grijalba et al 2006).

Larabi et al developed a lipid complex system with a 

similar composition to Abelcet®, but prepared by a different 

method known as nanoprecipitation. This led to the forma-

tion of thin discs of about 250 nm in diameter, in which the 

lipids were probably in an interdigitated form rather than a 

bilayer (Larabi et al 2004a). This change in size and mor-

phology reduced the toxicity, both towards macrophages in 

vitro and in vivo after both acute and chronic administration 
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to mice, compared to both Fungizone® and Abelcet® (Larabi 

et al 2003, Larabi et al 2004b). The activity of the complexes 

against visceral leishmaniasis in mice was higher than that 

of Abelcet® but not as high as that of AmBisome® (Larabi 

et al 2003). This illustrates the importance of nanosystem 

morphology in determining the biological effect.

Another disc-like formulation was developed by Lincopan 

et al (2005, 2006) using the cationic lipid dioctadecyldimeth-

ylammonium bromide (DODAB). This lipid formed bilayer 

fragments of about 65 nm in diameter with AMB at a low 

drug-to-lipid ratio. This formulation reduced nephrotoxicity 

and hepatotoxicity compared with Fungizone®, but spleen 

toxicity due to the cationic lipid was observed. At higher 

drug-to-lipid ratios, drug particles surrounded by a lipid 

bilayer are formed. The toxicity and therapeutic activity of 

these formulations have not yet been investigated.

Another group (Oda et al 2006) has tried to imitate 

lipoprotein particles as an original delivery system for AMB. 

The specifi c apolipoprotein from high density lipoprotein, 

ApoA-I, was added to mixtures of dimyristoylphosphatidyl-

choline, dimyristoylphosphatidylglycerol and AMB. After 

sonication and dialysis, a limpid preparation was obtained, 

consisting of disc-like particles of 8–10 nm in diameter. The 

circular dichroism spectra indicated that AMB was associ-

ated with lipid in the formulation. This preparation had much 

lower toxicity than Fungizone® in vitro and in vivo, which 

allowed higher doses to be given to mice, leading to effective 

treatment of Candida albicans infection. These systems also 

showed a good activity against Leishmania major in Balb/C 

mice, although no comparison with any other formulation 

was made (Nelson et al 2006).

Lipid cochleates are an interesting system for delivering 

AMB. These are formed mainly from phosphatidylserine 

and calcium, which associate by electrostatic interaction to 

form cylindrical structures consisting of a rolled-up bilayer. 

They are particularly appropriate for entrapping small hy-

drophobic or amphiphilic molecules like AMB (Zarif 2005). 

Like other lipid-based systems, AMB cochleates reduce the 

toxicity of the antibiotic. They are effective against murine 

candidasis and aspergillosis after i.p. and oral administration 

(Santangelo et al 2000; Delmas et al 2002).

Polymer-based formulations
AMB has been conjugated to a number of macromolecules 

with the aim of improving its solubility. Many of these have 

been derived from polysaccharides. For example, AMB has 

been conjugated to arabinogalactan (Ehrenfreund-Kleinman 

et al 2002). Polymers of about 30 kDa with about 20% of 

AMB by weight were obtained. The maximum tolerated 

dose of AMB was greatly increased by conjugation, while 

the antifungal activity against Candida albicans remained 

comparable to that of Fungizone®. A similar approach used 

dextran as the polysaccharide carrier. In particular, the prepa-

ration of a conjugate in which the free aldehyde groups were 

blocked showed very low toxicity towards mammalian cells 

while conserving antiparasitic activity (Sokolsky-Papkov 

et al 2006). AMB has also been conjugated to poly (ethylene 

glycol) (PEG). Attachment of AMB to a PEG of 40 kDa led 

to a highly water-soluble product which was only hydro-

lyzed slowly in rat plasma. It was 6 times less toxic than 

Fungizone® in rats and showed equal or superior antifungal 

activity (Conover et al 2003).

A number of groups have incorporated AMB into 

micelles prepared from amphiphilic polymers. Diblock 

copolymers consisting of poly (ethylene oxide) and poly 

(aspartic acid) substituted with various hydrophobic groups 

have been extensively studied in the laboratory of Kwon. 

