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Abstract
In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim.

First, it is unknown whether all neurites exhibit completely anisotropic (“stick-like”) diffusion.

Second, the “density” of tissue components may be confounded by non-diffusion properties

such as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as

indices of neurite density is incompletely explored. We investigated these challenges by acquir-

ing data with “b-tensor encoding” and multiple echo times in brain regions with low orientation

coherence and in white matter lesions. Results showed that microscopic anisotropy from

b-tensor data is associated with myelinated axons but not with dendrites. Furthermore, b-tensor

data together with data acquired for multiple echo times showed that unbiased density esti-

mates in white matter lesions require data-driven estimates of compartment-specific T2 values.

Finally, the “stick” fractions of different biophysical models could generally not serve as neurite

density indices across the healthy brain and white matter lesions, where outcomes of compari-

sons depended on the choice of constraints. In particular, constraining compartment-specific T2

values was ambiguous in the healthy brain and had a large impact on estimated values. In sum-

mary, estimating neurite density generally requires accounting for different diffusion and/or T2

properties between axons and dendrites. Constrained “index” parameters could be valid within

limited domains that should be delineated by future studies.
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1 | INTRODUCTION

Diffusion MRI (dMRI) makes use of the micrometer scale displacement

of water molecules to detect microstructural alterations in the brain

due to disease (Chenevert et al., 2000; Horsfield & Jones, 2002;

Moseley et al., 1990; Surova et al., 2013; Van Cauter et al., 2012;

Werring et al., 2000) as well as normal processes such as learning

(Sagi et al., 2012; Scholz, Klein, Behrens, & Johansen-Berg, 2009) and

maturation (Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Löbel

et al., 2009). However, dMRI does not yield tissue quantities directly.

For example, the fractional anisotropy (FA) parameter of diffusion ten-

sor imaging (DTI) (Basser, Mattiello, & LeBihan, 1994) cannot be

directly associated to the density of anisotropic structures such as

axons since it is sensitive to other factors such as their orientation

coherence (Douaud et al., 2011; Pierpaoli, Jezzard, Basser, Barnett, &

Di Chiro, 1996).
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Biophysical models seek to increase the specificity of dMRI by

dividing the signal between “compartments” to estimate tissue quanti-

ties (Alexander, Dyrby, Nilsson, & Zhang, 2017; Kiselev, 2017; Nilsson,

van Westen, Ståhlberg, Sundgren, & Lätt, 2013; Novikov, Jespersen,

Kiselev, & Fieremans, 2016; Novikov, Kiselev, & Jespersen, 2018). The

target quantity of early approaches was the axonal volume fraction in

coherent white matter, characterized by diffusion in highly anisotropic

structures such as “cylinders” with a small but non-zero (apparent)

radial diffusivity (Assaf & Basser, 2005), or “sticks” with an (apparent)

radial diffusivity of zero (Behrens et al., 2003). Further developments

extended models to non-coherent white matter by incorporating an orien-

tation distribution function (Jespersen, Kroenke, �stergaard, Ackerman, &

Yablonskiy, 2007; Kaden, Knösche, & Anwander, 2007; Sotiropoulos,

Behrens, & Jbabdi, 2012; Tariq, Schneider, Alexander, Wheeler-Kingshott,

& Zhang, 2016; Zhang, Hubbard, Parker, & Alexander, 2011; Zhang,

Schneider, Wheeler-Kingshott, & Alexander, 2012) or by mimicking

complete orientation dispersion through so-called powder averaging

(Kroenke, Ackerman, & Yablonskiy, 2004). Several contemporary

approaches aspire to encompass also gray matter and to capture the

combined volume fractions of axons and dendrites (neurites) in a single

“neurite density” parameter (Jespersen et al., 2007; Kaden, Kelm, Carson,

Does, & Alexander, 2016; White, Leergaard, D'Arceuil, Bjaalie, & Dale,

2013; Zhang et al., 2012). However, estimating a specific tissue quantity

such as neurite density from clinical dMRI data necessitates simplifying

assumptions whose accuracy and generality are unknown. This work

focuses on three challenges for scientists using biophysical models to

estimate the neurite density.

The first challenge is that mapping neurites requires a correct model

for diffusion in both axons and dendrites. Biophysical models typically

use the “neurite assumption” to represent both these structures in a sin-

gle “stick” compartment with fully anisotropic (one dimensional) diffu-

sion. The rationale is that axons and dendrites should exhibit a radial

diffusivity of approximately zero (Behrens et al., 2003; Kroenke et al.,

2004) due to their approximately cylindrical shape with diameters that

are smaller than the resolution limit (Nilsson, Lasi�c, Drobnjak, Topgaard, &

Westin, 2017). Studies have confirmed this property for axons

(McKinnon, Jensen, Glenn, & Helpern, 2017; Veraart, Fieremans, &

Novikov, 2017) but the evidence is less conclusive for dendrites.

