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Refinements of LC-MS/MS Spectral 
Counting Statistics Improve 
Quantification of Low Abundance 
Proteins
Ha Yun Lee1, Eunhee G. Kim2, Hye Ryeon Jung1, Jin Woo Jung1, Han Byeol Kim3, Jin Won Cho3, 
Kristine M. Kim2 & Eugene C. Yi1

Mass spectrometry-based spectral count has been a common choice of label-free proteome 
quantification due to the simplicity for the sample preparation and data generation. The discriminatory 
nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the 
spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which 
hampers sensitive proteome quantification. As many low-abundance proteins play important roles 
in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly 
expands the depth of biological insights. Here, we implemented the Moment Adjusted Imputation error 
model in the spectral count refinement as a post PLGEM-STN for improving sensitivity for quantitation 
of low-abundance proteins by reducing spectral count variability. The statistical framework, automated 
spectral count refinement by integrating the two statistical tools, was tested with LC-MS/MS datasets 
of MDA-MB468 breast cancer cells grown under normal and glucose deprivation conditions. We 
identified about 30% more quantifiable proteins that were found to be low-abundance proteins, which 
were initially filtered out by the PLGEM-STN analysis. This newly developed statistical framework 
provides a reliable abundance measurement of low-abundance proteins in the spectral count-based 
label-free proteome quantification and enabled us to detect low-abundance proteins that could be 
functionally important in cellular processes.

Quantitative proteome analysis between two or more systems is an indispensable part of functional proteomics as 
relative abundance of proteins reflects a functional dynamic in biological system1,2. Mass spectrometry (MS) has 
become an important tool in quantitative proteomics method including a stable isotope labeling method in-vitro 
or in-vivo3–7 and MS spectral counting (MS-SC) method8. The MS-SC has been widely used for the label-free 
quantitative proteomics as it affords simpler and faster sample preparation and data analysis9. In the label-free 
MS method, complex protein mixtures in biological matrices such as plasma, serum, or tissue protein extracts 
are enzymatically digested to peptides, which results in more complex peptide analytes in several orders of mag-
nitude. The peptide mixtures are then analyzed by liquid chromatography tandem mass spectrometry (LC-MS/
MS) in a data-dependent acquisition (DDA) mode. In the DDA mode, peptides are selected and prioritized for 
MS/MS fragmentation based on their precursor ion signal intensity10. Peptide MS/MS spectra are being searched 
against the relevant protein database and identified. The number of identified redundant peptides are then statis-
tically analyzed for the quantitative proteome changes in the given biological sample matrices using a variety of 
statistical methods.

Several statistical methods for the peptide SC-based quantitative proteomics were proposed and implemented. 
There are empirical tests which were developed specifically for the SC quantification11, such as the spectral index 
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(SpI)12 and QSpec13 methods. The statistical tools designed for gene expression microarray have also been used 
for the analysis of label-free MS proteomics14, the significance analysis of microarrays (SAM)15 and the normal-
ized spectral abundance factor coupled with Power Law Global Error Model-Signal To Noise (PLGEM-STN) 
statistics16 are two examples. Coupling the normalization method with standard statistical t-test is another way to 
quantify differentially expressed proteins (DEPs); the SC normalization methods include weighted scoring from 
peptide match score17, normalization by the number of potential peptide matches18, peptide sequence length19, 
peptide proteotypicity20, and fusion of the probability of identification into counting21.