In particular, poly (ethylene oxide)-block-poly (N-hexyl-L-

aspartamide)-stearic acid ester micelles allow the antibiotic 

to be incorporated in its non aggregated form, as shown by 

spectrophotometric measurements and to be released in a 

sustained fashion. Such micelles show similar activity to 

Fungizone® in a mouse model of disseminated candidiasis 

(Adams and Kwon 2004). A similar system based on par-

tially benzylated poly (aspartic acid) without a PEG block 

has been investigated by Yoo et al (2006). This polymer 

formed “nanoparticular” micelles of 20 nm in diameter, 

in which AMB aggregation was reduced compared with 

Fungizone®, as judged by its spectral properties. The acute 

toxicity in mice was reduced, as was damage to kidney 

cells after intravenous administration to rats, while the in 

vitro activity against Candida albicans was similar to that 

of Fungizone®. Vandermeulan et al (2006) have used poly 

(ethylene glycol)-block-poly (ε-caprolactone-co-trimethyl-

enecarbonate) micelles to encapsulate AMB. These micelles 

are easy to prepare and although they reduce the antifungal 

activity they also reduce the amount of hemolysis.

There have been a few reports of nanoparticulate forms 

of AMB. A study by Venier-Julienne et al (1995) used 

AMB incorporated into poly (D, L-lactide-co-glycolide) 

nanoparticles. When their activity was tested against cul-

tures of promastigotes of L. donovani within peritoneal 

macrophages, unloaded nanoparticles had a high an effect 

as loaded ones. This could be attributed to reactive oxygen 

intermediate generation following phagocytosis of the 

nanoparticles.
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Espuelas et al attempted to incorporate AMB into 

poly (ε-caprolactone) nanoparticles (Espuelas et al 1998a; 

Espuelas et al 1998b). In fact, AMB was adsorbed onto 

the surface of the particles and was released on dilution, 

but despite this limitation, the acute toxicity of AMB in 

mice was reduced compared with Fungizone® (Espuelas 

et al 1997). During this work, it was noted that AMB also 

formed mixed micelles with the poloxamer 188 surfactant 

used to stabilize the nanoparticles (Espuelas et al 1998b). 

These micelles were found to have activity against clinical 

isolates of Candida albicans in vitro and also, interestingly, 

to reverse the resistance of Leishmania donovani parasites 

which had been rendered resistant to the drug by in vitro 

pressure, by a synergistic effect of AMB and the poloxamer 

(Espuelas et al 2000). However, the results obtained with 

Candida albicans-infected macrophages and in mice were 

disappointing, since the LD
50

 was increased compared with 

Fungizone® (Espuelas et al 2003).

More recently, AMB was incorporated into nanoparticles 

formed by a complex of two polysaccharides of opposing 

charge: chitosan and dextran sulfate. A high encapsulation 

rate for AMB was obtained, but spectral analysis showed 

that it was aggregated. A reduction in renal toxicity was 

observed but the large size of these particles (600–800 nm) 

suggests that they would only be useful for liver delivery 

(Tiyaboonchai et al 2006).

Microsphere formulations of AMB have also been 

tested for therapy of leishmaniasis. Albumin microspheres 

reduced the toxicity and increased the therapeutic effi ciency 

of AMB against Leishmania infantum in hamsters. As might 

be expected, the microparticulate form increased drug 

accumulation in the liver and spleen (Sanchez-Brunete et al 

2004). High doses of AMB administered in these particles 

deactivated expression of anti-infl ammatory cytokines and 

increased pro-infl ammatory ones, which probably contrib-

uted to the therapeutic effect (Rama Iniguez et al 2006). 

Different microsphere formulations were tested (Sanchez-

Brunete et al 2005). Poly (lactide-co-glycolide) and poly-

anhydride microspheres were less effective than albumin 

ones in reducing liver and spleen parasite load, and albumin 

microspheres also induced a signifi cant antibody response 

to parasite antigens.

Carbon nanotubes (CNT) have been attracting much 

attention lately as potential drug delivery systems. AMB has 

been linked covalently to functionalized CNT at the same 

time as fl uorescein and uptake of the resulting particles into 

Jurkat cells was demonstrated (Wu et al 2005). Interestingly, 

the minimal inhibitory concentrations for several fungal spe-

cies were reduced by this association, while “empty” CNT 

were without effect.

Administration of AMB by other routes: 
oral and pulmonary
One major disadvantage of AMB is its very low bioavail-

ability by the oral route. This is essentially due to its very 

low solubility in aqueous media and its relatively high 

molecular weight (Dangi et al 1998). A number of different 

lipid-based systems have been used in attempts to improve 

the intestinal absorption of AMB. The presentation of the 

drug in the monomeric form could be expected to facilitate 

its dissolution and other components of the formulations may 

have absorption promoting effects.

