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Multiparametric cloth‑based 
wearable, SimpleSense, estimates 
blood pressure
Prashanth Shyam Kumar*, Pratyush Rai, Mouli Ramasamy, Venkatesh K. Varadan & 
Vijay K. Varadan

Targeted maintenance of blood pressure for hypertensive patients requires accurate monitoring of 
blood pressure at home. Use of multiparametric vital signs ECG, heart sounds, and thoracic impedance 
for blood pressure estimation at home has not been reported previously. In an observational multi-
site study, 120 subjects (female (N = 61, 52%)) between 18 and 83 years of age were recruited with the 
following stratification (Normal (20%), prehypertensive (37%), stage 1(26%), and stage 2 (18%). From 
these subjects, 1686 measurements of blood pressure from a sphygmomanometer were associated 
with simultaneously acquired signals from the SimpleSense device. An ensemble of tree-based models 
was trained with inputs as metrics derived from the multiparametric and patient demographics data. 
A test Mean Absolute Difference (MAD) of ± 6.38 mm of Hg and ± 5.10 mm of Hg were obtained for 
systolic and diastolic blood pressures (SBP; DBP), respectively. Comparatively, the MAD for wrist-worn 
blood pressure cuff OMRON BP6350 (GUDID—10073796266353) was ± 8.92 mm of Hg and ± 6.86 mm 
of Hg, respectively. Machine learning models trained to use multiparametric data can monitor SBP 
and DBP without the need for calibration, and with accuracy levels comparable to at-home cuff-based 
blood pressure monitors.

Hypertension is a critical public-health challenge worldwide. Between 1990 and 2019, the number of men 
and women with hypertension doubled to 652 million and 626 million. A pooled analysis of 1201 population-
representative studies suggested that a dual approach of reducing hypertension prevalence through primary 
prevention, treatment, and control is achievable in the full spectrum of income settings1. Recently, Zhang et al. 
demonstrated the significance of intensive blood-pressure control in older Chinese patients resulting in a lower 
incidence of cardiovascular events2.

The potential sources of errors in blood pressure measurement remain a significant challenge even in con-
trolled clinical settings. Discrepancies in measurements as obtained by different operators raise the concern of 
methodologic errors by one operator, such as under-cuffing, excessive pressure on the head of the stethoscope, 
rapid deflation of the cuff, or use of different arms. Kallioinen et al. investigated 29 potential sources of inac-
curacy and categorized them as relating to the patient, device, procedure, or observer. They found significant 
directional effects with 27 sources with some inconsistency in terms of the direction of whether increase or 
decrease in measured BP. Some of the significant sources of directional effects caused changes in the range 
of  − 23.6 to + 33 mmHg SBP and − 14 to + 23 mmHg DBP3. Apart from the inaccuracies of measurements leading 
to incorrect hypertensive classifications, psychophysiological changes in patients with conditions such as white 
coat hypertension can lead to a false positive diagnosis of hypertension. The recommended measurement of BP 
for the diagnosis of hypertension across several international guidelines is out-of-office or at-home BP meas-
urement using ambulatory BP monitoring (ABPM) and Home BP monitoring (HBMP). The available evidence 
suggests that HBPM and ABPM present similar values and correlate with target-organ damage4. However, there 
are challenges with both HBPM and ABPM.

Regarding HBPM, although patients are trained on how to perform an at-home BP self-measurement, the 
circumstances that must be created for repeatability of measurements are impractical for some patients, and 
compliance to these instructions is also not guaranteed. In the case of ABPM, the operation of the cuff during 
a measurement is perceptible to the patient and makes the measurements susceptible to a condition like white 
coat hypertension. Some patients must perform physical work such as construction that precludes the use of 
an ambulatory monitor, which requires the cessation of all movements during the oscillometric measurement 
time window. Furthermore, cuff-based ABMP is known to interfere with sleep5. Reports on sleep quality while 
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using a cuffless blood pressure monitoring device (CLBPM) that is based on pulse wave analysis from a finger 
photoplethysmography sensor are scarce. The sleep quality was found to be comparable to ABPM6.