One of the shortcomings of the SC-based label-free proteomics is the inherent bias against low-abundance 
proteins during the MS/MS data acquisition, which may result in in-sensitive quantification. Due to the discrim-
inatory MS/MS data acquisition, the measured SC of low-abundance proteins (SC mean <5) yield larger SC 
variation22–25 and such SC variation leads to quantitative underestimation on true differences in their expression 
levels26. In this study, we developed the low-abundance protein-centric refinement to quantify them for better 
sensitivity by implementing the Moment Adjusted Imputation (MAI) error model. The MAI model adjusts the 
mis-measured data that result from device-related error or biological fluctuations, reflecting the latent variable 
distribution, which in turn improves statistical parameter estimation27,28. We applied the model in normalizing 
SC, and the refined SC was then applied to PLGEM-STN statistical analysis14. The MAI model in conjunction 
with PLGEM-STN tool reduces the variation of SC between replicate analyses, thus enhancing the validity of 
p-values for the low-abundance proteins. This combined statistical approach was validated by MDA-MB468 
breast cancer (BC) cells grown under high glucose (HG) and glucose deprivation (GD) conditions. We obtained 
about 30% more quantifiable proteins with confident cut off p-value (<0.03). The majority of proteins were found 
to be endogenously low expressed and involved in important biological roles in the given cellular conditions. The 
SC refinement via MAI method results in additional identification of DEPs with better sensitivity and is generally 
applicable for the in-depth proteome analysis.

Results
PLGEM-STN analysis.  We used the test sample matrix of nuclear and cytoplasm proteins of MDA-MB468 
BC cells grown under HG and GD conditions. SDS-PAGE was used to fractionate the nuclear and cytoplasm 
proteins prior to LC-MS/MS analysis to identify proteins over a wider dynamic range thereby increasing the 
detection of low-abundance proteins. After in-gel digestion of proteins, LC-MS/MS analysis of extracted peptides 
followed by protein sequence database searching, we identified a total of 2,525 proteins (at least two unique pep-
tides with false discovery rate (FDR)≤0.1%) (Supplementary Table S1). We performed the PLGEM-STN analysis 
on 2,525 identified proteins, and quantified 681 DEPs (Supplementary Table S2) with p-value threshold less than 
0.01, which is a typical p-value threshold for statistical significance. While the PLGEM-STN analysis provides 
statistical confidence signal-to-noise ratio (p-value < 0.01) for high-abundance proteins in the label-free quanti-
tation, the majority of low-abundance proteins (SC mean <5) suffer from the statistical confidence levels due to 
their SC variations. To improve quantitation sensitivity of low-abundance proteins, we statistically refined SC of 
proteins within PLGEM-STN p-value ≥ 0.01 and ≤0.05 to identify proteins that were quantitatively underesti-
mated the true differences in their expression levels (Fig. 1).

Spectral count variation and PLGEM-STN p-values.  To observe the distribution of PLGEM-STN 
p-values over SC numbers of low-abundance proteins, we plotted the PLGEM-STN p-values of identified pro-
teins over the mean values of SCs and observed that the mean p-values of proteins identified with lower SC 
(SC mean <5) was about 0.2293, whereas proteins identified with higher SC (SC mean ≥5) showed the mean 
p-values around 0.0983 (Fig. 2a). Furthermore, we plotted the ratio of expected and measured standard devia-
tions (σ-expected/σ-measured) over the mean of repeated SC detection showing that low-abundance proteins 
have poor reproducibility on SC during the triplicate analysis compared with high-abundance proteins (Fig. 2b). 
We assumed the σ-expected as standard deviation calculated from the PLGEM linear regression model, which 
explicitly assume a constant coefficient of variation (CV) and deriving standard deviation varying proportion-
ally with the mean. About 44% (636 out of 1,445) proteins with low SC (SC mean <5) had σ-measured greater 
than σ-expected, σ-expected/σ-measured <1, whereas 37% (391 out of 1,065) proteins with mean of SC ≥5 had 
σ-expected/σ-measured <1. This observation indicated that LC-MS/MS data acquisition of those low-abundance 
proteins have poor reproducibility in spectral counting.

