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Abstract: Radial basis function neural networks are a widely used type of artificial neural network.
The number and centers of basis functions directly affect the accuracy and speed of radial basis func-
tion neural networks. Many studies use supervised learning algorithms to obtain these parameters,
but this leads to more parameters that need to be determined, thereby making the system more
complex. This study proposes a modified nearest neighbor-based clustering algorithm for training
radial basis function neural networks. The calculation of this clustering algorithm is not large, and it
can adapt to varying densities. Furthermore, it does not require researchers to set parameters based
on experience. Simulation proves that the clustering algorithm can effectively cluster samples and
optimize the abnormal samples. The radial basis function neural network based on modified nearest
neighbor-based clustering has higher accuracy in curve fitting than the conventional radial basis
function neural network. Finally, the path tracking control based on a radial basis function neural
network of a magnetic microrobot is investigated, and its effectiveness is verified through simulation.
The test accuracy and training accuracy of the radial basis function neural network was improved by
23.5% and 7.5%, respectively.

Keywords: radial basis function neural network (RBFNN); nearest neighbor-based clustering (MNNC);
sample optimization; path tracking

1. Introduction

Path tracking control is a commonly used motion control method for vehicles and
robots. Owing to its simple structure, easy operation and adjustment, and robustness, the
proportion integral differential (PID, as shown in Appendix A) controller is often used for
path tracking control [1,2]. However, the ability of PID in dealing with nonlinear systems
is limited. Therefore, fuzzy PID control was developed. B.B. Ghosh et al. developed a
fuzzy-PID-based controller to control the two degrees of freedom parallel manipulator.
The control system has almost no overshoot based on the fuzzy-PID [3]. J.A. Algarin-Pinto
et al. compared the fuzzy-PID with general PID for path tracking control of biomimetic
autonomous underwater vehicles. The experiment results showed that path tracking
control error with general PID was over 9%, but with fuzzy-PID was less than 2% [4]. T.A.
Mai et al. applied fuzzy PID in path-following control of a nonholonomous mobile robot.
Under the control system based on fuzzy-PID, the distance error of path-following control
could be reduced from 0.172 m to 0.041 m [5]. Nonetheless, fuzzy rules require strong prior
knowledge. Due to the time-varying dynamics, nonlinear uncertainty of the control object,
and environmental interference, it is extremely difficult to control the high-precision path
tracking for the linear state observer because it is difficult for the linear state observer to
compensate errors of the nonlinear system [6]. The previous methods are incapable of
addressing these issues. Although a sliding mode controller could control the trajectory
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tracking of a nonlinear system [7,8], it occasionally caused a large lateral acceleration in the
trajectory tracking using the sliding mode control method.

To deal with nonlinear systems, C. Liu et al. proposed a nonlinear adaptive controller
based on PID [9]. B. Smeresky et al. discussed a deterministic artificial intelligence-
instantiated method for a nonlinear system, which stems from a lineage of nonlinear
adaptive control [10]. Compared with these methods, artificial neural networks have
attracted increasing interest from researchers because they do not require complex modeling
process or powerful processing, and have adaptive capabilities in constantly changing
and noisy environments. Utilizing the learning ability of an artificial neural network
facilitates improved flexibility of controller design, particularly when the dynamics of
the controlled object are complex and highly non-linear [11]. Radial basis function neural
networks (RBFNN) have the advantages of fast learning convergence speed and strong
approximation ability; they have been used in finite-time trajectory tracking control of
n-link robotic manipulators [12], longitudinal speed tracking of autonomous vehicles [13],
trajectory tracking for a robotic helicopter [14], and tracking control of a nonholonomic
wheel-legged robot in complex environments [15]. In these cases, the control systems based
on RBFNN showed good accuracy and stability.

Before running an RBFNN, it is necessary to determine the relevant parameters, such
as the type and number of basis functions, the center and the width of the basis functions,
and the weight of each hidden layer neuron. These parameters affect not only the learning
time, but also the controller performance [16,17]. To optimize the relevant parameters
of an RBFNN, supervised learning or unsupervised learning methods can be used. In
supervised learning, other intelligent algorithms are introduced to optimize the parameters
of the RBFNN. F. Fernandez-Navarro et al. investigated performance of an RBFNN based
on support vector machines (VSM). The parameters of VSM should be defined [18]. H.C.
Huang et al. presented an evolutionary radial basis function neural network with genetic
algorithm (GA) and artificial immune system (AIS) for tracking control of autonomous
robots. Although the controller based on a GAAIS-RBFNN showed better performance
than the controller based on an individual genetic algorithm and artificial immune system,
GAAIS-RBFNN involved more variables to be decided [19]. Z.Y. Chen et al. trained the
RBFNN by particle swarm optimization and genetic algorithm. The RBFNN showed good
learning performance, but the algorithm was more complex [20]. When using unsupervised
learning to design and optimize the parameters of an RBFNN, the clustering algorithm is a
commonly used method that can speedily converge and avoid overfitting. A. Guillén et al.
developed a clustering algorithm with a possibilistic partition to get the initial center of
hidden layer neurons of an RBFNN. The algorithm showed better robustness than other
general RBFNNs [21]. S.K. Oh et al. applied a k-means clustering algorithm in setting
the center of hidden layer neurons of RBFNN; the algorithm showed good accuracy [22].
C.C. Liao et al. introduced an RBFNN-based control system for tracking the maximum
power point of a photovoltaic system. The parameters of RBFNN were determined by
the modified k-means clustering algorithm. The experiment results proved the tracking
method was effective [23].

However, most clustering algorithms need to determine some parameters in advance;
for example, k-means requires the number of clusters and initial center of cluster to cluster
the samples; density-based spatial clustering of applications with noise (DBSCAN) requires
the radius of the scan and the minimum number of samples of the cluster for clustering;
clustering by fast search and find of density peaks clustering (DPC) requires the threshold
of distance. These parameters are extremely important and affect the results of clustering
significantly, but it is necessary for users to determine and adjust the parameters based
on experience, which is difficult. Moreover, common clustering algorithms often require
iteration or a large calculation that reduces the efficiency of the clustering algorithm. To
avoid these issues, we propose a modified nearest neighbor-based clustering (MNNC)
algorithm according to the characteristics of curve fitting and path following control
datasets. Unlike other clustering algorithms, MNNC clusters the samples referring to the
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distance between the sample and its nearest neighbor. It is easy to utilize this algorithm
because it requires fewer parameters to be determined. Furthermore, MNNC improves
the approach to searching for neighbors, thus it does not require iteration and requires
less calculation which increases the efficiency of clustering. We evaluated the clustering
results using accuracy (ACC) and adjusted Rand index (ARI); the simulation results show
that ACC and ARI using MNNC are 20% and 10% higher than the common clustering
algorithms, respectively. MNNC can also detect and optimize the outlier samples, and the
simulation results show that the optimization of outlier samples can decrease the curve
fitting errors by 10–50%. MNNC was used to set the initial parameters of RBFNN that
can automatically adjust the number of hidden layer nodes according to the accuracy
requirements. In particular, we applied the proposed method to a path tracking simulation
of a spiral-type magnetic microrobot to generate a rotating magnetic field (RMF) to reach
the desired position. Consequently, the proposed method featured 20 % lower error than
conventional RBFNN.

The remainder of this study is organized as follows. Section 2 introduces the concept
of RBFNN based on MNNC for path tracking. Section 3 describes a novel clustering
algorithm that is applied in optimizing the samples in Section 4. Section 5 introduces
the control system for the path tracking of magnetic microrobot and develops MNNC to
train RBFNN for path tacking. Finally, the discussion and conclusion are presented in
Sections 6 and 7, respectively.

2. Concept of RBFNN Algorithm Based on MNNC for Path Tracking

Figure 1 illustrates the proposed RBFNN algorithm based on MNNC for path tracking.
The entire algorithm consists of three parts: MNNC, RBFNN, and path tracking. The
MNNC is used to obtain the initial parameter of RBFNN and optimize the training samples
of RBFNN. First, MNNC characterizes sample Pi by distance (di, more variables are shown
in Appendix B) between Pi and its nearest neighbor distance and classifies samples with
similar di into one class. The datasets of curve-fitting and path-following control have
obvious temporal or spatial order characteristics; when searching for the nearest neighbor,
the search range can be reduced by improving the searching direction in order to reduce
the calculation of the clustering algorithm, as shown in Figure 1a, where di is the minimal
value of di1 and di2. Thereafter, the MNNC can detect and optimize the abnormal samples,
as shown in Figure 1b. Pa is defined as an abnormal sample because Pa corresponds to the
longest distance da, and there are no similar samples around Pa. We construct a triangle by
Pa, Pa1, and Pa2, where Pa1 and Pa2 are the neighbors of Pa. Next, we obtain Pc, which is
the center of the triangle, and replace Pa by Pc to optimize the training samples of RBFNN.
MNNC can cluster datasets with different densities and shapes without specifying the
number of clusters or scanning radius in advance, as shown in Figure 1c. Each cluster
is displayed in a different color, and the cluster center is represented by blue circles. We
construct the RBFNN based on MNNC. Each cluster corresponds to a hidden layer node,
and the center of the cluster is the center of the node, as shown in Figure 1d. Thereafter, the
RBFNN based on MNNC can be used to establish the relationship between the theoretical
direction and reference direction of the magnetic microrobot’s locomotion. Therefore, if
we obtain the theoretical driving direction of each step and input the theoretical direction
into the RBFNN, the RBFNN outputs the reference direction. We can calculate the coil
currents according to the reference direction, and accordingly, the microrobot moves along
the theoretical direction driven by the magnetism generated by the coils. Finally, we can
realize path tracking of the magnetic microrobot through the proposed method shown in
Figure 1e.
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“top-down” schemes [26]. This algorithm is not particularly suitable for non-convex 
datasets, and owing to the limit on the number of each node, the clustering result may 
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Clustering in QUEst (CLIQUE) is a clustering algorithm based on the grid method. 
In this algorithm, the data space is first divided into a grid structure of finite units, and all 
processing is based on a single unit. This algorithm is highly sensitive to parameters and 
cannot handle irregularly distributed data [27]. There is no iteration required in this 
method, but it is difficult to determine the density threshold, an important parameter in 
the algorithm. Model-based methods set a model for each cluster, and subsequently detect 
a dataset that satisfies this model adequately. Such a model may be the density 
distribution function of data points in space or other. The efficiency of this algorithm also 
needs to be improved [28]. The model-based method incorporates the probability and 
statistics approach and the neural network approach. 

