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A robotic prebiotic chemist probes long term
reactions of complexifying mixtures
Silke Asche1, Geoffrey J. T. Cooper1, Graham Keenan1, Cole Mathis1 & Leroy Cronin 1✉

To experimentally test hypotheses about the emergence of living systems from abiotic

chemistry, researchers need to be able to run intelligent, automated, and long-term experi-

ments to explore chemical space. Here we report a robotic prebiotic chemist equipped with

an automatic sensor system designed for long-term chemical experiments exploring

unconstrained multicomponent reactions, which can run autonomously over long periods.

The system collects mass spectrometry data from over 10 experiments, with 60 to 150

algorithmically controlled cycles per experiment, running continuously for over 4 weeks. We

show that the robot can discover the production of high complexity molecules from simple

precursors, as well as deal with the vast amount of data produced by a recursive and

unconstrained experiment. This approach represents what we believe to be a necessary step

towards the design of new types of Origin of Life experiments that allow testable hypotheses

for the emergence of life from prebiotic chemistry.
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On the early Earth, prebiotic chemistry underwent a
transition to biological chemical systems during a very
long period (ca. 100 Myr)1, yet explorations in the

laboratory today are traditionally limited to a few hours or, at
most, days. Only 3.7% of all experiments reported to Reaxys
between 1771 and 2011 were carried out for longer than 2 days2.
However, the exploration of unconstrained3 or complex multi-
component systems requires far longer times and a large number
of parallel experiments4,5, after which progress is hindered by the
analytical complexity of the products; huge numbers of samples
containing unknown mixtures6, seen by many as intractable. This
is further complicated by the fact that realistic chemical reactions,
vital to emulate the types of processes possible on the early Earth
at the Origin of Life, did not take place in a clean single
environment.

There are many candidate theories and frameworks that aim to
explain how living systems can emerge from nonliving
substrates7–9, but none of these are testable over the long time
periods over which life was thought to have emerged on Earth ca.
3.8 B years ago10. For example, it has long been hypothesized that
the central carbohydrate metabolism emerged as a geochemical
process without enzymes and subsequently evolved via the
addition of ever more complex reaction pathways11,12. While
component pieces of this idea have been tested, the entire
hypothesis cannot be explored using current technology. The
same is true of many other hypotheses regarding the origin of
cellular membranes and genetic molecules13,14. This exposes an
important gap that can be explored. Much current research
focuses on prebiotic plausibility, which itself is constrained by our
geochemical knowledge15, and a vast amount is simply unknown,
namely the space of chemical reactions and starting materials
available, as well as the precise reaction conditions and con-
straints on these conditions. Previous approaches to prebiotic
chemistry, which have their origin in synthetic organic chemistry,
intentionally try to limit the accessible size of the chemical space
in experiments16,17. While this is convenient, as it allows the
identification of individual products using standard analytical
techniques, experimental conditions need to move away from
these single-flask approaches to include controlled environmental
factors if we are to explore the chemical space relevant to the
emergence of living systems. This can include, for example, the
inclusion of mineral surfaces and variable temperature, pH, and
redox conditions, some or all of which may be allowed to vary
dynamically, driven by, and driving, the chemical reactions in the
mixture. Some work has already shown that chemical reactions of
simple ‘soups’ in cycles lead to the diversification and differ-
entiation in the product space3,5,18,19, but the number of potential
reactions and time needed for all the reactions is vast18,20–22.

Currently the field lacks an experimental design framework
that would allow researchers to test competing hypotheses23 on
long timescales, and the number of candidate experiments is
gigantic24,25. This problem is made even bigger when the vastness
of search space relevant for the investigation of the emergence of
life is considered—such a chemical space cannot be adequately
explored using experiments that run for a day or a few hours.
Here we show a ‘robotic prebiotic chemist’, an automated closed-
loop system that runs unconstrained multicomponent chemistry
experiments on mineral surfaces in cycles, with fully automated
analytical measurements and a decision-making metric.