Although “stick-like” diffusion has been demonstrated in cortical gray

matter (Novikov, Jensen, Helpern, & Fieremans, 2014), this could merely

reflect the presence of myelinated axons, as suggested by the study on

fixed tissue using histology by Jespersen et al. (2010). Furthermore, the

low levels of microscopic anisotropy observed in gray matter compared

to white matter (Lampinen et al., 2017; Lawrenz & Finsterbusch, 2018;

Novikov, Veraart, Jelescu, & Fieremans, 2018) may indicate that the

radial diffusivity of dendrites is actually non-zero.

The second challenge is that mapping densities (volume fractions)

from signal fractions requires accounting for potential differences in

T2 relaxation between tissue components. Since T2 values cannot be

estimated from dMRI data acquired with a single echo time (TE), con-

temporary approaches implicitly assume T2 values to be equal

between “neurite” and “non-neurite” tissue. We refer to this as the

“density assumption.” In white matter, such T2 differences may indeed

be small, seeing that intra- and extra-axonal water pools are not

clearly distinguishable based on multi-exponential T2 relaxation

(Mackay et al., 1994; Whittall et al., 1997). Although components with

different relaxation and diffusion properties have been demonstrated

in peripheral nerve (Peled, Cory, Raymond, & Kirschner, 1999), near

negligible effects on diffusion have been observed from varying the

TE in human white matter (Clark & Le Bihan, 2000; Tax, Rudrapatna,

Witzel, & Jones, 2017), as well as in rat brain (Does & Gore, 2000) and

in cranial nerves of the garfish (Beaulieu, Fenrich, & Allen, 1998).

However, more recent white matter studies indicate that the T2 value

of intra-axonal water may be longer than that of extra-axonal water

(De Santis, Assaf, & Jones, 2016; Veraart, Novikov, & Fieremans,

2017). In gray matter, corresponding issues are not well investigated.

In pathologies, the compartment-specific T2 values could be per-

turbed, for example, by enlargement of the extracellular space in

ischemic degeneration (Englund & Brun, 1990) or by vascular edemas

in conditions with blood–brain barrier damage such as tumors and

acute MS lesions (Ballabh, Braun, & Nedergaard, 2004).

The third challenge is to find the range of conditions, or “domain of

validity,” where the specific interpretations of biophysical model param-

eters are accurate. This domain may be both small and difficult to delin-

eate for a parameter that is interpreted as the actual physical neurite

density (fractional voxel volume occupied by neurites). The domain may

be widened, however, if the parameter is interpreted as an “index” for

neurite density (Kaden et al., 2016; Zhang et al., 2012), since this

acknowledges a multifactorial origin and only claims the “ordinal accu-

racy” to rank observations. Even for neurite density indices, however,

the domain of validity must be delineated to avoid conditions where fac-

tors such as T2 relaxation are sufficiently large to “break” the index

property and confound the outcome of comparisons.

This work investigates the three above challenges through a “multi-

dimensional” diffusion acquisition using the novel “b-tensor encoding”

approach (Eriksson, Lasi�c, Nilsson, Westin, & Topgaard, 2015; Eriksson,

Lasic, & Topgaard, 2013; Lasi�c, Szczepankiewicz, Eriksson, Nilsson, &

Topgaard, 2014) as well as multiple TE (de Almeida Martins and

Topgaard, 2018). First, we examined whether mapping neurites based on

the property of microscopic diffusion anisotropy is supported by data.

Using the high specificity of b-tensor encoding and knowledge from his-

tology, we compared the anisotropy between multiple healthy brain

regions that are substantially different with respect to axonal density but

similar with respect to the combined axonal and dendritic (thus neurite)

density. This tests a prediction of the neurite assumption (that micro-

scopic anisotropy should reflect neurite density) against the alternative

hypothesis that this property is mainly due to axons. Second, we

explored whether T2 relaxation is likely to confound density estimates in

healthy white and gray matter as well as in white matter lesions. Using

the combined b-tensor and multiple TE data, we attempted independent

estimation of the “stick” fraction and compartment-specific T2 values in

a minimally constrained biophysical model. This tests the feasibility of

disentangling density from T2 relaxation and addresses the validity of

the density assumption. Age-related white matter lesions, thought to be

typically of ischemic origin (Pantoni & Garcia, 1997), are a suitable mate-

rial in this context since they may exhibit changes to both diffusion

anisotropy, through demyelination (Swieten et al., 1991) and axonal loss

(Englund & Brun, 1990), and to T2 relaxation (Englund, Brun, & Persson,
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1987). Third, we tested whether the domain of validity for neurite den-

sity indices encompass healthy white and gray matter as well as white

matter lesions. Using biophysical models that are prevalent in the litera-

ture, we compared the resulting rankings of a range of brain regions with

respect to the “stick” fraction. Since there can be only one true ranking

with respect to a quantity such as neurite density, disagreement between

models signifies a domain of validity violation. The results have impact

on the standard interpretation of dMRI data, which is elaborated on in

the discussion.