Density-based methods attempt to determine the high-density clusters separated by 
sparse regions. The size and shape of these clusters may be different. The most commonly 
used clustering algorithm based on density is DBSCAN. Although this algorithm does not 
necessitate knowledge of the number of classes the data is divided into in advance, 
knowledge of the radius and the minimum number of points is required [29]. 

  

Figure 1. Concept of an RBFNN algorithm based on MNNC for path tracking: (a) calculation of the distance to obtain the
nearest neighbor; (b) detection of the abnormal samples based on nearest neighbor method; (c) clustering of the samples
based on the nearest neighbor; (d) construction of the RBFNN based on MNNC; (e) obtaining the reference position by the
MNNC-based RBFNN in the path tracking system.

3. Clustering Algorithm Based on Nearest Neighbor
3.1. Typical Clustering Algorithm

A clustering algorithm is a typical unsupervised learning algorithm that is mainly
used to automatically classify similar samples into a specific category. The main clustering
methods can be divided into five methods: the partitioning method, hierarchical method,
grid-based method, model-based method, and density-based method [24]. The partition
method decomposes the data into n clusters, such that the items in each cluster are closely
related to each other, for example, K-means algorithm. The calculation procedure in
this algorithm is simple, but it is necessary to know the number of clusters of data in
advance [25].

Balanced iterative reducing and clustering using hierarchies (BIRCH) is a typical
representative of the hierarchical method that decomposes a given dataset hierarchically
until a certain condition is met. Specifically, it can be categorized into “bottom-up” and “top-
down” schemes [26]. This algorithm is not particularly suitable for non-convex datasets,
and owing to the limit on the number of each node, the clustering result may deviate from
the actual classification.

Clustering in QUEst (CLIQUE) is a clustering algorithm based on the grid method.
In this algorithm, the data space is first divided into a grid structure of finite units, and
all processing is based on a single unit. This algorithm is highly sensitive to parameters
and cannot handle irregularly distributed data [27]. There is no iteration required in this
method, but it is difficult to determine the density threshold, an important parameter in
the algorithm. Model-based methods set a model for each cluster, and subsequently detect
a dataset that satisfies this model adequately. Such a model may be the density distribution
function of data points in space or other. The efficiency of this algorithm also needs to
be improved [28]. The model-based method incorporates the probability and statistics
approach and the neural network approach.

Density-based methods attempt to determine the high-density clusters separated by
sparse regions. The size and shape of these clusters may be different. The most commonly
used clustering algorithm based on density is DBSCAN. Although this algorithm does
not necessitate knowledge of the number of classes the data is divided into in advance,
knowledge of the radius and the minimum number of points is required [29].
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3.2. Modified Nearest Neighbor-Based Clustering Algorithm for Training RBFNN

When we train the RBFNN for curve fitting and path tracking to obtain the structure
parameters, clustering the training data to determine the center and number of basis
functions of the hidden layer is an effective approach. The dataset in this case features
obvious time or space characteristics. Here, we propose a simple clustering algorithm
MNNC that clusters the samples according to the distance (di) between the sample and its
nearest neighbor, as shown in Figure 2 and Definition 1. Adjacent samples with similar di
are categorized into the same cluster, and the method of searching for the nearest neighbor
is modified. Only the distance between the sample and the preceding and the following
samples needs to be calculated according to the property of the RBFNN training dataset.
Thus, the calculation is significantly less than the other clustering algorithms, and only a
single MNNC parameter requires to be determined.
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training samples are dispersed without spatial sequence.

The basic principle of the clustering algorithm is that similar samples are placed in the
same cluster, where the similarity of two samples is described by the Euclidean distance
of the two samples. Since the sample has the characteristics of time series, the nearest
samples to sample Pi are the adjacent samples Pi−1 and Pi+1, as shown in Figure 2a. The
distances between the samples are di1 and di2, respectively, thus the nearest distance, di, of
Pi is the smaller of [di1,di2]. The calculation of this method is simpler than that of the other
clustering algorithms. Thereafter, di is divided into different levels, and the samples with
the same di level belong to the same cluster (Figure 3a).

If the samples in one cluster are not adjacent, as shown in Figure 3a (where P8 and P10
are not adjacent samples), the cluster is divided at the breakpoint (Figure 3b). Finally, the
small clusters are merged with the adjacent clusters, as shown in Figure 3c,d. The merging
criterion is that the total distance change (∆D) between all samples and the centroid should
be the least, such that the adjacent samples with the similar distance characteristic form a
cluster. The related definitions are executed in Algorithm 1 for the distance (di), distance
step (dstep), and distance changes (∆D).



Sensors 2021, 21, 8349 6 of 24Sensors 2021, 21, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 3. Clustering process of MNNC: (a) clustering result of training samples; (b) division of the cluster with discontinuous 
sample label into independent clusters; (c) Cluster 4 is merged into Cluster 2; (d) Cluster 4 is merged into Cluster 5. 

Algorithm 1. MNNC. 
Input: training samples 1 2( , , ......, )kP P P , minimum samples number (Nmin) of cluster. 
Output: clustering result 
1. for each sample Pi do 
2.  Calculate the di of Pi; // referring to Definition 1. 
3. end for 
4. for each sample Pi do  // arrange the samples into clusters referring to the distance. 
5.  if di < dmin + dstep then Pi ∈cluster1; // Definition 2 
6.    else if di < dmin + 2×dstep then Pi ∈cluster2;  
7.    else if di < dmin + 3×dstep then Pi ∈cluster3; 
8.    else Pi ∈cluster4; 
9. end if; end for 
10. for cluster(i) do // The clusters with discontinuous sample numbers are divided into 
two clusters at the discontinuity. 
11.  if the samples label of cluster(i) is not continuous then 
12.      Divide the cluster(i) into cluster(i1) and cluster(i2) whose samples label is 
continuous. 
13. end if; end for 
14. for cluster(i) do // merge the small cluster into the adjacent clusters referring to 
Definition 3. 
15.  if samples number of cluster(i) < Nmin then 
16.    if 1iD −Δ  < 1iD +Δ  then cluster(i − 1)= cluster(i − 1)+ cluster(i); 
17.    else cluster(I + 1) = cluster(I + 1) + cluster(i); 
18. end if; end for 
19. Return clusters 

Definition 1. The distance di attribute of the sample, 1 2( , , ......, )kP P P  is the dataset of path 
tracking control system that includes k  samples, and [ ]1 2, T

mP x x x⋅ ⋅⋅ ⋅ ⋅⋅  is a single 
sample of the dataset that consists of m  dimension components. The distance between
iP  and 1iP−  is 1id  that can be expressed as [17] 

Figure 3. Clustering process of MNNC: (a) clustering result of training samples; (b) division of the cluster with discontinuous
sample label into independent clusters; (c) Cluster 4 is merged into Cluster 2; (d) Cluster 4 is merged into Cluster 5.

Algorithm 1. MNNC.