Results and discussion
In this work, we set out to design a system that cannot only
automate a vast number of experiments, but also make decisions
on the fly about which routes to follow. We wanted to design an
experimental platform that could be automated and have a range

of input reagents, heterogeneous reaction environments, and the
ability to carry out reaction cycles recursively over a very long
period of time (weeks to months). In aiming for such an
experimental design, we also wanted to include a sensitive in situ
assay that would allow our robotic prebiotic chemist to search
chemical space autonomously26. Thus, our goal was to search for
molecules of increasing complexity as a function of the product
distribution and cycle number, and follow the changes in these
distributions, all in a reproducible way27. In our experiment, we
intended to find a rise in the complexity or information content
of our complex mixture over cycles, looking for an increase in the
mass of the product species by the use of the algorithm.

To help understand the experimental design constraints, we
first explored the chemical space accessible to the input reagents
computationally, see Fig. 1, using the Molecular Transformer28 to

Fig. 1 Network of reactions possible based on the input library. On the top
panel a is a network where compounds of the starting material library
(yellow, outer circle) are reacting to example products with either two
starting compounds (pale blue, middle circle) or three compounds (dark
blue, circle inside) reacting at once. On the bottom panel b is a full network
of all known possible reactions shown, again with two or three input
molecules reacting together. Input compounds are represented as yellow
dots, while all found reaction products are presented as blue dots.
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test all combinations of two and three inputs from the pool of 18
possible input reagents.

The selection of these initial 18 input molecules, which are
shown in Fig. 1, was by a human and inevitably is biased.
However, within the set of 18 materials, the compositions of
inputs for the experiments are chosen at random or by the
algorithm. It can be argued that the input decision is the most
important decision for the experiment, but as the total chemical
space is so vast, this preselection is necessary to contain the
possible options. We tried to concentrate on the function of the
building blocks themselves, rather than taking any prebiotic
assumptions into account (no “common” autocatalytic cycle
precursors, sugars, or amino acids are included). Further infor-
mation about the selection and properties of each building block
can be found in the SI section 2.

Briefly, the molecular transformer is a machine-learning model
that takes input reagents as arguments and suggests possible
product species, the model has a built-in mechanism to assess (or
score) the quality of its prediction on a scale of 0.0–1.0, with
reactions scored as 1.0 being the most supported by observed
reactions. For our purposes, any combination that gave a score
greater than 0.8 was saved and the candidate product was
recorded. This analysis yielded 2206 possible reactions, which
means they can be predicted based on the structure of the reac-
tants and previously reported reactions from the literature. To
visualize this chemical space, these reactions were represented as

a network, with reactants being connected to the products if they
are part of the same reaction, see Fig. 1B29.

This shows that when two of the three input reagents are
reacted together in water, a wide range of products are possible.
This simulation does not take reagent concentration or experi-
mental conditions into account, but through the representation of
possible reactions, the potential of such an experiment to create a
“chemical mess” becomes clear. Using this analysis, it is clear that
an innovative analytical workflow will be required to analyze such
a complex product mixture.

The platform, which is shown in Fig. 2, can execute experi-
ments with changing input compositions, handling hetero-
geneous mixtures of liquid and fine-ground solids, and running a
continuous experiment with several hundred cycles for more than
30 days with minimal human intervention. The platform com-
prises five pumps (four syringe pumps and one peristaltic pump),
four valves for liquid handling (three for inputs, one for analysis),
18 reagents in aqueous solution, a reactor vessel under nitrogen
and fitted with a reflux condenser, an IKA computer-controllable
magnetic stirrer hot plate, a sampling loop for HPLC–MS, and a
purpose-built sample wheel to store up to 20 samples for offline
analysis. The only part of the platform to not be automated was
the manual changing of the vials in the sample wheel every
3 days. Three of the pumps and valves are used to connect the
reagent bottles to the reactor. Another pump is used to deliver
the product mixture from the reactor to the sample wheel. The
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Fig. 2 Platform overview. a A photograph of the platform set up is shown above. The analytical system, including HPLC–MS and the computer, which
controlled the platform processes, is not shown in the photograph. b A detailed schematic depiction is shown in the middle. c A list of the starting material
library is shown below.
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nitrogen atmosphere was a deliberate choice to avoid potential
oxidation of the reaction products and to be able to control the
experimental atmosphere. The online analytical system is sup-
ported by the peristaltic pump, which takes liquid from the
reactor, pulls it through a syringe filter, and injects it into an
external HPLC valve, which is flushed with the mobile phase
directly onto the column and from there to the ESI-MS. Python
code is used to control the platform and analyze the MS data.