All commercially available ABPM and HBPM devices are calibrated to measure brachial BP, not central BP. A 
systematic review of invasive validation studies on the accuracy of estimation of aortic SBP using non-invasive 
devices could not draw specific conclusions7. Clinically, such devices are not yet prevalent due to significant vari-
ability in the estimation of aortic-SBP, and the superior invasive measurement methods are only indicated for 
patients suspected of having coronary artery disease8. The clinical evidence only supports a marginal difference. 
It is plausible that the incremental value of using central instead of brachial BP is masked by the errors in meas-
urement of ABPM and HBPM, which are not encountered with invasive central BP measurements. Therefore, 
marginal superiority central BP offers as a risk predictor of cardiovascular events may be accessible with brachial 
BP by improving the calibration method of the brachial or peripheral BP monitoring device8.

With the advent of automated CLBPM, observer-related sources of errors may be mitigated by eliminating the 
subjective intra- and inter-observer variance. Device-related errors cannot be eliminated with any of the reported 
CLBPM methods that use the pulse waveform characteristics such as Pulse Wave Decomposition Analysis9, Pulse 
Wave Transit Time10, Pulse Arrival Time11, and estimation of the pre-ejection period because these methods 
require calibration against the readings from a cuff based sphygmomanometer for each patient. There are known 
confounders that decorrelate the relationship between photoplethysmography (PPG)-based parameters and SBP 
and DBP, such as changes in arterial stiffness (which increases with age as Elastin in the arteries is gradually 
replaced by less elastic Collagen), arterial wall viscosity, and assumptions on the radius of the arterial lumen 
(gender and BMI-related difference). None of the methods reported in the literature thus far have considered 
these demographic data to develop a generalized cuffless BP estimation method. Studies that have reported the 
use of only centrally measured cardiovascular parameters for the prediction of BP are scarce. Innovative use of 
ECG and deep learning to predict BP was reported12 but did not meet the minimum criteria for accuracy as per 
the IEEE and ANSI standards. In this paper, a novel approach is presented to estimate SBP and DBP that uses 
only centrally measured physiological parameters. The method takes as input the multiparametric data inclusive 
of two channels of ECG and thoracic impedance, heart sounds near the apex of the heart, activity, and posture 
captured by the FDA cleared SimpleSense device (510 (k) number K212160) (Nanowear Inc. Brooklyn, NY) 
combined with demographics data (age, gender, height, and weight) which is added as a predictor so that the 
confounding effects encountered by pulse wave-based techniques could be potentially mitigated. SimpleSense 
is a non-invasive, wearable, and portable medical device that uses cloth-based nanosensor technology13 (Fig. 1). 
The garment was designed with an emphasis on ease of wearing and takes between 20 and 30 s for most subjects 
to put on. Finally, two ensemble regression tree models trained using data from 120 subjects are used to estimate 
SBP and DBP. The accuracies of these models are presented.

Methods
Study design.  A prospective multicenter non-randomized observational study was performed at Nanowear 
Inc. R&D in State College, PA, and ClinCept LLC, Atlanta, GA. The study consisted of executing a protocol 
with each subject involving activities that modulate the blood pressure for a duration of up to 1 h and 30 min. 
Nanowear Inc sponsored the trial. The study protocol (IRB protocol # 14-90-0093) was approved by the inde-
pendent Institutional Review Board (IRB) Advarra Inc. (Columbia, MD). The study was conducted according to 
the stipulations of the 1964 Declaration of Helsinki and in accordance with relevant FDA regulations. Written 
informed consent was sought and obtained from all subjects and all subjects completed the study. The accuracy 

Figure 1.   SimpleSense device and software platform.
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of the estimated blood pressure was evaluated following a validation plan based on the IEEE standard 1708a-
201914.