Input: training samples (P1,P2, . . . . . . Pk), minimum samples number (Nmin) of cluster.
Output: clustering result
1. for each sample Pi do
2. Calculate the di of Pi; // referring to Definition 1.
3. end for
4. for each sample Pi do // arrange the samples into clusters referring to the distance.
5. if di < dmin + dstep then Pi ∈cluster1; // Definition 2
6. else if di < dmin + 2 × dstep then Pi ∈cluster2;
7. else if di < dmin + 3 × dstep then Pi ∈cluster3;
8. else Pi ∈cluster4;
9. end if; end for
10. for cluster(i) do // The clusters with discontinuous sample numbers are divided into two
clusters at the discontinuity.
11. if the samples label of cluster(i) is not continuous then
12. Divide the cluster(i) into cluster(i1) and cluster(i2) whose samples label is continuous.
13. end if; end for
14. for cluster(i) do // merge the small cluster into the adjacent clusters referring to Definition 3.
15. if samples number of cluster(i) < Nmin then
16. if ∆Di−1 < ∆Di+1 then cluster(i − 1) = cluster(i − 1) + cluster(i);
17. else cluster(I + 1) = cluster(I + 1) + cluster(i);
18. end if; end for
19. Return clusters

Definition 1. The distance di attribute of the sample, (P1, P2, . . . . . ., Pk) is the dataset of path
tracking control system that includes k samples, and P[x1, x2 · · · · · ·xm]

T is a single sample of the
dataset that consists of m dimension components. The distance between Pi and Pi−1 is di1 that can
be expressed as [17]

di1 =

√
(xi1 − xi−11)

2 + (xi2 − xi−12)
2 + . . . . . .+(xim − xi−1m)

2 (1)
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The distance between Pi and Pi+1 is di2 that can be expressed as

di2 =

√
(xi1 − xi+11)

2 + (xi2 − xi+12)
2 + . . . . . .+(xim − xi+1m)

2 (2)

The minimal distance di among (di1, di2) is expressed as

di = min(di1, di2) (3)

Definition 2. Distance step (dstep) (d1, d2, . . . . . ., dk) is the distance of the sample (P1, P2, . . . . . ., Pk).

dmax = max(d1, d2, . . . . . ., dk) (4)

dmin = min(d1, d2, . . . . . ., dk) (5)

The distance step is calculated as follows, where H is the number of di level determined by
the user.

dstep =
dmax − dmin

H
(6)

Definition 3. Distance change (∆D)
The total distance of Cluster 2 and Cluster 5 (Figure 3b) is calculated before the merge operation.

D2 = ∑Quan2
i=1 ‖Pi − C2‖

2
(7)

D5 = ∑Quan5
i=1 ‖Pi − C5‖

2
(8)

where Quan2 and Quan5 are the quantity of samples in Cluster 2 and Cluster 5, respectively, and
C2 and C5 are the centers of Cluster 2 and Cluster 5 as shown in Figure 3b, respectively; the center
of Cluster 2 can be determined using Equation (9), and we can obtain the centers of the other clusters
similarly.

C2m =
x1m + x2m + . . . . . .+xUm

U
(9)

where C2m is the component m of the center of Cluster 2, and x1m is the component m of sample 1
of Cluster 2. The total distances of Cluster 2 and Cluster 5 are calculated after the merge operation.
If Cluster 4 is merged into Cluster 2, the center of Cluster 2 becomes C2′ , as shown in Figure 3c.

D′2 = ∑U′

i=1 ‖Pi − C′2‖
2

(10)

If Cluster 4 is merged into Cluster 5, the center of Cluster 5 becomes C5′ , as shown in
Figure 3d.

D′5 = ∑V′

i=1 ‖Pi − C′5‖
2

(11)

Therefore, the distance change (∆D) is

∆D2 =
∣∣D′2 − D2

∣∣ (12)

∆D5 =
∣∣D′5 − D5

∣∣ (13)

Figure 4 shows the results of Algorithm 1 for clustering. To test the algorithm, we
selected 101 points from the curve y = 1.1(1− x + 2x2)e−x2/2 and combined them with
random noise. We set the number of distance level H = 4, and tests were conducted twice
with different datasets. Under these conditions, Algorithm 1 automatically generated
seven and five clusters according to the distance properties (di, dstep, and ∆D), implying
that MNNC is adaptive to the different density and can tune the number of clusters
automatically. Merging clusters with a small number of samples (the number is not limited
to 1) into other clusters can reduce the number of clusters. In this manner, when the
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clustering algorithm is applied along with other intelligent algorithms, the speed of the
intelligent algorithm can be improved.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 27 
 

 

5 5 5'D D DΔ = −  (13)

Figure 4 shows the results of Algorithm_1 for clustering. To test the algorithm, we 

selected 101 points from the curve 
22 /21.1(1 2 ) xy x x e−= − +  and combined them with 

random noise. We set the number of distance level H = 4, and tests were conducted twice 
with different datasets. Under these conditions, Algorithm 1 automatically generated 
seven and five clusters according to the distance properties (di, dstep, and DΔ ), implying 
that MNNC is adaptive to the different density and can tune the number of clusters 
automatically. Merging clusters with a small number of samples (the number is not 
limited to 1) into other clusters can reduce the number of clusters. In this manner, when 
the clustering algorithm is applied along with other intelligent algorithms, the speed of 
the intelligent algorithm can be improved. 

 
Figure 4. Clustering results: (a) the training samples are divided into seven clusters; (b) 
the training samples are divided into five clusters. 

3.3. Enhancement of MNNC Performance 
The clustering algorithm can use the samples with a time sequence or spatial 

sequence, as shown in Figure 2a; the nearest neighbor of sample Pi is either Pi-1 or Pi+1. This 
clustering algorithm is suitable for curve fitting and path tracking control. Furthermore, 
the samples are randomly distributed without the time and spatial sequences, as shown 
in Figure 2b. In this case, the nearest neighbor of Pi may be in any direction, and we need 
to calculate the distances from Pi to its neighbors for determining id . The detailed 
calculation is shown in Definition 4. After we obtain the distances 1 2( , , ......, )kd d d , that is, 
the id  of the samples, we set max 1 2min( , , ......, )kd d d d= . Thereafter, the sample Pm is 
determined, whose distance to Pi is less than maxd . These samples and Pi form a neighbor 
cluster of Pi. Similarly, the neighbor clusters of the other samples can be established. If the 
sample Pmax owns the distance attribute of dmax, and its neighbor cluster contains only two 
samples, we define Pmax as an abnormal sample and delete this sample. Next, we set the 
updated maximum distance, and subsequently establish the neighbor cluster of each 
sample again. If there are several neighbor clusters containing the same samples, then 
these neighbor clusters merge into one cluster. The execution process proceeds based on 
Algorithm 2. 

Definition 4. Distance attribute of the sample ( id ): To reduce the calculation, the samples 
are sorted by x and y, respectively. Px1 and Px2 are the preceding and following samples 
relative to sample Pi, sorted by x. Py1 and Py2 are the preceding and following samples 
relative to sample Pi sorted by y. dx1, dx2, dy1, and dγ2 are the distances between Pi and Px1, 
Px2, Py1, and Py2, respectively.  

( ) ( )2 2
1 1 1x x i x id x x y y= − + −  (14)
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samples are divided into five clusters.

3.3. Enhancement of MNNC Performance

The clustering algorithm can use the samples with a time sequence or spatial sequence,
as shown in Figure 2a; the nearest neighbor of sample Pi is either Pi−1 or Pi+1. This
clustering algorithm is suitable for curve fitting and path tracking control. Furthermore,
the samples are randomly distributed without the time and spatial sequences, as shown in
Figure 2b. In this case, the nearest neighbor of Pi may be in any direction, and we need to
calculate the distances from Pi to its neighbors for determining di. The detailed calculation
is shown in Definition 4. After we obtain the distances (d1, d2, . . . . . ., dk), that is, the di of
the samples, we set dmax = min(d1, d2, . . . . . ., dk). Thereafter, the sample Pm is determined,
whose distance to Pi is less than dmax. These samples and Pi form a neighbor cluster of Pi.
Similarly, the neighbor clusters of the other samples can be established. If the sample Pmax
owns the distance attribute of dmax, and its neighbor cluster contains only two samples,
we define Pmax as an abnormal sample and delete this sample. Next, we set the updated
maximum distance, and subsequently establish the neighbor cluster of each sample again.
If there are several neighbor clusters containing the same samples, then these neighbor
clusters merge into one cluster. The execution process proceeds based on Algorithm 2.

Definition 4. Distance attribute of the sample (di): To reduce the calculation, the samples are sorted
by x and y, respectively. Px1 and Px2 are the preceding and following samples relative to sample Pi,
sorted by x. Py1 and Py2 are the preceding and following samples relative to sample Pi sorted by y.
dx1, dx2, dy1, and dγ2 are the distances between Pi and Px1, Px2, Py1, and Py2, respectively.

dx1 =

√
(xx1 − xi)

2 + (yx1 − yi)
2 (14)

dx2 =

√
(xx2 − xi)

2 + (yx2 − yi)
2 (15)

dy1 =
√(

xy1 − xi
)2

+
(
yy1 − yi

)2 (16)

dy2 =
√(

xy2 − xi
)2

+
(
yy2 − yi

)2 (17)

di0 can be expressed as
di0 = min(dx1, dx2, dy1, dy2) (18)

The sample Pj; xj and yj of Pj satisfy∣∣xj − xi
∣∣ ≤ di0 (19)∣∣yj − yi
∣∣ ≤ di0 (20)
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The distance between Pj and Pi: can be calculated using

dj =
√(

xj − xi
)2

+
(
yj − yi

)2 (21)

Finally, the distance attribute of Pi is

di = min(d1, d2, . . . . . ., dj) (22)

Algorithm 2. MNNC for the path tracking of magnetic microrobot.