The system can change experimental conditions and inputs
based on the data acquired during the experiment. Each experi-
mental run on this platform consists of 60–150 cycles with cycle
times from 3 to 12 h and started with a clean dry reactor, charged
with a mixture of freshly washed minerals (quartz (SiO2)), ulexite
(NaCaB5O6(OH)6·5H2O and pyrite (FeS2)). At the beginning of
each experiment, 30 mL each of three randomly assigned input
solutions were added to the reactor. Stirring and heating were set
to 70 °C and 300 rpm. At the end of the cycle, heating and stirring
were stopped and the system was allowed to settle for 1 h to
prevent mineral particles from blocking the hardware while
sampling. A sample was then taken into the online analysis
sample loop, and 70% of the total product solution was removed
to a vial in the sample wheel for storage and offline analysis. The
remaining mineral slurry and product mixture were then
replenished with fresh input solutions before stirring/heating was
restarted to begin the next cycle. By recursively cycling and
diluting the product mixture with the addition of further starting
reagents, our experiments were designed to dilute out any pro-
duct compounds that are not robust during the reaction cycle.
Thus, the only compounds remaining in significant abundance
after many cycles would be those that were produced over the
cycle, persisted over dilution, or were bound to the mineral sur-
faces. The workflow for this system can be found in Fig. 3.

We performed experiments using an algorithm that chose three
of the 18 building blocks randomly for each input composition.
The experiments aimed to find a way to build increasing com-
plexity in these unconstrained (by which we mean, in this con-
text, that the system is not restricted within the compound
library, to change the input composition at any given time
without human intervention/constraint) multicomponent che-
mical mixtures and enable analysis to track the experiment on the
fly, permitting a change of the experimental inputs if sufficient
change in the product mixture could not be observed.

As shown in Fig. 1, the selected input reagent library is prone
to create a messy chemical mixture, which is a chemical system
known to be too complex to be analyzed conventionally6,30,31,
with identification of all the product species involved. We address
the difficulty of analyzing each specific product in these mixtures
by taking the alternative ‘systems’ approach of observing the
behavior of the chemical mixtures and looking for global

phenomena in the recorded data, rather than concentrating on
targeted analysis. The vast amount of collected data adds to this
problem, as the algorithm must be able to access, analyze, and
interpret the result of the previous cycle quickly in order to make
any necessary adjustments for the following one. The product
mixture was directly analyzed via LC–MS and the algorithm
assigned the outcome of the cycle automatically, making the input
decision for the next cycle as shown in Fig. 3. The MS data are
automatically analyzed using the ‘Mass Index’ metric, which was
reported previously and is explained in Fig. 320. The total ion
chromatogram is accessed with code that extracts each single
spectrum and searches for the heaviest and the lightest peaks over
a threshold of 106 intensity. The peaks are subtracted from each
other and divided by the number of peaks over threshold. The
result of this calculation can be used as a label for each cycle,
enabling automated comparison. The resulting number is stored
in a list and the slope between the previous cycles is calculated. If
the slope is below zero and a minimum number of cycles have
been executed with the same set of inputs (usually a set of inputs
was run for 10 cycles before a new decision was made), the
algorithm decides to change the input composition randomly
from the library of input solutions.

The Mass Index value sets the highest and lightest peak in
relation with the total number of peaks. If there was one heavy
peak and just a few other product species, the number would be
high. The more peaks are detected and the lighter the heaviest
peak, the lower the Mass Index value would be. This approach
can detect a combinatorial explosion, in which the Mass Index
would be very low, caused by the number of detected species.
Furthermore, the index can detect the development of a dominant
heavy species, as the Mass Index rises with the occurrence of
heavier peaks, while the number of total species would be low (see
supplementary table 3.2 for some examples).