Patient population.  From February 8 to July 16, 2021, subjects were screened for eligibility and recruited. 
The targeted subject selection and stratification are presented in Table  1. The subjects were sorted into four 
cohorts—normal, prehypertensive, Stage 1 hypertension, and Stage 2 hypertension- based on the specified range 
of BP in Table 1. The endpoint of the BP classification was determined according to the JNC 7 report15. The BP 
used for classification was the entry BP measured at the beginning of the test. Three measurements were taken 
from the subject sitting with the elbow, back of the elbow, and back resting on a chair. The averaged value was 
used as the entry BP to determine the subject’s BP classification.

Study procedure.  Two trained observers performed all measurements using the SimpleSense device and 
gold standard sphygmomanometer for each subject. The training of the observers was as described in Sec-
tion 5.2.2 of ISO 81060-2019.

Blood pressure measurement.  First, the subjects wore the SimpleSense system. The device recorded 
data while the two observers took the blood pressure measurements using a standard sphygmomanometer and 
Omron blood pressure wrist cuff GUDID 10073796266353. The simultaneously and synchronously acquired 
data from SimpleSense was used to calibrate the algorithm against the blood pressure measurements from the 
sphygmomanometer.

Reference measurements were provided by the two trained observers and measured simultaneously with one 
reference sphygmomanometer (using a "Y" connector), as shown in Fig. 2a. The sphygmomanometer used as the 

Table 1.   Subject selection requirements.

Blood pressure 
classification

Systolic blood pressure 
(mmHg)

Diastolic blood pressure 
(mmHg) Subjects in Dev. set Subjects in the test set

Normal  < 120 and  < 80 5  ≥ 16

Prehypertension 120–139 or 80–89 5  ≥ 16

Stage 1 hypertension 140–160 or 90–100 5  ≥ 16

Stage 2 hypertension  ≥ 160 or  ≥ 100 5  ≥ 16

Gender: At least 26 males and 26 females

Figure 2.   (a) Test set up for simultaneous SimpleSense recording and BP readings from Sphygmomanometer 
(b) Placement of Omron Wrist cuff and SimpleSense for sequential measurement.
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reference standard met the requirement in ISO 81060-2:2019 or ANSI/AAMI SP10. SBP and DBP measurements 
with the sphygmomanometer were determined using the Phase 1 and Phase 5 Korotkoff sounds, respectively. 
The observers set up the sphygmomanometer and Omron wrist cuff, as shown in Fig. 2b. The wrist cuff and 
the sphygmomanometer were worn on the same (left) arm. All measurements were recorded to the nearest two 
mmHg. If both measurements from the two observers are no more than four mmHg apart, the mean value of 
the two was used as the reference measurement. Otherwise, the measurement was retaken. If either observer 
detected significantly irregular heart rhythm, that reading was excluded. The time of blood pressure measurement 
was recorded accurately to the nearest minute. The supplementary material includes the detailed test procedure.

Simultaneous measurement was used for the sphygmomanometer and SimpleSense device. The left arm was 
used for reference measurement. By design, the SimpleSense system is a cuffless device and does not rely on 
an arm or wrist cuff for blood pressure measurement. It can record all the physiological parameters during the 
inflation and deflation of the reference sphygmomanometer without any mutual interference. At least a 60-s 
delay was observed between consecutive readings from the sphygmomanometer to avoid venous congestion.

Sequential measurement was used for the Omron Wrist Cuff. When the wrist cuff device is used with the 
sphygmomanometer reference measurement, either arm will interfere with the reference device measurement. 
The Omron wrist cuff measurement was done at least 60 s after the reference measurement but not more than 
90 s to avoid increased variability due to expected physiological trends.