Input: training samples (P1,P2, . . . . . . Pk).
Output: clustering result.
1. for each sample Pi do
2. Calculate the di of Pi; // referring to Definition 4.
3. end for
4. dmax = max(d1,d2, . . . . . . dk); dmin = min(d1,d2, . . . . . . dk);
5. dstep = (dmax + dmin)/H; //H is distance level number that is determined by user.
6. for each distance level;
7. for each sample Pi do // find the nearest neighbors of Pi and establish the neighbor clusers.
8. Find the smaple Pm which ‖Pm−Pi‖ ≤ dmin + H × dstep;
9. Construct cluster(i) = (Pi, Pm);
10. end for
11. for each cluster(i) do // if clusters contain same sample, then merge these clusters into one
cluster.
12. If cluster(i) ∩ cluster(j) 6= Ø then cluster(i) = cluster(i) + cluster(j);
13. end if; end for
14. end for
15. merge the small cluster into nearest cluster
16. Return clusters

It can be observed from the previous steps that MNNC for path tracking does not
require us to pre-select important parameters based on experience. Because there is no
iterative process, the calculation is not large in the algorithm. Furthermore, this clustering
algorithm is also suitable for multi-dimensional samples. To verify the effectiveness of
the clustering algorithm, we used MNNC, K-means, and DBSCAN to perform clustering
analysis on the same samples, as shown in Figure 5.

We generated three synthetic datasets called Data 1 (Figure 5a), Data 2 (Figure 5b), and
Data 3 (Figure 5c) containing 600, 1001, and 1650 samples, respectively. Data 1 consists of
three clusters that are marked with ‘blue +’, ‘red +’, and ‘black +’, respectively. Data 2 also
consists of three clusters that are marked with ‘blue +’, ‘red +’, and ‘black +’, respectively.
Data3 consists of four clusters that are marked with ‘blue +’, ‘red +’, ‘black +’, and ‘green +’,
respectively.

Figure 5d–f are the clustering results of Data 1, Data 2, and Data 3 obtained by k-means,
respectively. Prior to the cluster analysis of Data 1, Data 2, and Data 3 by k-means, we set
the parameter K to 3, 3, and 4, respectively, but the clustering results still remain incorrect.

Data 1 was divided into three clusters that were marked with ‘blue +’, ‘green +’, and
‘red +’, as shown in Figure 5d. As the reference result in Figure 5a shows, the samples of
every cluster form a spiral. However, the cluster formations were changed when Data 1
was clustered by k-means. The changed cluster formed around each center of the clusters
(C1, C2, and C3); blue cluster is the area around C1, green cluster is the area around C2, the
red cluster is the area around C3. This is because of the principle of k-means that clusters
the dataset based on the distance between samples and cluster centers. For example, we
assume that C1, C2, and C3 are the centers of blue, green, and red clusters, respectively.
Pn is any sample of the blue cluster, as shown in Figure 5d. For the sample Pn, C1 is the
nearest cluster center among C1, C2, and C3. Therefore, sample Pn becomes one of the
samples of the blue cluster. Similar results are shown in Figure 5e. The cluster marked with
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‘red +’ consists of some samples indicated by circles and some samples indicated by “N”
because C3 is the nearest cluster center for these samples. The k-means algorithm divides
the samples in “N” into three different clusters that are marked with ‘blue +’, ‘green +’,
and ‘red +’, respectively. However, in the reference result (Figure 5b), the samples in “N”
form a single cluster (red +), and the samples in one circle form a single cluster as well.
In Figure 5f, Data 3 is divided into four clusters by k-means algorithm, but the green
cluster contains samples into two arcs because C2 becomes the nearest cluster center for
the samples in this case. The blue cluster includes the samples of a circle and two arcs, and
the samples in “I” are divided into two clusters. However, the reference result (Figure 5b)
shows that the samples in one arc should form a single cluster, and the samples in circle
and “I” should also form a single cluster, respectively. According to Figure 5d–f we can
conclude that k-means was unsuccessful in clustering Data 1, Data 2, and Data 3.
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During the simulation, we set R (scanning radius) of DBSCAN equal to the maximum
distance (dmax) of MNNC, and set the same Mp (minimal points number) for Data 1, Data 2,
and Data 3. The clustering results of Data 1, Data 2, and Data 3 by DBSCAN are shown in
Figure 5g–i respectively. As shown in Figure 5g, DBSCAN divided Data 1 into three clusters
precisely, as shown in Figure 5g; it placed the samples of one spiral in an independent
cluster. DBSCAN generated three clusters for Data 2, as shown in Figure 5h; the three
clusters were marked with ‘blue +’, ‘green +’, and ‘red +’, respectively. However, as shown
in Figure 5i DBSCAN divided the samples in “I” into two clusters that were marked with
‘pink +’, and ‘black +’. The clustering result of Data 3 by DBSCAN is not equivalent to
the reference result for Data 3 that shows that the samples in “I” belong to a single cluster.
This is because DBSCAN not only depends on the parameter R, but also on the parameter
Mp. However, at this time, Mp is not suitable for Data 3 anymore, implying that we should
define two correct parameters of DBSCAN for different cases based on experience.

Figure 5j–l are the clustering results of Data 1, Data 2, and Data 3 usingMNNC,
respectively. Figure 5j,k show that MNNC generated equivalent clusters for Data 1 and
Data 2. MNNC divided the samples of Data 1 and Data 2 into three clusters that were
marked with ‘blue +’, ‘green +’, and ‘red +’, respectively. MNNC almost clustered Data 3
correctly, except it regarded one sample in “I” as an abnormal sample (marked with
“black ×”), as shown in Figure 5l. This is because the sample, marked with “black ×”,
features the largest di, and there are no similar samples around it.

Therefore, we can conclude that MNNC features the best clustering function for these
datasets. Simultaneously, MNNC does not require users to decide the parameters, whereas
both DBSCAN and k-mean require users to define two parameters. To clearly describe the
clustering results, we used ACC and ARI to evaluate the clustering results [30]. The results
are shown in Table 1.

As shown in Table 1, the ACC and ARI of three datasets of k-means clustering are
much smaller than those of DBSCAN and MNNC, implying that the clustering results by
k-means are lower than those obtained by DBSCAN and MNNC. The ACC and ARI of
the spiral and zigzag of DBSCAN and MNNC are all 1, indicating that both DBSCAN and
MNNC cluster those two datasets precisely. The ACC index of C4 of DBSCAN and MNNC
are 0.8558 and 0.9994, respectively. The ARI index of C4 by DBSCAN and MNNC are
0.9019 and 0.9994, respectively. Both indexes of DBSCAN are smaller than those of MNNC
which implies that the clustering results of MNNC are better than those of DBSCAN. The
result of clustering index is similar to the clustering result, as shown in Figure 5.

Table 1. Clustering index of the clustering results.

Clustering
Algorithm

Performance
Index

Dataset

Data 1 Data 2 Data 3

K-means
ACC 0.3333 0.6683 0.4891
ARI 0.0233 0.3121 0.3010

DBSCAN
ACC 1 1 0.8558
ARI 1 1 0.9019

MNNC
ACC 1 1 0.9994
ARI 1 1 0.9994

4. Adjustment of Training Samples Based on MNNC

The abnormal samples can be optimized by unsupervised methods before the in-
telligent algorithm parameters are defined. Therefore, the unsupervised methods can
significantly improve the predictive ability of intelligent algorithm models [31]. Abnormal
training samples always affect the operating efficiency of neural networks [32]; it is neces-
sary to detect the abnormal samples and treat them. Training samples for the path tracking
system with abnormal samples are shown in Figure 6a. The abnormal samples are marked
as stars that reduce the learning effect of the algorithm for path tacking such as RBFNN.
We can detect the abnormal samples by MNNC that requires fewer parameters than the
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other algorithms. After defining the abnormal samples, we can delete them directly, but it
is not particularly effective for curve fitting or path tracking control.
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Particularly, when the number of training samples is not large, insufficient training
samples also reduce the accuracy of RBFNN. It is effective to adjust the abnormal samples to
normal samples. The process of detecting and adjusting abnormal samples is performed by
MNNC. First, the training samples are clustered by MNNC. There are some independent
samples because they are far away from the neighbors, such as P1 and P2 that are the
abnormal and normal samples, respectively. We should distinguish between P1 and P2.
Therefore, a triangle is formed by the samples of P1, Pf , and Pb. The samples Pf and Pb
are neighbors of P1, as shown in Figure 6a. Thereafter, we calculate the distance from the
center of the triangle (Pc) to P1, Pf , and Pb, respectively. On one hand, if the distance (dc_1)
between Pc and P1 is not larger than that of Pf and Pb, we define P1 as a normal sample.
On the other hand, when the dc_1 is larger than that of Pf and Pb, the sample P1 becomes
the abnormal sample and moves to Pc.