MAI statistical analysis of low-spectral count proteins.  Proteins, scoring PLGEM-STN p-values 
between 0.01 and 0.05, were statistically refined to improve their quantitative confidence p-values using MAI 
estimator27. We implemented the MAI to the triplicate breast cancer SC datasets to identify proteins that were 
initially filtered out by the PLGEM-STN statistics. The mis-measured observation is Wi and true values is Xi for 
latent variables for i = 1,…,n. The objective of the MAI is to construct adjusted value of the Wi using recreated 
true value Xi where Xi are unbiased sample moment estimates of the corresponding moment of Xi, a point where 
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https://doi.org/10.1038/s41598-019-49665-1


3Scientific Reports |         (2019) 9:13653  | https://doi.org/10.1038/s41598-019-49665-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

i as repeated number of measurements in LC-MS/MS, and â as relation between measured variable σw and poten-
tially error-free covariate σx σ σ��( )( / )x w

2 2 1/2 .
This adjustment of SC using the MAI was made when the plot of triplicated SC data exhibit skewness. The 

triplicated SC with skewness greater than 0 was regarded to be overestimated, skewness less than 0 to be 

Figure 1.  The overall scheme of the SC refinement. The triplicate datasets of SC were analyzed by PLGEM-
STN and confident DEPs were selected with p-value threshold less than 0.01. The further quantification 
refinement was performed for the proteins within 0.01 ≤ p-value ≤ 0.05 using MAI estimators. The proteins 
with recalculated p-value < 0.03 were considered statistically significant and were combined with DEPs of 
p-value < 0.01.
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underestimated and skewness equal to 0 to be truly estimated. We assume that W1 ≤ W2≤…≤Wn and 
≤ ≤ … ≤X X Xn1 2 . For two different conditions, the objective function is
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Using the MAI estimator values, DEPs were identified through PLGEM-STN once again and considered pro-
teins with p-value < 0.03 as statistically significant DEPs.

After normalizing the SC numbers using the MAI, we identified additional 279 DEPs within the range of 
confident cut-off values (p-value < 0.03) (Supplementary Table S2). We plotted the log scale of standard deviation 
over the mean of triplicate SC using 960 DEPs (681 DEPs with p-value < 0.01 and 279 MAI refined DEPs) and 
showed that the MAI normalized SC according to the regression (Fig. 3a,b), the proteins were aligned along the 
linear line (from R2 value 0.43048 to 0.88971). The observation showed that via the normalization of SC, varia-
tions were decreased to the standard deviation computed by PLGEM-STN. To validate the decrease in p-values, 
we plotted p-values over the mean of SC of low-abundance proteins after the MAI refinement. The average of 

Figure 2.  Relationship between the number of SC and PLGEM-STN statistical factors. (a) A plot of PLGEM-
STN p-values and the mean values of triplicate SC of MDA-MB468 cells grown under HG and GD conditions. 
The plot demonstrates that proteins with low SC (SC mean < 5) have higher p-values (average 0.2293) 
and proteins with high SC (SC mean > 100) have lower p-values (average 0.0983). (b) A plot of measured 
standard deviation over expected standard deviation (σ_expected/σ_measured) and the mean of SC. The plot 
demonstrates that proteins with low SC tend to have more differences between expected standard deviation and 
measured standard deviation.

Figure 3.  Relationship between the mean of SC and standard deviation after the MAI refinement. (a) A plot 
of standard deviation and average of triplicate SC in log scale showing a regression line y = 0.3091x-0.33, 
R2 = 0.4305. (b) A plot of standard deviation and average in log scale after the MAI refinement showing a 
regression line y = 0.3371x-0.36, R2 = 0.8897.

https://doi.org/10.1038/s41598-019-49665-1


5Scientific Reports |         (2019) 9:13653  | https://doi.org/10.1038/s41598-019-49665-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

p-values decreased to 0 (Fig. 4b) from the previous average p-values, 0.0248 (Fig. 4a). These results demonstrated 
that the MAI improved reproducibility and led to a decrease in p-values. The R script for the automated calcula-
tion of SC refinement using the MAI is included in the Supplementary Information S1.