By calculating the slope between Mass Index values of different
cycles, we can determine if the experiment changed in-between
cycles. Thus, the Mass Index provides a simple heuristic we can
use to evaluate MS data without human intervention enabling the
automated system to change the input composition based on the
experimental outcomes. Further information about the decision-
making process can be found in the SI, section 5.3. Experimental
data of the Mass Index and the corresponding slope between the
cycles in which the input composition was changed is shown in
Fig. 4. There is no immediate trend observable in the overview of
the presented experiments, but four of the six experiments show
periods where the Mass Index progressively increases, even as the
selected inputs are changed. This means that a heavier product
was forming, and/or the number of overall peaks over threshold
was declining, while the heaviest mass remained. In the other two
experiments, there is no trend to notice and the slope is rather
stable or shows just small changes. The algorithm was designed to
change the experiment as soon as the Mass Index of the product
mixture stopped increasing, with the goal of pushing the system
back out of a steady state or equilibrium. Using this method, we
expected that the data would result in a progressive increase in
the Mass Index over cycles. Interestingly, the results in Fig. 4
show that this is not universally true. We can observe rising
trajectories and trajectories that seem to alternately rise and fall.
For example, run C (Fig. 4) is nearly static, while run A and F
show significant increases in the Mass Index. One explanation for
the static Mass Index values in run C could be an unfavorable
chemical composition that is not prone to react, together with the
fact that the change and the random input decision did not lead
to any complex or changing product mixture. Run A has the
highest observed Mass Index count with 9.63 and a number of
correlating product species of 5029 closely followed by the highest
Mass Index of run F, 8.67, but a lower mass species count of 316.

Fig. 3 Schematic workflow of the automated system. a The general tasks.
b The decision-making process of the algorithm. The formula for the Mass
Index was previously reported by Doran et al.20.
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Run E has a highest Mass Index of 8.45 with 81 correlating
species, the lowest number of product species found in this
comparison. Run B has an index of 7.5 with a species number of
99 and run D has a Mass Index number of 7.05 with 70 product
species. Run C has the smallest highest Mass Index number with
5.76 and 169 product species. These numbers show that the
heaviest mass species in each cycle have a large effect on the
calculated Mass Index, but the Mass Index enables the handling
and interpretation of data sets with large numbers of unique
species.

To understand how these complex product mixtures were
being constrained by the recursive cycles, we decided to repeat
previous runs by disabling the online decision-making aspect of
the experiment and following previously recorded input trajec-
tories. We wondered if a system that undergoes several equili-
brium disturbances and many chemical changes could still be
reproducible. To investigate this, we carried out a run as descri-
bed previously (Fig. 3). The run started with a randomized input
composition of 3 of the 18 input solutions, in this case acrylic
acid, potassium pyrophosphate, and carbonyldiimidazole. After
10 cycles with this input composition, the ‘Mass Index label' of
each cycle was evaluated by the Python algorithm and the slope
between cycles was calculated to be 0.034. As this was an increase,

the experimental parameters and the input composition were
kept the same for the next cycle. From this point on, the slope was
recalculated after each cycle and due to a continuing positive
slope, the input composition (the starting material replenish-
ment) was kept the same for a further six cycles. At cycle 17, the
slope dropped below threshold (−0.036) and the input set was
randomly changed to a new set of starting material solutions,
ethyl acetate, formamide, and formaldehyde. This input compo-
sition was again evaluated up from its 10th cycle and kept up to
cycle 42 after which the slope was −0.015 and in which the input
composition was changed to ruthenium-(III)-chloride hydrate,
pyridine, and copper-(II)-sulfate pentahydrate. This input set was
kept until cycle 52 as the slope (−0.229) was below threshold after
the first calculation with this input. The next input composition
was resorcinol, pyridine, and formamide, which was like the
composition before repeated for 10 cycles and the slope dropped
to −0.131, until the last composition was randomly assigned,
potassium pyrophosphate, ethyl acetate, and formaldehyde, until
65 cycles have been reached. With 65 cycles of 12 h, this means
the experiment ran continuously for 780 h (32.5 days).