We tested the effect of training sample adjustment. The training samples were obtained
from different curves that were combined with random noise or some specific noise. The
results are shown in Figure 6b and summarized in Table 2. From Figure 6b and Table 2,
we can observe that the fitting errors of the 2D curve mixed with random noise are 3.0793
when the abnormal samples are not adjusted; but the fitting errors of the same dataset are
only 2.8145 after the abnormal samples are adjusted. Furthermore, the fitting errors of
the 2D curve mixed with six noise points without and with abnormal sample adjustment
are 2.7281 and 1.3292, respectively. The modified effect of the 3D curve is not comparable
to that of the 2D curve; the fitting errors decrease from 516.6542 to 485.3374. Therefore,
we can conclude that the adjustment of abnormal samples can improve the curve fitting
accuracy. Particularly, the accuracy is improved by approximately 50% when there are
only six abnormal samples. Because these six abnormal samples deviate far from the
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normal samples, these six samples change considerably after they are adjusted to normal
samples. Therefore, the accuracy of the entire curve fitting is significantly improved. All
the simulations were performed in Matlab.

Table 2. Errors of curve fitting with/without the adjustment of abnormal samples.

Curve Type 2D Curve 3D Curve

Noise style Randomly distributed Six points with noise Randomly distributed
Errors without

adjustment 3.0793 2.7281 516.6542

Errors with
adjustment 2.8145 1.3292 485.3374

5. Application of RBFNN in Path Tracking for a Spiral-Type Magnetic Microrobot

Figure 7a shows the control method of a spiral-type magnetic microrobot using
rotating magnetic field (RMF) control. The robot is synchronized by the applied RMF and
driven by magnetic torque. A rotation of the robot generates propulsive force via the screw
mechanism. The driving magnetic torque Tm can be expressed as follows [33]:

Tm = VM× B (23)

where V is the volume of microrobot, M is the magnetization, and B is the external magnetic
flux density. The magnetized direction of the robot is the radial direction. The external
magnetic field is a uniform RMF and is generated by a three-axis Helmholtz coil. We
assume that a magnetic field B generated by 3D Helmholtz coils rotates in plane P. Thus,
the normal vector (nB) of plane P represents the movement direction of the robot. In
addition, because the control angles of γ and α determine the position of plane P, the
control of two angles determines the steering of the robot. The normal vector nB and
magnetic field B can be described as follows:

nB = [sin(γ) cos(α), sin(γ) sin(α), cos(γ)]T (24)

B =

 Bx
By
Bz

 = B0

 cos(γ) cos(α) sin(ωt) + sin(α) cos(ωt)
cos(γ) sin(α) sin(ωt)− cos(α) cos(ωt)

− sin(γ) sin(ωt)

 (25)

where B0 is the norm of B; γ is the polar angle, and α is the azimuthal angle.
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Figure 7. (a) Magnetic field vector; (b) scheme of path tracking: the green arrow is the guidance direction, the red arrow
is the desired direction, the yellow arrow is the predicted direction, the blue arrow is the control direction, and the black
arrow is the actual directions.
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We assume that there are control errors resulting from various environmental factors.
When we plan to drive the robot from the present position Po to the reference target
position Pre f 1 along the reference direction dre f 1, the robot may arrive at the actual position
Pact because of locomotion error between the actual and reference positions. Therefore,
when we drive the robot to move along the control direction dact1 to compensate for the
locomotion error, the robot may reach the position Pre f 1, as shown in Figure 7b. If there is
no error between the actual and reference positions, the control direction dc1 is matched to
the reference direction dre f 1 by training RBFNN. Next, when the robot arrives the position
Pre f 1, we can obtain the next reference target position Pre f 2 and the reference direction
dre f 2. Because the locomotion error is different in each locomotion step, we can obtain the
corresponding compensation by driving the robot along the control direction. Therefore,
driving the robot to move along the control direction dci, the robot can reach each reference
position Pr along the reference path. To decide the steering direction of the robot along the
reference direction, the two angles of γre f and αre f are input to the RBFNN, and we obtain
the actual control angles of γcont and αcont by RBFNN for the controlling plane of RMF. To
achieve this aim, it is necessary to develop a locomotion control system for the robot that is a
nonlinear system. For nonlinear locomotion control systems, some researchers use RBFNN
to simulate dynamic models [34,35]. However, the large number of parameters of these
methods make the control system highly complicated. The neural network controller is a
nonlinear mapping system; it has been proved that any smooth function can be represented
by a three-layer neural network with sufficient hidden neurons [36]. Finally, RBFNN can be
used to establish the relationship between the reference (γre f and αre f ) and control angles
(γcont and αcont) after it is trained.

Generally, RBFNN includes three layers: input, hidden, and output layers, as shown
in Figure 8a. In this study, we used MNNC to train the RBFNN to develop its structure.
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The input layer of RBFNN includes two neurons: reference angle γre f and αre f . The
number of neuron and center of hidden layer are determined by MNNC after the RBFNN
is trained. Accordingly, the output of the hidden layer can be obtained as

Qn = e

−‖(γre f ,αre f )−cn‖2

2σ2


(26)

where cn is the center of hidden layer neurons that is decided by the MNNC. σ is the width
of basis function that can be expressed as [37].

σ =
dc√
2n

(27)
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where dc is the maximum distance among the neuron centers of hidden layer; n is the
quantity of neuron units of the hidden layer, and both of them can be obtained by MNNC.

The output layer includes two neurons: control angles of γcont and αcont. They can be
obtained by RBFNN according to{

γcont = ∑n
i=1 Qiwiγ

αcont = ∑n
i=1 Qiwiα

(28)

where wiγ and wiα is the weight of γcont and αcont, respectively, that can be obtained by
training the RBFNN based on the training samples.

Thus, when we input the reference angle into RBFNN, we can obtain the control angle
from the output layer. Next, we calculate the driving current to generate RMF, as shown in
Figure 8b. Using Equations (24) and (25), we obtain the driving magnetic field B that is
the uniform magnetic field generated in the Helmholtz coils; the relationship between the
magnetic field and coil current can be expressed as follows [33]:

B = µ0NKB I (29)

where µ0 is the permeability of vacuum, N is number of turns of coil, KB is the magnetic
field coefficient of Helmholtz coil, and I is the coil current.

To verify the ability of the proposed method for path tracking, we performed simula-
tion using RBFNN with MNNC for path tracking. We generated 600 training samples to
train the RBFNN to compare the performance of the clustering using MNNC, DBSCAN,
and k-means applied to the path tracking simulation, as shown in Figure 9. The 600 samples
were composed of 59 clusters for comparison under the same conditions. Thus, we could
determine the neuron number and center of the hidden layer of the RBFNN, and obtain
the width of each basis function of the RBFNN hidden layer.

Although the suitable k and accuracy of k-means are set, there are still some problems
in the clustering result obtained by k-means algorithm. For example, there are many
clusters (marked with circles) included for only one sample, as shown in Figure 9a. These
clusters are closely spaced and could be merged into a large cluster. Although we adjusted
the scanning radius and minimal sample number of DBSCAN for a long time, the clustering
result was still not satisfactory. For example, there is a sample (marked with a red circle)
far away from another sample in Cluster 1 that should be categorized as a neighboring
cluster, as shown in Figure 9b. There are also samples far away from the other samples in
Cluster 2 and Cluster 3, as shown in Figure 9b. Nonetheless, the similar data were placed
in the same cluster by MNNC, as shown in Figure 9c.

As described above, after the training data were clustered, the neuron number was set
as the cluster number of training data, and the cluster center was set as the neuron center
of the hidden layer. We calculated and adjusted the width of basis function and weights
between the hidden layer neurons and output layer neurons while training the RBFNN.
Hence, the relationship between reference direction and control direction are established
by RBFNN.

After the relationship between the control and reference angles are established, if we
place any reference angle into RBFNN, we can obtain the corresponding control angle. To
obtain the reference angle, we should obtain the reference target position first. We selected
30 points as the target points Pt(xt, yt, zt) in the reference path of the robot, and the path
equation can be expressed as follows:

x = 4 cos(t)
y = 4 sin(t)

z = 3t/π
(30)
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γre f = arc cos

 zt − zi√
(xt − xi)

2 + (yt − yi)
2 + (zt − zi)

2

 (31)

αre f = arc cos

 xt − xi√
(xt − xi)

2 + (yt − yi)
2

 (32)Sensors 2021, 21, x FOR PEER REVIEW 17 of 27 
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These reference angles were mixed with the input data of training samples, and
subsequently, they were combined with the compensation angle (αcomp,γcomp) to obtain
the control directions dcont with the components of αcont and γcont, as shown in Figure 7b.
Upon inputting γre f and αre f to RBFNN, the control angles were obtained. Nonetheless,
because of the fitting error of RBFNN, there was some deviation between the output data
and control directions. The output of RBFNN at this time acts as the guidance direction
dguid that includes the components of αguid and γguid, as shown in Figure 7b. αguid and
γguid can be obtained from RBFNN according to

γguid =
n

∑
i=1

e

−‖(αre f ,γre f )−ci‖2

2σi
2


w

iγ

(33)

αguid =
n

∑
i=1

e

−‖(αre f ,γre f )−ci‖2

2σi
2


w

iα

(34)

where n, ci, σi, wiγ, and wiα are the neuron number of the hidden layer, the neuron center
of the hidden layer, the width of the basis function of the hidden layer, the weight of γguid,
and the weight of αguid, respectively. The parameters can be obtained after training RBFNN.
When the reference angles of γre f and αre f are input to RBFNN, the control angles γcont and
αcont are obtained for the path tracking of the spiral-type magnetic microrobot. Comparing
the guidance and control directions, the test errors of radial basis function neural network,
representing its accuracy, can be obtained. We trained and tested the RBFNN based on
k-means, DBSCAN, and MNNC, respectively. These tests were based on the same learning
rate, iteration number, the momentum factor, training samples, and test samples. The
iteration number, learning rate, and momentum factor of the training process are 5000, 0.09,
and 0.03, respectively. The results are shown in Table 3.