Modulation of blood pressure.  Subjects were asked to perform activities that modulated blood pressure 
to increase the dynamic range of observed SBP and DBP. The lowering of BP was induced by asking the subject 
to sit with feet raised on a stool or chair and hold a warm water bottle (warm stimulus) in their hand wrapped 
with an insulating cloth. The increases in BP were induced by asking the subject to walk briskly (mild exercise), 
as physically able, for about 10 min and holding an ice pack (cold presser) in their hands for 5–10 min as toler-
ated. Three consecutive recordings of simultaneous and sequential measurements of BP were performed after 
each of these BP modulating activities.

Data preparation and processing.  The SimpleSense data for each patient was first subjected to a data 
quality assessment. Segments of data that were of insufficient quality due to the presence of noise due to any 
movements were removed from further consideration. From the recorded data that was deemed to be of accept-
able quality, within a 300-s window preceding a time-stamped observation of SBP and DBP by the observers 
using the gold standard sphygmomanometer, a 60-s window of data with acceptable quality was extracted and 
associated with that observation. These steps were performed for each recorded BP value from the gold standard 
device. Thus, a dataset was prepared with the 60-s-long segments of SimpleSense device data and the associ-
ated target SBP and DBP values for training the SimpleSense-BP algorithm. The systolic and diastolic reference 
measurements acquired from the gold standard device were then randomly split into two sequestered sets of 
80%/20% (training/test).

Mean Absolute Difference (MAD) (Eq. 1), Mean Absolute Percentage Difference (MAPD) (Eq. 2), and Root 
Mean Square Error (RMSE) (Eq. 3) are used to analyze the performance of the models. The statistical aspect of 
the criteria is discussed in IEEE 1708-2019a.

where pi is the test device measurement, yi is the average of the adjacent two reference measurements taken before 
and after device measurement as defined in ISO 81060-2:2019, and n is the data size. Applying a constant accuracy 
limit to measurements at both the low and high ends of BP is biased because the variability may increase at both 
extremes of BP. An incorrectly significant error may be introduced. Therefore, MAPD is used in addition to MAD.

Further, we evaluated the contribution of the SimpleSense device measured inputs and demographics for BP 
estimation in comparison to models that use only demographics data. The comparison method follows the rec-
ommendation by Mukkamala et al.16. The description of the method to compare models described by Natarajan 
et al.17 presents a convenient method to measure overall accuracy through bootstrap RMSE. First, we trained a 
reference model that uses only the demographics data (Age, Gender, Height, and Weight) on the same training 
data as SimpleSense-BP, to estimate SBP and DBP. The reference model training procedure used the same train-
ing hyperparameters for the automl framework as the SimpleSense-BP model. We took 10,000 random samples 
of the test set measurements with replacement. The number of samples per iteration was equal to the size of the 
test set. For each sample, we computed the Root Mean Square Error (RMSE) for each model and the difference 
between the RMSEs of the two models for comparison as (SimpleSense-BP estimated BP—Demographics only 
estimated BP for SBP and DBP). The criteria to support the superiority of one model over the other was that the 
difference in RMSE errors should have an upper 95% Confidence Interval (CI) less than 0 mmHg.

(1)MAD = (

n
∑

i=1

|pi − yi|)/n

(2)MAPD = (

n
∑

i=1

100 ∗ |pi − yi|/yi)/n

(3)RMSE =

√

∑n
i=1

(pi − yi)
2

n
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SimpleSense data analysis and feature exploration.  ECG features.  The ECG features were RR in-
tervals and timing of the R peaks occurrence. The R peaks of the ECG waveform were detected algorithmically. 
The detected R peaks were used to determine the bounds of the RR intervals for each heartbeat. An ensemble 
average was computed for one minute of data centered on the measurement of the blood pressure from the 
reference device.

Heart sound features.  Heart sound ensembles were defined based on the RR intervals extracted from the ECG 
waveform. The ensemble average was computed across one minute of data centered at the blood pressure meas-
urement from the reference device like the ECG waveform. The S1 and S2 times of occurrence and root mean 
square amplitudes were algorithmically extracted from the ensemble average.