2 | THEORY

The techniques for data analysis described in this section were

employed after arithmetic averaging of the signal across diffusion-

encoding directions, so-called “powder averaging” (Callaghan, Jolley, &

Lelievre, 1979; Jespersen, Lundell, Sønderby, & Dyrby, 2013; Lasi�c

et al., 2014). Provided data is acquired with a sufficient number of

directions (Szczepankiewicz, Westin, Ståhlberg, Lätt, & Nilsson, 2016),

powder averaging yields a signal whose orientation-invariant aspects

of diffusion are preserved but with an orientation distribution that

mimics complete dispersion of anisotropic structures.

2.1 | Representation-based analysis

We represent the powder-averaged b-tensor data with a cumulant

expansion in b-values, according to

log Sð Þ≈ log S0ð Þ – b�MD + b2� MKI + bΔ
2�MKA

� �
�MD2=6, ð1Þ

assuming cylinder-symmetric b-tensors. Four parameters represent

the signal: the non-diffusion weighted signal (S0), the mean diffusivity

(MD), the “isotropic kurtosis” (MKI), and the “anisotropic kurtosis”

(MKA). Two parameters describe the experiment: the “size” (b) and

“shape” (bΔ) parameters of the b-tensor, where the former is the con-

ventional b-value (Le Bihan et al., 1986) and the latter ranges from

−0.5 (planar) through zero (spherical) to unity (linear) (Eriksson et al.,

2015; Topgaard, 2016; Topgaard, 2017). Under the assumption that

the diffusion process can be described by a set of non-exchanging

compartments with approximately Gaussian diffusion, the MKI param-

eter represents variance in isotropic diffusivities (“isotropic heteroge-

neity”) and the MKA parameter represents microscopic diffusion

anisotropy (Szczepankiewicz et al., 2016; Topgaard, 2017; Westin

et al., 2016). These properties cannot be separated with data acquired

with a single shape of the b-tensor (Mitra, 1995; Topgaard, 2017). For

example, using only the linear tensor encoding (LTE, bΔ = 1) of con-

ventional multi-shell dMRI yields the (powder-averaged) signal equa-

tion of diffusion kurtosis imaging (DKI; Jensen, Helpern, Ramani, Lu, &

Kaczynski, 2005; Yablonskiy, Bretthorst, & Ackerman, 2003) and three

parameters: S0, MD, and MK, where MK = MKI + MKA, as a special

case. On the other hand, data acquired with two or more b-tensor

shapes, such as the combination of LTE and spherical tensor encoding

(STE; bΔ = 0; Lasi�c et al., 2014; Szczepankiewicz et al., 2015;

Szczepankiewicz, van Westen, et al., 2016) or LTE and planar tensor

encoding (PTE; bΔ = −½; Jespersen et al., 2013; Lawrenz & Finsterbusch,

2013), allows estimation of four parameters and disambiguating the

source for kurtosis.

2.2 | Model-based analysis

Biophysical models express the signal as the sum of signals from dif-

ferent compartments, according to

S = ΣSk = Σfk�SPD;k�AT1;k�AT2;k�AD;k, ð2Þ

where, for the k:th compartment, fk is the fraction (Σfk = 1), SPD;k is

the proton density-weighted signal, AT1;k and AT2;k are the attenua-

tions due to T1 and T2 relaxation, respectively, and AD;k is the attenu-

ation due to diffusion. For the powder-averaged signal, the diffusion

attenuation is solely a function of orientation-invariant aspects of the

diffusion and the encoding. We represent compartment diffusion with

an axisymmetric diffusion tensor described by its “size” (isotropic dif-

fusivity), DI = 1/3 � D|| + 2/3 � D⊥ and “shape” (anisotropy), DΔ = (D|| –

D⊥) / (D|| + 2 � D⊥) 2 [−½ 1], where D|| and D⊥ are the axial and radial

diffusivities, respectively. As we similarly represent diffusion encoding

by an axisymmetric b-tensor, parameterized by b and bΔ, the compart-

ment diffusion attenuation is a function of four scalar parameters,

according to (Eriksson et al., 2015; Topgaard, 2016; Topgaard, 2017)

AD;k b, bΔ,DI;k,DΔ;k
� �

= exp − bDI;k 1 – bΔDΔ;k
� �� ��g 3bDI;kbΔDΔ;k

� �
,

ð3Þ

where

g αð Þ =
ð1
0
exp − αx2

� �
dx =

ffiffiffiffiffiffi
π

4α

r
erf

ffiffiffi
α

p� �
, ð4Þ

and erf(�) is the error function (Callaghan et al., 1979).