All input decisions were recorded and the exact same experi-
ment with identical input compositions and cycle time of 6 h was
repeated a further two times. Rather than allowing the algorithm

Fig. 4 Selected experiments, which reached 65 cycles or more. The light-blue line represents the number of unique product species versus the number of
cycles, while the dark-blue line represents the calculated Mass Index for each respective cycle. The green line shows the corresponding slope of the Mass
Index values. The spherical data points map these in 3D. Run A, B, C, and D had a cycle time of 6 h, while E and F had 3 h per cycle.
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to make decisions, these repeat experiments simply followed the
same sequence of input parameters as the initial run. We can see
that these experiments, prepared under the same conditions,
differ from each other when measured online and as shown in
(Fig. 5b), the curves of Run 10 and 11 lead to different curves of
the mass index. To make sure the differences were not only from
the Mass Index calculations, we analyzed and compared all three
runs, based on the raw MS data and the HPLC-DAD data as well.
We further tested all collected samples from each run on a more
sensitive MS instrument after all runs had been completed. Those
results (Fig. 5c) show that many of the products from these runs
were identical but also differences in the overall product dis-
tribution of the different runs, especially in higher mass ranges,
where we see many features that are unique to each run.

Differences in the reproduced experiments are observed, even
when an automated system was used for the preparation of the
experiment. Figure 5c reveals that many features with high m/z
are unique to one run and that more such features are seen in the
repeat runs. Given how the Mass Index is calculated, with espe-
cially heavy masses being weighted higher, this helps explain the
origin of differences seen in the repeat runs compared with the
initial experiment. Even with minerals used from the exact same
origin, each grain size selected and washed prior to the experi-
mental start, the mineral environment will not be identical and
the resulting surface chemistry and the adsorption effects will lead
to a small variation. In addition to this, each MS run, even of the
identical sample, will change slightly through ionization and can

lead to a slight variation in the overall detected product species of
the run. With an experiment based on several repeated cycles and
a comparison of each species occurring, small variations, espe-
cially in the higher mass features, can lead to the observed dif-
ferences in the reproduced runs. During all experiments described
above, the Mass Index algorithm in Fig. 3, was used as the
decision-making metric. It is used as a tool to explore uncon-
strained multicomponent systems algorithmically and to
approach the current analytical difficulties in the field. Complex
chemical mixtures with thousands, or tens of thousands, of dif-
ferent product species are often seen as an analytical problem,
and the conventional approach of analyzing every single product
species is not feasible. This is why researchers have attempted to
develop a more system-level approach to detect changes and
trends in spectra instead of attempting to identify isolated
species3,20,21. The Mass Index is not able to capture the com-
plexity of the data of a cycle completely, but rather simplifies the
system. Previous recursive chemistry experiments already raised
the problem of addressing every single feature of an experiment,
but as the number of experimental cycles increases, the need
to effective heuristics and metrics becomes even more
significant3,20,21. The Mass Index value is a simple metric for each
cycle, enabling a fast, algorithmically driven comparison and the
adjustment of the experiment in real time based on these data. It
could be argued that the algorithm is too simple and cuts out too
much of the data. To investigate this, other algorithms looking
into information entropy or the weight by intensity values have

Fig. 5 Comparison of reproduced identical experiments. a Shows the m/z value distribution of individual experiments analyzed with the Thermo Orbitrap
Fusion Lumos. Run 10 (green), Run 11(blue), and Run 12 (purple) are compared with all ions appearing in total in all samples after thresholding. The graph
on the right (b) shows the online analytical result on the Advion L-CMS series of Run 10 and Run 11. The online analytical system failed at Run 12, which is
the reason that there is not a third comparable dataset. c It shows a comparison of the offline analytical data of all three runs. The measurements of run 11
and 12 were performed at the same time, while run 10 was measured at a later date. This means that the differences between run 10 and the other runs
may be partially due to a difference in performance.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23828-z

6 NATURE COMMUNICATIONS |         (2021) 12:3547 | https://doi.org/10.1038/s41467-021-23828-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


been tested (detailed description of each algorithm can be found
in the SI). We observed that the algorithms tracked with each
other, as for example, in run E cycle 120 (Fig. 4); the Mass Index
algorithm and the mass-by-intensity algorithm values increased
while the information entropy value dropped. This indicates a
drop in unique species while the m/z values increased. While this
showed that the algorithms worked in general, we have not been
able to get further insights into the actual data by using different
algorithms. In addition to this, the Mass Index needs to be simple,
not just to keep human bias low, but also to enable a calculation
in a short amount of time, as the analyzed sample is compared
immediately in order to make a decision regarding the input
composition of the next cycle.