Protein-protein interaction network analysis of DEPs.  To assess the involvement of the MAI-refined 
DEPs in the GD and HG breast cancer functional profile, we combined all DEPs identified from both 
PLGEM-STN and MAI analyses and constructed the Protein-Protein Interaction (PPI) using STRING29 and 
Cytoscape30. Since the metabolic shift with a concomitant dysfunction of mitochondria respiration is a hallmark 
in tumor cell31,32, we focused on the metabolic pathway from the PPI map. As embedded newly identified DEPs 
(bold circles) to the PPI network of 681 DEPs (PLGEM p-value < 0.01) (Fig. 5), the fatty acid metabolic process 
was enriched by down-regulated MAI-refined DEPs (ACOX3, PTGES2, HSD17B12, ACADVL, and ACSL1) 
and the cellular respiration was enriched by down-regulated SUCLA2, SDHB, IDH3A, ATP5C1, and ATP5L. 

Figure 4.  Relationship between the mean of SC and p-values after the MAI refinement. (a) A plot of p-values 
over mean SC of low-abundance before the refinement (b) after the refinement.

Figure 5.  PPI network of DEPs between HG vs GD conditions in breast cancer. Constructed PPI network 
consists of 5 metabolic processes (nucleotide metabolic process, cellular respiration, cellular amino acid 
metabolic process, glucose metabolic process and fatty acid metabolic process) with 93 DEPs.
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The added regulatory MAI-refined DEPs implicated that the metabolic shift with a concomitant dysfunction of 
mitochondria respiration with the down-regulation on fatty acid metabolism, which is the hallmark in the BC 
subtype32. Five MAI-refined DEPs (ALDH7A, HIBCH, ACAD8, SPR, GSS and PPAT) also enriched the cellular 
amino acid metabolic process. Glycosylation catalytic enzymes such as GMPPA and GMPPB including UGP2, 
RRM2 and HSPA8 intensify the nucleotide metabolic process, which is supported by the fact that the cellular 
system degrades amino acids for energy formation33 and deter proliferation activity for energy conservation by 
down regulating transcription activities under the GD condition34.

Quantitative validation of MAI-refined DEPs.  For the cross-validation on the MAI/PLGEM-STN 
quantitative measurements, we analyzed 279 MAI refined DEPs with the MS1-based quantification using Scaffold 
Q+. We observed that the correlativity of two different quantitative measurements is about 88% (Supplementary 
Table S3 and Supplementary Information S3), suggesting a quantitative reliability of the MAI refined DEPs. To 
further verify whether the MAI-refined DEPs have low predicted expression gene levels, we accessed their gene 
Expressed Sequence Tag (EST) abundance35,36 (Supplementary Information S4). The majority of the MAI-refined 
DEPs, including ACOX3, PTGES2, HSD17B12, ACADVL, ACSL1, SUCLA2, IDH3A, ATP5C1, ATP5L, 
ALDH7A, HIBCH, ACAD8, SPR, GSS, PPAT, HSPA8, GMPPA, GMPPB, UGP2, RRM2, and SDHB involved in 
the metabolic processes as depicted in the PPI network (Fig. 5), are with EST abundance below 35, while proteins 
measured high SC (SC >100) are with above 100 EST abundance values, demonstrating a positive correlation 
between SC and EST abundance (Fig. 6a). To verify the results from the MAI-refinement, we performed Western 
blot analysis to measure the relative expression levels of the MAI-refined proteins involved in the metabolic pro-
cesses (GMPPA, RRM2 and MAVS), a protein involved in antioxidant activity (SOD1) and a protein transporter 
(IPO4). We chose these proteins for validation since they are involved in essential functional pathways of cancer 
cells: GMPPA is glycosylation catalytic enzymes37, RRM2 catalyzes the biosynthesis of deoxyribonucleotide38, 
MAVS acts in innate immune defense39, and SOD1 regulates the reactive oxygen stress by destroying superoxide 
radicals40. GMPPA, SOD1 and IPO4 showed an elevated expression levels in the GD condition as compared with 