ECG and heart sound features.  Based on the extracted timing of the R peak of the ECG and the S1 and S2 
peaks of the heart sound, a timing feature was extracted. The time elapsed between the R peak and the S1 and S2 
sounds is illustrated in Fig. 3. Figure 3 further summarizes the metrics as derived from ECG and heart sound.

Table S1 in the supplementary material provides a list of features, their source, and the descriptions of the 
features. The SimpleSense device acquires two channels of thoracic impedance, with one channel spanning the 
thorax from the right shoulder to the lower-left abdomen and the other around the abdomen. Respiration-related 
features are obtained for each channel and are treated as independent features because of the type of respiration 
effort measured by the two channels—thoracic and abdominal.

Results
Subject characteristics.  A total of 120 patients were recruited for the study. The recruited subject popu-
lation was representative of the adult US census. The age distribution was 48.7 ± 16.8  years, with 48% male. 
Figure 4 presents (a) the histogram of age, (b) the distribution of race, (c) the hypertension stratifications as per 
Table 1, and (d) the distribution of age vs. Body Mass Index (BMI). The distribution of age vs. BMI shows the 
range of body habitus of the participating subjects. Body habitus is a metric that is necessary to analyze for wear-
able devices such as the SimpleSense device used in this paper.

Blood pressure data.  After the preparation of data collected in the study, the training set had 1348 obser-
vations of adequate quality, and the test set had 338 observations of adequate quality for use. Figure 5 shows the 
distribution of the systolic and diastolic blood pressure values within the data sets.

Feature selection.  A random forest regression model was trained on the complete list of features in the 
training dataset for SBP and DBP. Impurity-based feature importance was used to compute feature importance. 
Features that had more than 2% overall relative importance were selected. Figure 6 shows the list of features and 
their importance for SBP and DBP. The list of features that were considered important for SBP was – Respiration 
rate 2, Relative Tidal Volume 1, Relative Tidal Volume 2, impedance, R to S1 time, R to S2 time, Mean interbeat 
interval, the ratio of S1 RMS to S2 RMS, S low, S mid, S high, QRS duration, age, height, and weight.

Similarly, for DBP—Respiration rate 2, Relative Tidal Volume 1, Relative Tidal Volume 2, impedance, R 
to S2 time, Mean interbeat interval, the ratio of S1 RMS to S2 RMS, S1 RMS, S low, S mid, S high, S1 low, age, 
height, and weight. Based on these feature selections, it is evident that demographic data is a strong predictor 
of SBP and DBP values. However, there is potential benefit in terms of accuracy improvements resulting from 
using the SimpleSense measured signals in addition to demographics and machine learning methods to find the 

Figure 3.   Cross signal features—ECG and Heart sound.
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association with a hemodynamic parameter that can be used to estimate BP. Here, we seek empirical evidence 
for this potential improvement.

Performance evaluation.  The Systolic and Diastolic models are ensembles of regression trees. The ensem-
ble model was trained using the auto-sklearn framework18. With an overall time for a task set to 4 min and 

(c)

(a) (b)

(d)

Figure 4.   Subject population characteristics.

Figure 5.   Distribution of sphygmomanometer (gold standard device) measurements.
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Figure 6.   Relative importance of features for predicting SBP and DBP using impurity-based feature 
importance.

(a) (b)

(c) (d)

Figure 7.   Comparison of actual and predicted measures of Systolic blood pressures from the SimpleSense-BP 
cuffless model and a baseline model that uses only demographics data. (a) scatter plot of predicted vs actual SBP 
for test set only for SimpleSense-BP device with the correlation coefficient (b) Bland Altman plot for test set with 
limits of agreement and the mean and standard deviation of errors compared to the reference measurement (c) 
scatter plot of predicted vs actual SBP on test set only for baseline model (d) Bland Altman plot on test set only 
with limits of agreement and the mean and standard deviation of errors compared to the reference measurement 
for the baseline model.
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individual evaluations set to 30 s, the final diastolic model included eight tree-based regression models, and the 
systolic model included five regression models.