The next step was to look at the samples systematically offline
to compare different chemical systems: different runs had the
same principle and method, but with 18 input solutions available,
the chemical compositions, cycle, and run times differed con-
siderably. We compared the highest mass over charge ratio
between cycles and between all runs of comparable cycle length.
As shown in Fig. 6, there is no average increase in mass to observe
with increasing cycle number. This is consistent with the Mass
Index observation, as already that data showed differences. The
experiments with a high m/z ratio in Fig. 6 are correlated with the
highest Mass Index runs.

When looking at Fig. 6, our first observation is the high m/z
ratio of the first cycle, as this seems to occur in several cycles. We
believe that this observation can be related to the use of minerals.
The minerals we used were new and washed for each run indi-
vidually, so we do not think contamination to be the cause based
on our mineral controls (SI section 4.1.3); however, some leach-
ing of elements would be possible in the first five cycles (SI sec-
tion 2.2). However, the newly washed mineral surface could be
adsorbing some species, leading to a lower concentration of
products, and alternatively, the clean mineral surface itself could
be catalyzing the breakdown of bigger molecules. In either case,
the phenomenon is limited to the first cycle as the surface
becomes covered by material from the experiment. For further
understanding of how the mineral interacts in this system, the
analysis of the mineral surface through electron microscopy or
MALDI–TOF–MS would be an interesting future extension of the
work. The median of all m/z values of all cycles is under 240 m/z,
while the individual cycles on the right-hand side of the figure
show a very distributed scattering. Most of the highest m/z spe-
cies are heavier than the heaviest starting material m/z, which is
marked with the red line. Even with no direct observable pattern
in the scattering of the plot, there is an area around 240 m/z,
which seems to have the most abundant products of the cycles.
Taking into account that the input reagents and compositions in

all these experiments and cycles have been very different, it is an
interesting observation that most of the highest m/z species lay in
the same m/z area. Of course, it should be noted here that species
with smaller masses usually fly better in the mass spectrometer
and are therefore easier to detect. When comparing these findings
with the Mass Index behavior shown in Fig. 4, we see that the
Mass Index can increase even when there is not a dramatic
increase of the mass of the heaviest product in the cycle. The
highest observed Mass Index was in run A with 9.63 and 5029
unique product species. This is interesting as that amount of
product species is on the higher range of the observed count. This
means that in this particular cycle, the mass of the heaviest
product was so high that the Mass Index was calculated high even
with that number of species. This can lead to the conclusion that
in this cycle, the randomly chosen input set leads to an increased
complexity of the product mixture.

In conclusion, we present a fully automated, algorithmically
controlled platform for prebiotic chemistry experiments. The
long-term experiments run longer than 30 days and have been
capable of executing up to 150 consecutive recursive cycles with
different chemical compositions, stirred and heated in the pre-
sence of a mineral environment. The automated system was
tested using a simple heuristic analysis of complex mixtures based
on a system-level perspective, rather than focusing on a narrow
set of ‘prebiotically plausible,' or ‘biologically relevant' substrates.
The reactivity of the product library was simulated, showing that
the selected reagents are prone to a product mixture complex-
ification. This enabled the use of an algorithmic approach to the
problem rather than an approach driven by narratives, by directly
feeding back knowledge of the current experimental cycle for the
next one. The algorithm controlled and adjusted the experimental
conditions (composition of the feedstock) on the fly by using an
automated decision-making metric, which enabled the computer
to interpret the MS data and make conclusions using data from
previously executed cycles. Thanks to this feature, this system
could be used by other scientists to explore the expansion of the
chemical reaction network starting from simple organic com-
pounds to include more complex molecules, adapting the feed-
stock based on the identification of key chemical species. Such an
experiment could be used to test long-standing hypotheses about
the emergence of biochemical pathways before enzymes11,12.