Figure 6.  Analysis of expression levels of the MAI-refined DEPs. (a) A plot of EST abundances of 21 MAI-
refined DEPs (ACOX3, PTGES2, HSD17B12, ACADVL, ACSL1, SUCLA2, IDH3A, ATP5C1, ATP5L, 
ALDH7A, HIBCH, ACAD8, SPR, GSS, PPAT, HSPA8, GMPPA, GMPPB, UGP2, RRM2 and SDHB) with 
selected high-abundance DEPs (PKM, GAPDH, HSP90AB1, EEF2 and HYOU1) as a reference group 
(SC > 100 and PLGEM-STN p-value < 0.01). (b) Western blot analysis of GMPPA, RRM2, MAVS, SOD1 and 
IPO4 expression levels in MDA-MB468 cells grown under the HG and GD conditions and measured relative 
abundance of GMPPA, RRM2, MAVS, SOD1 and IPO4 calculated from SC. Full-length blots are presented in 
Supplementary Information S2.
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the HG condition; RRM2 and MAVS were down regulated in the GD condition as comparedwith the HG condi-
tion, which showed positive correlation with the SC quantitative readouts (Fig. 6b).

Discussion
In the SC-based label-free quantitative proteomics, the MS data acquisition via DDA mode is biased towards 
proteins of high abundance. The discriminatory nature of the DDA mode in the MS data acquisition introduces 
the inherent variation of SC for endogenously low expressed proteins in the replicate LC-MS/MS analysis. The SC 
variation hampers the sensitive quantitative measurements for low-abundance proteins, hence, frequently lead-
ing to underestimation of their true abundance. As many low-abundance proteins play important roles in many 
essential cellular processes, deducing low-abundant proteins in a quantitatively reliable manner greatly expands 
the depth of biological insights.

In this study, we implemented the MAI error model as a post PLGEM-STN analysis to extend the quantifica-
tion sensitivity and accuracy of the proteins that were identified with PLGEM-STN p-values between 0.01 and 
0.05. The MAI is an error model to offset errors associated with device-related error or biological fluctuations. It 
replaces the mis-measured data with estimators that have asymptotically same distribution as a latent variable of 
interest up to finite number of moment. Thomas et al.27 investigated the performance of MAI in logistic regression 
and demonstrated superior results to the commonly used moment error models such as moment reconstruction 
(MR)41 and regression calibration (RC)42,43. The RC, a most commonly applied measurement error model, works 
most effectively in correction for linear model covariates with minor measurement error, while the MR, a model 
explored from a Bayesian perspective, is known to work best at normally distributed re-constructed true values. 
The MAI not only retains the convenience of other imputation methods, but also enables incorporation of a vari-
ety of distribution27. Therefore, we implemented the MAI model in SC refinement to generate reduced SC vari-
ability of low-abundance proteins and to improve sensitivity in quantification. To ensure a consistent evaluation 
of workflow that can also be used by others, we developed an R script that includes all automated calculation of 
refined SCs using the MAI error model (Supplementary Information S1).

We demonstrated the MAI error model with a subset of identified protein groups (PLGEM-STN 
p-value ≤ 0.05) obtained from the label-free semi-quantitative proteomics study of MDA-MB468 BC cells grown 
under HG and GD conditions. We quantitatively analyzed the expression of 2,525 proteins between the two 
conditions and identified 681 DEPs with PLGEM-STN p-value less than 0.01. Proteins within p-value ≥ 0.01 
and ≤0.05 were refined in their SC by the MAI error model to improve the performance of SC-based label-free 
experiment in quantifying low-abundance proteins. After the MAI statistics, the p-values were recomputed and 
additional 279 proteins were quantified with confident cut off p-value less than 0.03, which were further con-
firmed of their statistical validity by the MS1-based quantification. Some of these quantitatively refined proteins 
(ACOX3, PTGES2, HSD17B12, ACADVL, ACSL1, SUCLA2, IDH3A, ATP5C1, ATP5L, ALDH7A, HIBCH, 
ACAD8, SPR, GSS, PPAT, HSPA8, GMPPA, GMPPB, UGP2, RRM2 and SDHB) enriched five major PPI net-
works including nucleotide metabolic process, cellular respiration, cellular amino acid metabolic process, glucose 
metabolic process, and fatty acid metabolic process. To validate whether the quantitatively rescued proteins are 
intrinsically low at the genomic levels, we further compared their relative expressions (based on SC values) with 
the number of EST DNA sequence reads. Notably, the expression levels of proteins positively correlated with 
EST DNA sequence reads in BC patients, and most of these proteins showed low EST levels (<35) implicating 
that the MAI-refined DEPs were statistically valid. Furthermore, we validated the changes in expression levels by 
Western blotting. Collectively, the results were supported by the fact that the cellular system degrades amino acids 
for energy formation33 and deter proliferation activity for energy conservation by down regulating transcription 
activities under the glucose deprivation condition34.