Figure 7 illustrates the performance of the SBP prediction models. The errors in prediction at the higher 
blood pressure values are greater at higher actual SBPs. The variability of BP at higher SBP is greater and leads to 
a biased estimate of performance when evaluated separately14. Additionally, age-related increases in variability 
of BP are known19.

Figure 8 illustrates the performance of the DBP prediction model. Notably, the dynamic range of the observed 
DBP values is smaller than SBP. The overestimation of DBP when the actual DBP is below 55 mm of Hg is observ-
able. Although these errors may not lead to a misinterpretation of prehypertensive in the individuals, additional 
sampling from those with low DBP values would improve the calibrated accuracy of the DBP models.

The results of bootstrap RMSE with the 95% CI are presented in Table 2.
The upper 95% CI for the difference between the SimpleSense-BP and the baseline model for both SBP 

and DBP are below zero with the differences in RMSE calculated as (SimpleSense-BP—baseline model). With 
this result, we conclude that the SimpleSense-BP model has a statistically significant improvement in perfor-
mance over a model that uses demographic data only. We calculated the p-value as the percentile value at 

(a) (b)

(c) (d)

Figure 8.   Comparison of actual and predicted measures of Diastolic blood pressures from the SimpleSense-BP 
cuffless model and a baseline model that uses only demographics data. (a) scatter plot of predicted vs actual SBP 
for test set only for SimpleSense-BP device with the correlation coefficient (b) Bland Altman plot for test set with 
limits of agreement and the mean and standard deviation of errors compared to the reference measurement (c) 
scatter plot of predicted vs actual SBP on test set only for baseline model (d) Bland Altman plot on test set only 
with limits of agreement and the mean and standard deviation of errors compared to the reference measurement 
for the baseline model.

Table 2.   Results of the bootstrap RMSE analysis for each model SimpleSense-BP, baseline model using 
demographics data only, and the difference between the paired measurements of RMSE between the models.

Measurement type SimpleSense-BP (RMSE—mmHg) Baseline model (RMSE—mmHg)
SimpleSense-BP—baseline model 
(RMSE—mmHg)

SBP 8.62 (6.87, 11.12) 9.33 (7.82, 11.74) − 0.72 (− 1.32, − 0.14) (p < 0.0057)

DBP 6.15 (4.87, 7.71) 7.38 (6.19, 8.78) − 1.23 (− 1.74, − 0.74) (p < 0.0001)
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which ≥ 0 mmHg difference in RMSE was observed (SBP p < 0.0057; DBP p < 0.0001). Table 3 summarizes the 
results of the training and testing done on a test set that was sequestered from the training set.

The test protocol includes induced variation of blood pressure within an individual participant using a cold 
pressor test, heating of extremities, relaxed posture, and brisk exercise in the form of walking. Further, bootstrap 
resampling was done for the systolic BP model and Diastolic BP model to obtain a 95% confidence interval for 
MAD values. We performed 1000 iterations of resampling with replacement with each sample size equal to the 
test set size and the confidence intervals for the systolic and diastolic MAD were found to be (5.36, 6.85 mm Hg) 
and (3.51, 4.65 mmHg), respectively.