The algorithm used here presented a first step to approaching
the problem of analyzing messy chemical systems and on top of
that, enables the experiment to continue without a human-made
decision. The data show that the algorithm succeeds in control-
ling the experiment, leading to different behaviors of each
experiment while reducing the chemical mess to the total number
of possibilities and avoiding a combinatorial explosion. The data
presented showed unconstrained multicomponent systems, their
behavior, the borders of their reproducibility, and that most of the
heaviest species produced are in the zone of a mass around 240
m/z. The Mass Index, which generates a relation between the
heaviest product species and the number of species, enables the
handling of large data sets. We achieved the performance of
recursive experiments generating up to 5256 unique product
species in a single cycle (cycle 65 of run A in Fig. 4), while the
correlating Mass Index was 9.12. In the same experiment, the
cycle with the highest Mass Index 9.63 was found with 5029
unique product species detected (cycle 63 of run A in Fig. 4).
Automation can only go as far as theory; writing an algorithm for
an experiment of an unknown chemical system, without knowing
the outcome of the experiment, appears to result in various
complicated problems. Further development is needed to algor-
ithmically explore phenomena in complex mixtures, but these
results present an important first step to autonomous unbiased
Origin of Life experiments and open the door for exciting future
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Fig. 6 Experiments compared by the highest m/z value. On the left, we
present a diagram, which shows the median of the highest m/z value of
each experiment compared with the cycle number. As the first value is very
high, a zoomed-in version of the plot is shown as an inset. On the right, we
show the highest m/z value over the threshold of each cycle of selected
runs. The line (red) in the plot represents the m/z value of the heaviest
input solution.
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research. Therefore, we hope that others will adopt our approach
described here, and in the SI, so a common experimental standard
can be adopted for these types of experiments. We hope this will
enable the development of a global effort for ‘big-data’ origins-of-
life search experiments. A platform, like the one described here,
could be used to search for increasing complexity by which
simple molecules become complex chemical systems. Indeed, we
were able to show how new species were able to persist over time
and not be diluted away, and this could be due to a range of
processes, including molecular replication, amplification for
example. In future work will will use assembly theory and mass
spectrometry to follow the assembly of complex molecules under
prebiotic conditions to explore the mechanism by which selection
can operate outside of biological systems31. Identifying those
processes that lead to the robust complexification of chemical
mixtures could one day lead to the missing link for the chemical-
to-biological transition.

Methods
Experimental details. All materials and solvents were purchased from commercial
sources (Sigma Aldrich, Fischer Scientific, and Alfa Aesar), unless otherwise stated,
and used without any further purification.

Ulexite and quartz were obtained from Richard Tayler Minerals, Cobham,
Surrey, England, and crushed in a Mad Mining Rock Crusher with a Solid
Steel Frit.

Mineral wash workflow. An equal mixture of 2 g of quartz (SiO2), ulexite
(NaCaB5O6(OH)6·5H2O), and pyrite (FeS2), each was added to the reactor. All
minerals used have been sieved to a size between 2 and 4.75 mm. The minerals
have been boiled and stirred in HPLC-grade water for 2 h and continuously rinsed
with fresh HPLC-grade water, until the solution in touch with the minerals
remained clear. After that, the minerals have been dried and directly transferred to
the reactor.

Chemical input preparation. All input solutions have been prepared on demand
in HPLC-grade water as follows:

All chemical inputs have been used as a 0.1 M solution, the only exception was
ruthenium-(III)-chloride hydrate that was used as a 0.01M solution.

Mobile-phase preparation. For platform HPLC analysis, 0.1% formic acid was
added to HPLC-grade water or HPLC-grade acetonitrile and the solution was
sonicated for an hour before being set up on the instrument. For high-resolution
HPLC–MS, the procedure was similar, but LC–MS-grade water and acetonitrile
have been used.