Table 3. Test results of RBFNN based on different clustering algorithms.

Algorithm Cluster Number Training Error Test Error

K-means 59 2.27◦ 2.89◦

DBSCAN 59 2.22◦ 2.24◦

MNNC 59 2.10◦ 2.21◦

As can be observed from Table 3, the cluster numbers of all clustering algorithms are
59, and the training parameters are the same, but the training and test errors are different.
The training errors of radial basis function neural network based on k-means, DBSCAN,
and MNNC are 2.27◦, 2.22◦, and 2.10◦, respectively, and the test errors of the radial basis
function neural networks based on k-means, DBSCAN, and MNNC are 2.89◦, 2.24◦, and
2.21◦, respectively. Therefore, the radial basis function neural network based on MNNC
provides the best test result. Accordingly, we can conclude that MNNC is the best algorithm
for training the RBFNN for establishing the relationship between the control angle and the
reference angle.

Based on the guidance direction angles, the coil current can be obtained from the
calculator of the control system, as shown in Figure 8b. We selected seven positions of the
test samples evenly, the coil current equations of which are shown in Table 4.

After current is input into the coils, the coils generate the magnetic field Bx, By, and Bz.
These magnetic fields are combined into a rotating magnetic field that drive the spring-type
robot to the predicted target Ppre along the predicted direction dpre, as shown in Figure 7b.
Here, we calculate the predicted angles αpre and γpre based on{

αpre = αguid − αcomp
γpre = γguid − γcomp

(35)
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where αcomp and γcomp are the compensation angles that are generated during the sample
generation process.

Table 4. Coil current equation corresponding to Figure 10b–h.

Position Ix(A) Iy(A) Iz(A)

b Ix = 0.999 sin(360t + 90.69◦) Iy = 0.238 sin(360t + 12.72◦) Iz = −0.973 sin(360t)
c Ix = 0.909 sin(360t + 95.96◦) Iy = 0.471 sin(360t + 64.89◦) Iz = −0.975 sin(360t)
d Ix = 0.592 sin(360t + 109.57) Iy = 0.84 sin(360t + 80.86◦) Iz = −0.971 sin(360t)
e Ix = 0.234 sin(360t + 160.18◦) Iy = 0.997 sin(360t + 89◦) Iz = −0.975 sin(360t)
f Ix = 0.481 sin(360t + 245.64◦) Iy = 0.904 sin(360t + 96.15◦) Iz = −0.975 sin(360t)
g Ix = 0.838 sin(360t + 261.24◦) Iy = 0.592 sin(360t + 108.55◦) Iz = −0.974 sin(360t)
h Ix = 0.997 sin(360t + 268.84◦) Iy = 0.272 sin(360t + 163.4◦) Iz = −0.965 sin(360t)

t is time (s).

We can obtain the angle error ratio of α and γ using erralpha =
αpre−αre f

αre f
× 100%

errgamma =
γpre−γre f

γre f
× 100%

(36)

The coordinate of the predicted target Ppre can be obtained from
xpre = ‖Pre f − P0‖ sin(γpre) cos(αpre)
ypre = ‖Pre f − P0‖ sin(γpre) sin(αpre)

zpre = ‖Pre f − P0‖ cos(γpre)
(37)

Accordingly, the position error is calculated based on

errposition =
‖Ppre − Pre f ‖
‖Pre f − P0‖

× 100% (38)

The simulation result of seven positions are shown in Table 5 and Figure 10.
Because the control angles determine the steering direction, the two control angles

automatically generate three current signals to produce an RMF and determine the position
of the plane of RMF, as shown in Figure 10. Figure 10a shows the reference path and
the simulation result of the path tracking on the reference path using RBFNN along with
MNNC. Figure 10b–h shows the seven positions of the robot and their control conditions
according to the changes in the control angles. There are the coordinates of position,
reference path (green curve), plane of RMF (blue circle plan), movement direction (red
arrow), or the direction of the normal vector of the plane of the rotating magnetic field, the
control angles, and the generated currents in one cycle of the three-axis Helmholtz coils. At
the seven positions on the path, the generated current signals for the RMFs are summarized
in Table 4. We assumed that the frequency of RMF was 1 Hz and the coefficients µ0NKB of
the coil were normalized as 1. In addition, the robot has a right-handed screw mechanism,
and the rotating direction of the magnetic field is clockwise. In this case, the direction of
normal vector becomes the movement direction of the robot, and the control angles become
the steering direction of the robot.
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Figure 10. Path tracking of magnetic microrobot by RBFNN: (a) simulation results of path tracking by MNNC-based RBFNN;
(b–h) show the rotating plan of the magnetic field and the movement direction at different positions of the path, and the coil
current of X, Y, and Z-axis in one cycle; the rotating frequency of magnetic field is 1 Hz. For improved visualization of the
parameters, the view angle for each figure is different.

Table 5. Path tracking error ratio of position b–h.

Position
Reference
Angle (◦) Predicted Angle (◦) Angle Error Ratio (%) Reference

Coordinate (mm)
Predicted

Coordinate (mm)
Position Error

Ratio (%)
αref γref αpre γpre γ α

b 93 76.57 93 76.57 (4, 0, 0) (4, 0, 0) 0
c 117 76.57 115.78 75.79 1.04% 1.02% (3.46, 2.0, 0.5) (3.47, 2.00, 0.51) 2.48%
d 147 76.57 144.40 79.89 1.77% 4.34% (2.0, 3.46, 1.0) (2.01, 3.48, 0.98) 7.31%
e 177 76.57 172.34 77.90 2.63% 1.74% (0, 4.0, 1.5) (−0.00, 4.03, 1.49) 8.26%
f 207 76.56 208.69 76.30 0.81% 0.35% (−2.0, 3.46, 2.0) (−1.99, 3.45, 2.00) 2.90%
g 237 76.57 237.56 76.97 0.24% 0.53% (−3.46, 2.0, 2.5) (−3.46, 1.99, 2.49) 1.19%
h 267 76.56 269.61 76.39 0.98% 0.23% (−4, 0, 3) (−3.98, 0.01, 3.01) 4.44%

When the starting position of the robot was at point (4,0,0), the driving angles
(γre f and αre f ) and guidance angles (γguid and αguid) were calculated as γre f = 76.57◦,
αre f = 93◦, γguid = 73.71◦, and αguid = 95.61◦, respectively, as shown in Figure 10b.
Under the conditions, the three generated currents are Ix = 0.999 sin(360t + 90.69◦),
Iy = 0.238 sin(360t + 12.72◦), and Iz = −0.973 sin(360t), respectively. When the guid-
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ance angles of γguid and αguid are 77.22◦ and 115.27◦, the robot reaches Position c, as
shown in Figure 10c. Moving from Position b to c, we can confirm that the current
profiles are changed by the variation of the guidance angles (steering angles). αguid
allows the RMF plane to rotate around the Z-axis and the changes in the γguid cause the
RMF plane to rotate around X-axis or Y-axis or both (Figure 7a). Therefore, when there
is no angular change in the moving path of the robot, the generated current profiles
are constant, while the current profiles are changed when there is an angular change
in the moving path. Through the phase difference and amplitude of the currents, the
movement direction of the robot is determined.

In Figure 10c, the present position of the microrobot is (3.47, 2.00, 0.51). The guidance
angle γguid and αguid are 77.22◦ and 115.27◦, respectively, that were obtained by RBFNN.
The control system calculated the corresponding coils current along the x-axis, y-axis, and
z-axis indicated by the blue, red, and green curves, respectively, as shown in Figure 10c.
The amplitudes of Ix, Iy, and Iz are 0.909, 0.471, and 0.975, respectively, as shown in Table 4.
From Table 4, we can observe that the phase of Ix, Iy, and Iz are 95.96◦, 64.89◦, and 0,
respectively. Comparing Figure 10b,c the current in the z-axis coils of these two cases are
similar because the angle γguid changes negligibly. However, there are large changes in the
curve corresponding to the current in the x-axis and y-axis coils because the angle αguid
changes significantly; therefore, we can obtain the results using Equations (24) and (25).
The similar control process was implemented for the other positions, and the corresponding
results are shown in Figure 10c–g and Table 5. The error ratios of path tracking are shown
in Table 5. When the microrobot is at Position c, the reference target position and actual
position coordinates are (3.5, 2.0, 0.5) and (3.47, 2.00, 0.51), respectively. We calculated the
reference distance from the starting position to the reference target position for each step,
and calculated the deviation between reference target and predicted position. Accordingly,
the path tracking error ratios at Positions c, d, e, f, g, and h, are obtained as shown in
Table 5. Because Position b is the initial position of the entire path tracking, there is no error
at this time. The error ratios are primarily less than 5%. Finally, the microrobot realized the
locomotion along the reference path as shown in Figure 10h. The standard deviation of
position is 0.0145 mm. According to the result, we can conclude that the control system
based on RBFNN can provide the control direction of each position. Subsequently, the
corresponding coil currents can be calculated to generate the rotating magnetic field for
driving the robot to move along the reference direction.