Discussion
Two ensemble models were trained on the data collected from 120 subjects. The two models predict systolic and 
diastolic pressures based on features extracted from the SimpleSense data and demographics data, inclusive of 
Age, Gender, Height, and Weight. This approach would be consistent with the class of BP measurement called cuf-
fless BP monitors. There are two novel aspects reported herein—First, the use of heart sounds, ECG, and thoracic 
impedance as inputs to estimate SBP and DBP, and second, the size of the subject population for the evaluation 
of such a cuffless approach is the largest to date in the literature. The device and model are cuffless and do not 
require a cuff calibration procedure. This removes the burden on the user to calibrate the device and eliminates 
errors due to the wrong calibration. The performance observed in this study supports a determination that this 
approach is indeed feasible for monitoring BP of adults without a diagnosed arrhythmia or actively taking vaso-
active anti-hypertensive medications. It is further observed that performance may improve at the low and high 
BP ranges of measurement by increasing the number of subjects in those stratifications. However, as a general-
ized approach that should be reliable for the US population, the presented model meets the criteria for required 
performance as per the current IEEE 1708 standard. Recent work by Mukkamala et al. has revealed limitations 
to the approaches described herein. The measurement of errors in BP must be done in a longitudinal study with 
tracking of BP over time for the same individual. This should be a part of the evaluation of new BP estimation 
methods. There are practical challenges in the recruitment of patients to meet the criteria for the subject popula-
tion outlined in the latest amendment to IEEE 1708a 2019; the standard requires a separate study for age groups 
over 50 yrs., but requires recruitment of at least 21 subjects overall in each stratification of BP. Finding subjects 
under 50 years of age with stage 2 hypertension is challenging regardless of the resources available because we 
face the ethical conflict of not immediately recommending their treatment with vasoactive drugs, and subjects 
under vasoactive drug treatment must be excluded. This study explored the possibility of including a broader 
population in terms of age, and we present the results with age-stratified accuracy presented in Tables S4 and 
S5 of the supplementary materials. Notably, we observed that the age group of ≥ 68 years had an error rate for 
SBP of 8.42 mmHg MAD. The subjects in this age range were 19 (15.83% of the population). Therefore, a larger 
number of subjects in this age range is warranted to improve the performance of SimpleSense-BP.

The BP estimation method presented herein was not developed to monitor BP in ambulatory patients while 
performing activities involving movements. SimpleSense is wearable, and estimates of BP can be calculated 
during movements. However, since the gold standard sphygmomanometer and existing ABPM devices do not 
claim BP during movements, the training and testing data were collected with the subjects in a stationary 
state. A claim justifying truly ambulatory BP monitoring using SimpleSense would need further clinical study. 
Similarly, the current research that is presented emphasizes the algorithm that is developed to predict blood 

Table 3.   Performance evaluation of Blood pressures measured by SimpleSense and a wrist cuff device.

Measurement condition

SimpleSense-BP Wrist Cuff

MAD (mm of 
Hg) MADP (%)

MAD (mm of Hg) MADP (%)Training Test Training Test

Overall

Systolic 5.86 6.40 4.56 5.05 8.93 6.69

Diastolic 2.51 5.10 3.26 6.79 6.87 8.39

Static

Systolic 6.72 5.78 4.93 4.55 9.71 6.98

Diastolic 3.82 4.23 4.91 5.53 7.31 8.37

Warm stimulus and rest (BP lowering)

Systolic 5.27 6.42 4.06 4.91 9.62 7.18

Diastolic 3.97 4.23 5.00 5.54 8.31 9.75

Cold stimulus and walking (BP increasing)

Systolic 6.02 5.94 4.58 4.59 10.72 7.62

Diastolic 4.02 2.97 5.12 3.67 7.46 8.48

Rest

Systolic 6.16 5.90 4.73 4.46 8.83 6.62

Diastolic 4.04 4.01 5.12 5.28 7.5 8.69
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pressure. The algorithm was trained and validated based on the data presented in this article. It should be noted 
that an independent evaluation and validation would be required before the device can be fully incorporated 
into commercial applications.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to the 
presence of Personally Identifiable Information (PII) for the participating subjects. The data are available from 
the corresponding author on reasonable request with the understanding that additional processing is required 
to adequately deidentify the information. All authors reviewed and approved the manuscript.
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