SC is still the most widely used label-free MS-based semi-quantitative approach. However, inherent variation 
in SC for low-abundance proteins holds a limitation in accurate and sensitive proteome quantification, which may 
hamper the detection of biologically important proteins. More importantly, as proteomics study complements 
functional genomics study, advancement in quantitative proteomics by enabling more quantitatively accurate 
and sensitive proteome features as to the dynamic-range of genomics data is essential. We believe the MAI error 
model as a post PLGEM-STN to the global label-free dataset benefits to this end. We demonstrated that the MAI 
refinement improved quantification sensitivity and accuracy of proteins in low-abundance as evidenced by addi-
tionally quantified DEPs, which were enriched in the major metabolic functional pathways. The ease of use of the 
MAI error model as a part of the PLGEM-STN analysis would thus enable to quantify low-abundance proteins 
that could be functionally important in cellular processes.

Methods
Cell lysis and in-solution digestion.  MDA-MB468 cells were grown at 37 °C in an atmosphere of 5% CO2 
in DMEM containing 10% FBS (HyClone, Logan, UT, USA) under high glucose (25 mM glucose incubation) or 
glucose derivation (0 mM glucose incubation) condition for 48 hours. Cells (1 × 107) were washed three times with 
cold PBS and harvested by centrifugation (500 × g, 5 min, 4 °C) with a buffer containing 0.1 mM oxidized GSH 
(Sigma-Aldrich, St. Louis, MO, USA) in PBS. The cells were lysed with M-per lysis buffer (Thermo Scientific, San 
Jose, CA, USA) with protease inhibitor (cOmplete; Roche Diagnostics, Mannheim, Germany) and phosphatase 
inhibitor (Roche Diagnostics, Mannheim, Germany) cocktail, followed by a brief sonication on ice. The cell lysates 
were centrifuged at 14,000 × g for 10 min and collected the supernatant containing nucleus and cytosolic pro-
teins. Concentration of protein was determined using a BCA Protein Assay Kit (Thermo Scientific). Proteins were 
reduced with 10 mM DTT in 6 M urea and alkylated with 30 mM iodoacetamide. The protein samples were then 
diluted to 1 M urea with 50 mM ammonium bicarbonate, and trypsin (Promega, Madision, WI, USA) was added 
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at a ratio of 1:50 (trypsin:protein), followed by overnight incubation at 37 °C. The digested peptides were desalted 
on Sep-Pak C18 cartridge (Waters, Milford, MA, USA) and were completely dried under speed-vac.