In the actual experiment, it is necessary to obtain some training samples for RBFNN
learning, to establish the relationship between the reference angle and control angle. First,
we can obtain the present position P0 of robot. We set the control direction with angle γcont
and αcont, and calculate the currents of the Helmholtz coils. Thereafter, the Helmholtz coils
generate the rotating magnetic field and drive the spring-type robot to the position Pre f . The
simulation result for this case shows that if we want to drive the robot from P0 to Pre f , we can
set the control angle γcont and αcont to generate a rotating magnetic field for the movement
of the robot. The direction from P0 to Pre f is the reference direction. We can calculate the
angle γre f and αre f of the direction from P0 to Pre f using Equations (31) and (32). Thus, a
training sample with components of γre f ,αre f , γcont, and αcont is obtained. In this manner,
we can obtain many training samples and train the RBFNN.

After the RBFNN is trained, we can apply the control system based on RBFNN to path
tracking control. We can obtain the reference target position and present position of each
step, and subsequently calculate the reference angle γre f and αre f to provide as input to
the RBFNN. RBFNN outputs the control angle γcont and αcont. Next, the control system
can derive the current of Helmholtz coils, and subsequently generate the RMF to drive the
robot to the reference target position.

6. Discussion

Clustering algorithms can classify similar samples into the same cluster, but the
conventional clustering algorithms often require the determination of several important pa-
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rameters based on experience in advance, thus leading to inconvenience. Moreover, when
conventional clustering algorithms are applied in some specific situations, the clustering
algorithms can be improved to increase efficiency and accuracy. MNNC determines the
samples with the highest similarity based on the determination of the nearest neighbors.
Because the data of curve fitting and path following control have the characteristics of
obvious time or spatial sequence, the performance of the MNNC is considerably improved
for this type of data. MNNC reduces the range of determining the nearest neighbor that
reduces the computation cost, thereby requiring few parameters to be set. Furthermore,
it can adaptively adjust the number of clusters. Moreover, MNNC can determine the
abnormal samples in the dataset and adjust them. After the adjusted data is used for curve
fitting, the fitting accuracy can be improved by 50%; particularly, the adjustment effect is
more prominent when there are not many outliers because the adjustment is performed on
the samples with the largest outliers, and the sample adjustment is a gradual process. The
abnormal sample adjustment of MNNC can avoid misjudgment and over-adjustment of
outliers. For cases with a large number of outliers, the adjustment effect can be enhanced
by increasing the number of optimizations.

RBFNN is commonly used in nonlinear systems for curve fitting and path tracking
control. Using a clustering algorithm to obtain the initial parameters of RBFNN is a rela-
tively simple method. When MNNC is used to train RBFNN, the number of hidden nodes
of RBFNN can be changed by automatically adjusting the number of clusters according to
the accuracy requirements of RBFNN, to improve the accuracy of RBFNN. The simulation
results show that the curve fitting accuracy of RBFNN trained by MNNC is up to 60%
higher than that of other RBFNNs.

When the magnetic microrobot is moving, it is difficult to reach the target position
accurately due to the interference of various factors. In this study, the motion mechanism
of the magnetic robot is analyzed, and a locomotion control system based on RBFNN is
proposed. The system uses RBFNN to determine the reference target of the theoretical
locomotion target, and controls the magnetic microrobot to reach the theoretical motion
target by moving to the reference target. In order to use MNNC to establish the parameters
of RBFNN better, this study enhanced the function of MNNC on the basis of the previous
analysis. The simulation results show that the enhanced MNNC demonstrates an improved
performance over traditional clustering algorithms in clustering analysis, and there are
fewer parameters to be determined in advance. The simulation results show that a better
control effect can be obtained after applying RBFNN based on MNNC in the path tracking
control of the magnetic robot.

Although MNNC has only been applied in clustering 2D data in this study, it can adapt
to multidimensional datasets. This will be verified in future research, and the algorithm
will be improved to increase the clustering accuracy and generalization ability.

7. Conclusions

A modified nearest neighbor-based clustering algorithm is proposed in this study that
does not necessitate the setting of important parameters relying on past experience, and
can perform cluster analysis on samples of different densities and shapes. The abnormal
samples can be found, and the adjustment of the sample can be realized by this clustering
algorithm. The simulation results show that the curve fitting accuracy of the samples
optimized by the clustering algorithm is increased by 50%. The number and center of basis
functions can be automatically determined by applying this clustering algorithm on the
training samples of RBFNN. The simulation results proved that the RBFNN trained in this
manner has a higher operating accuracy than the conventional RBFNN; the accuracy in
curve fitting is improved by 60%. The simulation result showed that the RBFNN based
on the clustering algorithm could improve the accuracy in the path tracking simulation
by 20%.
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Appendix A

Table A1. List of acronyms.

RBFNN Radial basis function neural network
MNNC Modified nearest neighbor-based clustering
PID Proportion integral differential
SVM Support vector machines
GA Genetic algorithm
AI Artificial immune
DBSCAN Density-based spatial clustering of applications with noise
DPC Density peaks clustering
ACC Accuracy
ADI Adjusted Rand index
RMF Rotating magnetic field
BIRCH Balanced iterative reducing and clustering using hierarchies
CLIQUE Clustering in QUEst

Appendix B

Table A2. List of variables.

di Distance between sample and its nearest neighbor
H The number of di level
Pi Sample
∆D Distance change
dstep Distance step
D Total distances between samples and centroid of cluster before merged
D’ Total distances between samples and centroid of cluster after merged
Quani Quantity of samples of cluster i
C Center of cluster
R Scanning radius of DBSCAN
Tm Magnetic torque
V Volume of microrobot
M Magnetization of microrobot
B External magnetic field
γ Polar angle
α Azimuthal angle
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Table A2. Cont.

nB Normal vector of plan P
Pcont Control position
Pref Reference position
Pact Actual position
Pguid Guidance position
Ppre Predicted position
γref Reference polar angle
αref Reference azimuthal angle
γcont Control polar angle
αcont Control azimuthal angle
γguid Guidance polar angle
αguid Guidance azimuthal angle
γpre Predicted polar angle
αpre Predicted azimuthal angle
γcomp Compensation of polar angle
αcomp Compensation of azimuthal angle
dcont Control direction
dguid Guidance direction
dref Reference direction
dpre Predicted direction
dact Actual direction
Qi Output of hidden layer neuron of RBFNN
ci Center of hidden layer neuron of RBFNN
wi Weight between hidden layer and output layer of RBFNN
σ Width of hidden layer neuron of RBFNN
µ0 Permeability of free space
N Turns number of coil
KB Magnetic field coefficient of Helmholtz coil
I Coil current
Ix Coil current of x-axis
Iy Coil current of y-axis
Iz Coil current of z-axis
errgamma Error of polar angle
erralpha Error of azimuthal angle
errposition Error of position

References
1. Rout, R.; Subudhi, B. Inverse optimal self-tuning PID control design for an autonomous underwater vehicle. Int. J. Syst. Sci. 2017,

48, 367–375. [CrossRef]
2. Xiang, H.B.; Li, M.W.; Zhang, T.L.; Wang, S.J.; Zhang, M.; Song, Y.; Huo, W.X.; Huang, X. Motion characteristics of untethered

swimmer with magnetoelastic material. Smart Mater. Struct. 2021, 30, 075030. [CrossRef]
3. Ghosh, B.B.; Sarkar, B.K.; Saha, R. Realtime performance analysis of different combinations of fuzzy-PID and bias controllers for a

two degree of freedom electrohydraulic parallel manipulator. Robot. Comput.-Integr. Manuf. 2015, 34, 62–69. [CrossRef]
4. Algarin-Pinto, J.A.; Garza-Castanon, L.E.; Vargas-Martinez, A.; Minchala-Avila, L.I. Dynamic modeling and control of a parallel

mechanism used in the propulsion system of a biomimetic underwater vehicle. Appl. Sci. 2021, 11, 4909. [CrossRef]
5. Mai, T.A.; Dang, T.S.; Duong, D.T.; Le, V.C.; Banerjee, S. A combined backstepping and adaptive fuzzy PID approach for trajectory

tracking of autonomous mobile robots. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 156. [CrossRef]
6. Xu, B.J.; Ji, S.; Zhang, C.R.; Chen, C.; Ni, H.P.; Wu, X.J. Linear-extended-state-observer-based prescribed performance control for

trajectory tracking of a robotic manipulator. Ind. Robot. 2021, 44, 544–555. [CrossRef]
7. Li, Q.X.; Zhou, Y.S. Precise trajectory tracking control of ship towing systems via a dynamical tracking target. Mathematics 2021, 9,

974. [CrossRef]
8. Wu, Y.; Wang, L.; Zhang, J.; Li, F. Path following control of autonomous ground vehicle based on nonsingular terminal sliding

mode and active disturbance rejection control. IEEE Trans. Veh. Technol. 2019, 68, 6379–6390. [CrossRef]
9. Liu, C.; Cheah, C.C.; Slotine, J. Adaptive Jacobian PID regulation for robots with uncertain kinematics and actuator model. In

Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006;
pp. 3044–3049. [CrossRef]

10. Smeresky, B.; Rizzo, A.; Sands, T. Optimal learning and self-awareness versus PDI. Algorithms 2020, 13, 23. [CrossRef]
11. Juang, J.G. Intelligent trajectory control using recurrent averaging learning. Appl. Artif. Intell. 2001, 15, 277–296. [CrossRef]

http://doi.org/10.1080/00207721.2016.1186238
http://doi.org/10.1088/1361-665X/ac03c6
http://doi.org/10.1016/j.rcim.2014.11.001
http://doi.org/10.3390/app11114909
http://doi.org/10.1007/s40430-020-02767-8
http://doi.org/10.1108/IR-07-2020-0150
http://doi.org/10.3390/math9090974
http://doi.org/10.1109/TVT.2019.2916982
http://doi.org/10.1109/IROS.2006.282242
http://doi.org/10.3390/a13010023
http://doi.org/10.1080/08839510151063253


Sensors 2021, 21, 8349 24 of 24

12. Chen, Z.; Yang, X.; Liu, X. RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulators including
actuator dynamics. Neurocomputing 2019, 362, 72–82. [CrossRef]

13. Nie, L.; Guan, J.; Lu, C. Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of radial basis function
neural network. IET Intell. Transp. Syst. 2018, 12, 485–494. [CrossRef]

14. Lee, C.T.; Tsai, C.C. Improved nonlinear trajectory tracking using RBFNN for a robotic helicopter. Int. J. Robust Nonlinear Control
2010, 20, 1079–1096. [CrossRef]

15. Li, J.; Wang, J.; Wang, S. Neural approximation-based model predictive tracking control of non-holonomic wheel-legged robots.
Int. J. Control Autom. Syst. 2020, 19, 372–381. [CrossRef]

16. Guillen, A.; Rojas, I.; Gonzalez, J. Output value-based initialization for radial basis function neural networks. Neural Process. Lett.
2007, 25, 209–225. [CrossRef]

17. Juang, J.G. Effects of Using Different Neural Network Structures and Cost Functions in Locomotion Control. In Lecture Notes in
Computer Science, Proceedings of the 2nd International Conference on Natural Computation (ICNC 2006), Xian, China, 24–28, September
2006; Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]

18. Fernandez-Navarro, F.; Hervas-Martinez, C.; Gutierrez, P.A. Generalised gaussian radial basis function neural networks. Soft
Comput. 2013, 17, 519–533. [CrossRef]

19. Huang, H.C.; Chiang, C.H. An evolutionary radial basis function neural network with robust genetic-based immunecomputing
for online tracking control of autonomous Robots. Neural Process. Lett. 2016, 44, 19–35. [CrossRef]

20. Chen, Z.Y.; Kuo, R.J. Combining SOM and evolutionary computation algorithms for RBF neural network training. J. Intell. Manuf.
2019, 30, 1137–1154. [CrossRef]

21. Guillén, A.; Rojas, I.; Gonzalez, J. A possibilistic approach to RBFN centers initialization. In Lecture Notes in Computer Science,
Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2005),
Regina, SK, Canada, 31 August 2005; Springer: Berlin/Heidelberg, Germany, 2005. [CrossRef]

22. Oh, S.K.; Kim, W.D.; Pedrycz, W. Design of k-means clustering-based polynomial radial basis function neural networks (pRBF-
NNs) realized with the aid of particle swarm optimization and differential evolution. Neurocomputing 2012, 78, 121–132. [CrossRef]

23. Liao, C.C. Genetic k-means algorithm based RBF network for photovoltaic MPP prediction. Energy 2010, 35, 529–536. [CrossRef]
24. Dogan, A.; Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 2021, 166, 114060. [CrossRef]
25. Fan, Y.K.; Bai, J.R.; Lei, X.; Lin, W.G.; Hu, Q.; Wu, G.D.; Guo, J.M.; Tan, G. PPMCK: Privacy-preserving multi-party computing for

K-means clustering. J. Parallel Distrib. Comput. 2020, 154, 54–63. [CrossRef]
26. Khalid, A.; Hammed, A. Genetic divergence in wheat genotypes based on seed biochemical profiles appraised through agglomer-

ative hierarchical clustering and association analysis among traits. Pak. J. Bot. 2021, 53, 1281–1286. [CrossRef]
27. Fang, X.J.; Wu, Y.J.; Liao, S.S.; Xue, L.Z.; Chen, Z.; Yang, J.N.; Lu, Y.M.; Ling, K.; Hu, S.Y.; Kong, S.Y. Division of crustal units in

China using grid-based clustering and a zircon U-Pb geochronology database. Comput. Geosci. 2020, 145, 104570. [CrossRef]
28. Montanari, G.E.; Doretti, M.; Marino, M.F. Model-based two-way clustering of second-level units in ordinal multilevel latent

Markov models. Adv. Data Anal. Classif. 2021, 1–29. [CrossRef]
29. Luo, S.; Liu, H.W.; Qi, E. Recognition and labeling of faults in wind turbines with a density-based clustering algorithm. Data

Technol. Appl. 2021. [CrossRef]
30. Li, C.Z.; Zhang, Y.Z. Density peak clustering based on relative density optimization. Math. Probl. Eng. 2020, 2020, 2816102.

[CrossRef]
31. Syarrudin, M.; Alfian, G.; Fitriyani, N.L. Performance analysis of IoT-based sensor, big data processing, and machine learning

model for real-time monitoring system in automotive manufacturing. Sensors 2018, 18, 2946. [CrossRef]
32. Minimol, P.V.; Mishra, D.; Gorthi, R.K.S.S. Guided MDNet tracker with guided samples. Visual Comput. 2021, 1–15. [CrossRef]
33. Jeon, S.; Kim, S.; Ha, S.; Lee, S.; Kim, E.; Kim, S.Y.; Park, S.H.; Jeon, J.H.; Kim, S.W.; Moon, C. Magnetically actuated microrobots

as a platform for stem cell transplantation. Sci. Robot. 2019, 4, eaav4317. [CrossRef]
34. Chen, X.Z.; Hoop, M.; Mushtaq, S.F.; Hu, E.C.Z.; Nelson, B.J.; Pane, S. Recent developments in magnetically driven micro- and

nanorobots. Appl. Mater. Today 2017, 9, 37–46. [CrossRef]
35. Li, J.; Li, X. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3, eaat8829.

[CrossRef] [PubMed]
36. Yan, X.H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J.F.; Xu, J.B.; Xu, T.T.; Tang, T.; Bian, L.M.; Wang, Y.X.J.; et al. Multifunctional

biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155. [CrossRef] [PubMed]
37. Yang, C.; Wang, X.; Cheng, L. Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. 2017, 47,

3148–3159. [CrossRef] [PubMed]

http://doi.org/10.1016/j.neucom.2019.06.083
http://doi.org/10.1049/iet-its.2016.0293
http://doi.org/10.1002/rnc.1483
http://doi.org/10.1007/s12555-019-0927-2
http://doi.org/10.1007/s11063-007-9039-8
http://doi.org/10.1109/ACC.2000.879225
http://doi.org/10.1007/s00500-012-0923-4
http://doi.org/10.1007/s11063-015-9452-3
http://doi.org/10.1007/s10845-017-1313-7
http://doi.org/10.1007/11548706_19
http://doi.org/10.1016/j.neucom.2011.06.031
http://doi.org/10.1016/j.energy.2009.10.021
http://doi.org/10.1016/j.eswa.2020.114060
http://doi.org/10.1016/j.jpdc.2021.03.009
http://doi.org/10.30848/PJB2021-4(7)
http://doi.org/10.1016/j.cageo.2020.104570
http://doi.org/10.1007/s11634-021-00446-7
http://doi.org/10.1108/DTA-09-2020-0223
http://doi.org/10.1155/2020/2816102
http://doi.org/10.3390/s18092946
http://doi.org/10.1007/s00371-021-02072-y
http://doi.org/10.1126/scirobotics.aav4317
http://doi.org/10.1016/j.apmt.2017.04.006
http://doi.org/10.1126/scirobotics.aat8829
http://www.ncbi.nlm.nih.gov/pubmed/33141689
http://doi.org/10.1126/scirobotics.aaq1155
http://www.ncbi.nlm.nih.gov/pubmed/33157904
http://doi.org/10.1109/TCYB.2016.2573837
http://www.ncbi.nlm.nih.gov/pubmed/28113610

	Introduction 
	Concept of RBFNN Algorithm Based on MNNC for Path Tracking 
	Clustering Algorithm Based on Nearest Neighbor 
	Typical Clustering Algorithm 
	Modified Nearest Neighbor-Based Clustering Algorithm for Training RBFNN 
	Enhancement of MNNC Performance 

	Adjustment of Training Samples Based on MNNC 
	Application of RBFNN in Path Tracking for a Spiral-Type Magnetic Microrobot 
	Discussion 
	Conclusions 
	
	
	References