Thus, ternary mixed micelle systems of AMB, deoxycho-

late and oleic acid, monoolein or soy lecithin were found to 

enhance the permeability of AMB in isolated intestinal loops 

(Dangi et al 1998). These systems have not been tested in 

vivo, however. Another system in which AMB was mixed 

with Peceol, a glyceride-rich vehicle for oral administration, 

also gave promising results, increasing lymphatic transport of 

AMB after oral administration to rats (Risovic et al 2004).

AMB cochleates (see above) have also proved to be effi -

cient in the treatment of fungal infections by the oral route. In 

a model of Balb/C mice infected with Candida albicans, oral 

administration of these lipid particles was able to eradicate 

the infection from the lungs and prolong survival as effec-

tively as Fungizone® given i.p. at a similar dose (Santangelo 

et al 2000). Effi cacy was also demonstrated in a murine model 

of systemic aspergillosis (Delmas et al 2002).

Recently, AMB was associated with another lipidic anti-

leishmanial agent, miltefosine (hexadecylphosphocholine or 

HePC). As described above, this molecule has been shown to 

be active by the oral route (Murray 2001; Sundar et al 2002) 

and has the interesting property of opening tight junctions 

in the Caco2 intestinal cell model (Ménez et al 2006a). Its 

alkylphospholipid structure suggested that it might be able to 

associate with AMB and in fact, spectroscopic studies showed 

that this can be the case (Ménez et al 2006b). However, rather 

than promoting absorption of AMB, the association led to a 

reduction of both cellular uptake and transepithelial transport 

in the Caco2 model (Ménez et al 2006b).

Kayser et al (2003) formulated a nanosuspension of 

AMB for administration by the oral route. The particles were 

prepared by high pressure homogenization of the drug with 

a mixture of surfactants. A reduction in parasite load in the 

liver was observed when the formulation was administered 

orally to mice infected with Leishmania donovani. This result 
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may be related to the presence in the formulation of Tween 

80®, which is known to promote passage across biological 

membranes.

Pulmonary infections with Aspergillus spp. are a major 

clinical problem in immunocompromised patients. In conse-

quence, there has been much interest in the use of aerosolized 

AMB formulations for treatment, and for prophylaxis in 

patients undergoing transplant surgery (Drew 2006). Animal 

studies have shown that liposomal formulations lead to higher 

concentrations of AMB in the lungs than Fungizone® (Ruij-

grok et al 2000) or AMB directly solubilized in fl uorocarbons 

(Vyas et al 2005). Clinical trials have shown that the lipid 

formulations are easier to aerosolize and better tolerated than 

Fungizone® (Perfect et al 2004; Drew 2006).

Specifi c targeting of AMB-loaded 
nanosystems
The studies described above have mainly taken advantage of 

the uptake of colloidal particles by the mononuclear phago-

cyte system and thus reach micro-organisms within these 

cells, or on the small size (for example AmBisome®) and 

surface properties which allow the carriers to remain in the 

circulation and reach other tissues in a non specifi c function. 

However, there are a few reports of attempts to deliver AMB 

to particular sites using nanosystems bearing specifi c target-

ing ligands. The ligands used have been sugars, antibodies or 

small peptides, as described in the following paragraphs.

Although the “natural” target of colloidal drug carriers is 

phagocytic cells, their uptake by macrophage, and particu-

larly the Küpffer cells of the liver, can be greatly increased 

by modifying the surface with mannose residues which are 

recognized by the mannose-fucose receptor on these cells 

(Barratt and Schuber 1993). This strategy has been applied to 

the delivery of AMB to macrophages for treatment of leish-

manias (Vyas et al 2000).  Similarly, liposomes loaded with 

AMB and coated with mannan or pullanan, a glucose-con-

taining polysaccharide have been administered to rats as an 

aerosol to target alveolar macrophages. Drug concentrations 

were higher than those delivered by unmodifi ed liposomes 

and were sustained for 24h (Vyas et al 2005).