Mass spectrometry analysis.  Peptides were resuspended in 50 μL Solvent A (0.1% formic acid in water) 
and 3 μL sample was loaded onto an analytic column (PepMap, 75 μm ID*50 cm 3 μm, ES803, Thermo Fisher 
Scientific) and separated with a linear gradient of 5–32% Solvent B (0.1% formic acid in ACN) for 70 min at a 
flow rate 300 nL/min. MS spectra were recorded on Q Exactive™ mass spectrometer (Thermo Fisher Scientific) 
interfaced with easy-nLC1000 (Thermo Fisher Scientific). The standard mass spectrometric condition of the 
spray voltage was set to 1.5 kV and the temperature of the heated capillary was set to 250 °C. The full scans were 
acquired in the mass analyzer at 400–1400 m/z with a resolution of 70,000 and the MS/MS scans were obtained 
with a resolution of 17,500 by normalized collision energy of 27 eV for high-energy collisional dissociation frag-
mentation. The advanced gain control target was 5 × 104, maximum injection time was 120 ms, and the isolation 
window was set to 3 m/z. The Q-Exactive was operated in data-dependent mode with one survey MS scan fol-
lowed by ten MS/MS scans, and the duration time of dynamic exclusion was 60 s. The mass spectrometry pro-
teomics data have been deposited to the ProteomeXchange Consortium via the PRIDE44 partner repository with 
the dataset identifier PXD013966.

Database searching and quantification.  Collected MS/MS data were converted into mzXML files 
through the Trans Proteomic Pipeline (version 4.5) software and searched against the decoy UniProt human 
database (version 3.83, 186 578 entries) for the estimation of the FDR with the SEQUEST® (version 27, Thermo 
Fisher Scientific) program in the SORCERERTM (version 3.5, Sage-N Research, Milpitas CA, USA) search plat-
form. Precursor and fragment ion tolerance were set to 10 ppm and 0.5 Da, respectively. Trypsin was chosen as 
an enzyme with a maximum allowance of up to two missed cleavages. Carbamidomethyl of cysteine (57.0215 Da) 
was considered as the fixed modification, while the variable modification was set for methionine oxidation 
(15.9949 Da). The Scaffold software package (version 3.4.9, Proteome Software Inc., Portland, OR, USA) was used 
to validate MS/MS-based peptide and protein identifications. Peptide and protein identifications were accepted if 
they could be established at greater than 95 and 99% probability, respectively, and if the protein identification con-
tained at least two identified peptides with an FDR ≤0.1%. The MS1 intensity was measured using Scaffold Q+ 
(version 4.6.4, Proteome Software Inc., Portland, OR, USA). Normalized precursor ion intensities were acquired 
with 99% protein threshold, minimum of 2 peptides and 95% peptide threshold.

Identification of DEPs and refinement of spectral count by MAI estimators.  Relative protein 
quantitation was accomplished using spectral counting. Among identified 2,819 proteins, we excluded 40 keratins 
considering them as contamination, and 254 reverse phases then subsequent final 2,525 of identified proteins 
were identified. The normalized SC from triplicate datasets using scaffold was compared using PLGEM-STN to 
identify DEPs in MDA-MB468 grown under HG and GD conditions. The count values were fit to PLGEM, and 
DEPs were identified through a permuted STN test statistic16. The implementation was in R and used the PLGEM 
package in Bioconductor. We filtered statistically significant proteins using 0.01 as a p-value threshold. Then we 
refined SC of DEPs within the range of 0.01 ≤ p-value ≤ 0.05, those are excluded from first criteria p-value < 0.01. 
The refinement was made using MAI equation, = + − ˆ ˆX Wa W a(1 )i i  (Xi as the refined count, Wi  as the 
mis-measured observation, i as repeated number of measures, and â as relation between potentially error-free 
covariates σx and measured variable σw in σ σ��( / )x w

2 2 1/2 form). We computed error-free covariates σx as standard 
deviation of PLGEM calculated from the PLGEM linear regression model, ε= + +s k x cln( ) ln( )  (s and x  as 
standard deviation and mean of repeated measures, k as the slope of regression line, c is intercept, and error term 
ε). The adjustment of SC was made when the plot of triplicated SC data exhibit skewness. The triplicated SC with 
skewness greater than 0 was regarded to be overestimated, skewness less than 0 to be underestimated and skew-
ness equal to 0 to be truly estimated. We assume that ≤ ≤ … ≤W W Wn1 2  and ≤ ≤ … ≤X X Xn1 2 . For two 
different conditions, the objective function is