Platform high-pressure liquid chromatography (HPLC–DAD). Gradient HPLC
analysis was performed on an Agilent 1260 Series (Agilent Technologies) instru-
ment equipped with a quaternary pump (G1311B) and a diode array detector
(DAD) (G1315D). The sample was injected from the sample loop on an Agilent
Infinity Lab Poroshell 120 Eclipse EC-C18 UHPLC Guard 3.0 × 5-mm guard col-
umn that was connected to an Agilent Poroshell 120, 120 EC-C18, 4.6 × 150-mm
column, kept in a column compartment (G1316A) with a controlled temperature
of 30 °C. The method used was a gradient method with 95% 0.1% formic acid
added to HPLC-grade water and 5% 0.1% formic acid added to HPLC-grade
acetonitrile (MeCN). Over 10 min, the organic (MeCN) flow was increased to 40%,
after another 5 min it was at 50% MeCN. After 20 min, a flow of 100% organic
mobile phase was reached. After that, the mobile phase was switched back to the
initial 95% water and 5% acetonitrile, and a 20-min flow was maintained for
column cleaning. The flow rate through the whole run was 0.5 mL/min, while 0.2
ml/min flow was maintained between runs. Elution was detected by UV (λ= 200,
215, 245, and 300), and samples were run for 40 min in total. The performance of
the HPLC column was checked with a caffeine standard solution, based on the
directions in DIN 20481, on a regular basis.

Benchtop electrospray ionization mass spectrometry (ESI-MS). The Benchtop
ESI-MS was used for all online measurements during the platform experiments and
for the Mass Index calculation. Data are presented in the paper in Figs. 4–6 and in
the SI in Figs. 4–6, 10, 18+ 19. The ESI-MS analysis was performed on a Benchtop
‘expression L-CMS’ system from Advion. After the sample passed the HPLC-DAD,
it went through a split valve resulting into a flow of 0.2 mL/min injected into the
ESI system. The mass spec was run in positive and negative mode, switching
between both modes during analysis with a switching speed of 50 ms. The positive
mode turned out to be more useful and only the results of this mode were used for
the algorithm. The m/z range was set from 10 to 2000 m/z and the scan time was

3345 ms at a scan speed of 595 m/z/sec. The ion source parameters were as follows:
capillary temperature 300 V, capillary voltage 120 V, source voltage offset 20 V,
source voltage span 30 V, and the source gas temperature 200 °C. All settings were
the same in both positive and negative modes, except for the ESI voltage, which was
3500 V for the positive mode and 2500 V in the negative mode. A calibration was
performed regularly with a MS tuning mix (Agilent). Data were analyzed using the
Advion Data Express software.

Electrospray-ionization mass spectrometry (UPLC–ESI-MS). The Orbitrap ESI-
MS was used for further offline analysis. Data are shown in the paper in Fig. 5. The
sample was run through a Thermo Vanquish UHPLC system and injected 10 μL on
an Agilent poroshell C18 2.7 um 4.6 × 150 mm column with a flow rate of 0.5 mL/
min. The column temperature was maintained at 40 °C and sample vials kept at
50 °C. Mobile phases were 0.1% formic acid added to LC–MS-grade water and 0.1%
formic acid added to LC–MS-grade acetonitrile (MeCN). A gradient was applied,
starting with 1-min equilibration time, the run started with 95% aqueous phase.
Over 40 min, the organic (MeCN) flow was increased to 20%, after another 20 min,
it was at 60% MeCN. After 60.5-min runtime, a flow of 95% organic mobile phase
was reached. After 70.1-min runtime, the mobile phase was switched back to the
initial 95% water. The flow rate through the whole run was 0.4 mL/min and the
total runtime was 75 min. The chromatographic separation was then ionized in a
HESI ion source with 40-psi gas and a +3.4-kV voltage applied to introduce the
sample into the mass spectrometer (Thermo Fusion Lumos).The acquisition was
run in positive mode and the system was calibrated before each run. The mass
range was from 50 to 1000m/z. The fragment ions were analyzed in the Orbitrap
with HCD fragmentation set at 35%. The isolation window was set at 1 Da and the
resolution of the MS1 scan was 120,000.

Data availability
All data necessary to evaluate the conclusion of this work can be found in
the Supplementary Information or Supplementary Data 1. Due to the quantity of the
produced data, the full raw data are only available on request.

Code availability
The code used in this work is provided in Supplementary Data 1.
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