Galactose receptors are expressed by liver cells and some 

micro-organisms. Polylactide microspheres containing AMB 

have been functionalized with galactose residues and have 

been shown to bind to Kluyveromyces bulgaricus yeast cells 

(Kassab et al 2002). Heparin is a negatively charged polysac-

charide with many interesting biological properties, including 

bioadhesion. Clemons et al (2001) encapsulated AMB within 

small (105 nm) hydrophilic nanoparticles bearing heparin 

at their surface. Their retention in the lungs was increased 

compared with Fungizone®, leading to a better therapeutic 

index against pulmonary blastomycosis in mice.

The coupling of antibodies to the surface of a liposome 

can theoretically give a delivery system targeted to a specifi c 

cell type. Small liposomes bearing a monoclonal antibody 

to Cryptococcus neoformans bound specifi cally to the yeast 

and, when administered intravenously to infected mice, 

prolonged survival longer than AMB in solution in dimethyl-

sulfoxide/phosphate-buffered saline, non-targeted liposomes 

or liposomes targeted with an irrelevant antibody (Dromer 

et al 1990). However, antibody-bearing systems will still be 

accumulated within mononuclear phagocytes unless their 

surface is modifi ed to avoid opsonization. Thus, the concept 

of sterically stabilized liposomes has emerged, in which the 

surface is covered with end-grafted PEG chains. Targeting 

can be achieved by coupling the antibody or other ligand to 

the distal end of a proportion of these chains (Mercadal et al 

1999). Thus, sterically stabilized liposomes containing AMB 

and bearing an antibody specifi c for pulmonary endothelium 

at the end of the PEG chains have been prepared (Otsubo 

et al 1998). Accumulation of antibiotic in the lungs was ob-

served, as opposed to its remaining in the blood in the case 

of non-targeted PEG-bearing liposomes or accumulating in 

the liver in the case of conventional liposomes. This was 

accompanied by increased effi cacy against experimental 

aspergillosis in mice.

One smaller ligand which has been to direct AMB-loaded 

liposomes is the tetrapeptide tuftsin (Thr-Lys-Pro-Arg, 

Agrawal et al 2002), which binds to a specifi c receptor on 

macrophages. This peptide has the advantage of being both 

a targeting element promoting liver accumulation and a mac-

rophage activator. The anti-leishmanial activity of the drug is 

thus reinforced by macrophage-mediated effects. Zhang et al 

(2003) have used a targeting strategy to deliver AMB across 

the blood-brain barrier. A peptide analogue of bradykinin, 

RMP-7, was coupled to PEG on sterically stabilized lipo-

somes. This peptide interacts with the B2 receptor on brain 

capillary endothelial cells and increases the permeability of 

the vessels. By this means, AMB accumulation in the brain 

can be improved.

Conclusion
AMB is a good example of how an appropriate delivery 

system can improve the therapeutic index of a drug. The 

advantage of the commercial lipid-based formulations is 

principally that they reduce toxicity compared with the con-

ventional formulation, allowing higher doses to be given. A 
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disadvantage is the high cost of these formulations, particu-

larly with respect to their activity against parasitic diseases. 

Kleinberg (2006) has attempted to review the cost-effective-

ness of these formulations compared with Fungizone®, taking 

into account all factors such as the time of hospitalization, in 

a North American setting, and concluded that in many cases, 

for example in the opportunistic infections in cancer patients, 

lipid formulations are a better choice than the conventional 

formulation. However, the cost of these formulations remains 

prohibitively high for the treatment of leishmaniasis in 

endemic areas (Sundar et al 2004).

Another disadvantage of AMB for mass treatment is 

its very low bioavailability by the oral route. Some studies 

reported above suggest that the use of nanosized formula-

tions based on lipids or other amphiphilic molecules could 

be useful in overcoming this problem. Similarly, the deliv-

ery of drugs by the pulmonary route to combat respiratory 

infections is attracting much attention at the moment. New 

formulations of AMB could contribute in this area by increas-

ing tolerability and ensuring delivery to the appropriate part 

of the lung. Another non parenteral route for which new 

AMB formulations could provide a therapeutic advance is 

in the eye, for example, in the treatment of fungal keratitis. 

Liposomal formulations have shown some advantages by 

this route, by reducing irritation and prolonging the residence 

time of drugs (Bochot et al 2000).

Finally, progress in the design of drug delivery systems 

has led to the development of carriers targeted to specifi c 

tissues and cells. Such technology applied to AMB would 

lead to a further increase in its therapeutic index. Therefore, 

as a result of innovative formulations, after almost 50 years 

on the market, AMB remains an extremely useful drug.
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