^ ^

^ ^

> = + − … = …

< = + − … = …
− −

− −

¯
¯

W X W a W a X X W W
W X Wa W a X X W W

skewness of 0, (1 ) and ( , , ) ( , , )
skewness of 0, (1 ) and ( , , ) ( , , )

n n n n

n n

1 1 1 1

1 1 2 1 2 1

The p-values and STN were re-computed using MAI estimator values by PLGEM-STN tool. Then we consid-
ered the recalculated p-value < 0.03 as statistically significant.

Network analysis of 10 KEGG pathways and 5 metabolic processes.  PPI network analysis was 
performed using Cytoscape program (version 2.8.2)30 and to assess the modeled PPI analysis, STRING (Search 
Tool for the Retrieval of Interacting Genes/Proteins) protein interaction database (version 10)29 was used. To 
display expression alternation of DEPs, Log2 fold change values were exhibited in two colors at the network 
plot: blue down-regulated DEPs, red for up-regulated DEPs. We categorized major PPI by 5 metabolic processes: 
nucleotide metabolic processes (nucleoside phosphate metabolic process, purine nucleotide metabolic process, 
pyridine-containing compound metabolic process, nucleotide biosynthetic process, ribonucleotide metabolic sys-
tem), cellular respiration (aerobic respiration, respiratory electron transport chain, mitochondrial electron trans-
port, NADH to ubiquinone), cellular amino acid metabolic process (alpha-amino acid metabolic process, cellular 
amino acid catabolic process, sulfur amino acid metabolic process), glucose metabolic process (glycolytic process, 
canonical glycolysis, gluconeogenesis), and fatty acid metabolic process (fatty acid β-oxidation, long chain fatty 
acid metabolic process, unsaturated fatty acid metabolic process, fatty acid biosynthetic process).
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Western blot validation.  Fifty micrograms of proteins from each experimental group were applied to Bolt 
4–12% Bis-Tris Plus gels (Invitrogen, Karlsruhe, Germany) and electrophoresed for 2 h 30 min at 80 V. Proteins 
were transferred onto a PVDF membrane in blotting buffer for 1 h at 100 V and blocked with 5% skim milk 
(Difco, Detroit, MI, USA) or 5% BSA (Gibco, Grand Island, NY, USA) in TBST for 1 h at room temperature. 
The blotted membrane was then incubated overnight at 4 °C with the different primary antibodies. Antibodies 
against GMPPA (1:4,000) and RRM2 (1:5,000) were purchased from Young in Frontier (Seoul, Korea), MAVS 
(1:5,000) was from Bethyl Lab (Montgomery, TX, USA), SOD1 (1:1000) and IPO4 (1:1000) were from Invitrogen 
(San Diego, CA, USA) and β-actin (1:10,000) was from Cell Signaling Technology (Beverley, MA, USA). Blots 
were then incubated with horseradish-peroxidase conjugated anti-rabbit IgG (GeneTex, Irvine, CA, USA, diluted 
1:7,000 for GMPPA, 1:5,000 for MAVS and IPO4, Jackson ImmunoResearch, West Grove, PA, USA, diluted 
1:10,000 for SOD1) and anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA, USA, diluted 1:11,000 for 
RRM2) for 1 h at room temperature. Detection was performed using an ECL system (Amersham Pharmacia 
Biotech, Piscataway, NJ, USA).

Correlation of EST and proteins.  The expression levels of DEPs was assessed using EST database37,38. 
We used the Unigene EST profile (http://www.ncbi.nlm.nih.gov/UniGene), which is an approximate expression 
pattern inferred from EST counts and the cDNA library sources presented by health state, for the gene EST abun-
dance in breast (mammary gland) tumor.

Data Availability
The MS data on MDA-MB468 is deposited in the ProteomeXchange under accession codes PXD013966. All rea-
gents and relevant data are available from the authors upon request.
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