We define a minimally constrained biophysical model based on

Equation 2 using three compartments: a “ball” (B), a “stick” (S), and cere-

brospinal fluid (CSF; C). By design, the “ball” and CSF compartments

feature isotropic diffusion (DΔ;B = 0, DΔ;C = 0) while the “stick” compart-

ment features completely anisotropic diffusion (DΔ;S = 1). While proton

densities and T1 relaxation times are assumed to be equal for all com-

partments, the T2 values are free for “balls” (T2B) and “sticks” (T2S). The

T2 value of CSF was fixed as T2C = 1,400 ms, motivated by results from

Hopkins, Yeung, and Bratton (1986) and Weigel and Hennig (2006).

Finally, the isotropic diffusivities of “balls” (DI;B) and “sticks” (DI;S)

are free parameters, while the isotropic diffusivity of CSF is fixed as

DI;C = 3 μm2/ms. In total, the model features seven free parameters,

summarized in Table 1: S0, fS (the “stick” fraction), fC (the CSF fraction),

T2B, T2S, DI;B and DI;S. Together with the experimental parameters, b, bΔ,

and TE, these combine to form the full signal equation, according to

S = S0�½ð1 – fS – fCÞ�AT2;B�AD;B + fS�AT2;S�AD;S + fC�AT2;C�AD;C�, ð5Þ

where the attenuations are given by

AT2;B=S=C = exp – TE=T2B=S=C

� �
, ð6Þ

AD;B=C = exp – bDI;B=C
� �

, ð7Þ

AD;S = exp – bDI;S 1 – bΔ½ �� ��g 3bDI;SbΔ
� �

, ð8Þ

using g(�) from Equation 4. This model thus resembles the “standard

model” for white matter (Novikov et al., 2016; Novikov, Veraart, et al.,
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2018) but extended to gray matter (by the CSF fraction) and to fea-

ture T2 relaxation. Unlike the standard model, however, we employ

the “ball” constraint of isotropic diffusion outside of “stick-like” struc-

tures. The choice was made to improve feasibility of model fitting, but

limited the subsequent data analysis to regions with a low orientation

coherence, where this constraint should be valid.

A compartment-based model (Equation 2) can attain any capacity,

using the word as defined in Goodfellow, Bengio, and Courville (2016),

but it is generally necessary to constrain both the number of compart-

ments and the compartment properties to match the degrees of freedom

of data and avoid degeneracy in parameter estimation, such as demon-

strated in Jelescu, Veraart, Fieremans, and Novikov (2016). We here

investigate six sets of constraints on top of the minimally constrained

model (set C0; Table 1), yielding six nested “submodels” that represent

different contemporary approaches to obtain “stick” fractions.

Set C1 yields an approximation of the spherical mean technique

(SMT) model (Kaden et al., 2016), but extended to feature two free

compartment T2 values. It comprises a CSF constraint, given by

fC = 0, ð9Þ

and a constraint that calculates the “ball” isotropic diffusivity from the

“stick” isotropic diffusivity and the “stick” fraction, according to

DI;B = DI;S� 3 – 2fSð Þ: ð10Þ

Set C2 yields a powder-averaged equivalent of the Ball and stick

(Behrens et al., 2003) and Ball and rackets (Sotiropoulos et al., 2012)

models, but extended to feature free compartment diffusivities. It

comprises a T2 constraint, given by

T2B = T2S, ð11Þ

and the CSF constraint (Equation 9). Set C3 yields an approximation of

the SMT model and comprises all the above constraints (Equations 9–11).

Set C4 yields the CODIVIDEmodel (Lampinen et al., 2017) and comprises

the T2 constraint (Equation 11) and a diffusivity constraint, given by

DI;B = DI;S: ð12Þ

Set C5 approximates the powder-averaged NODDI model (Lampinen

et al., 2017; Zhang et al., 2012) and comprises the relation between

isotropic diffusivities and the “stick” fraction in Equation 10, the T2 con-

straint (Equation 11), and a fixed “stick” isotropic diffusivity, given by

DI;S = 0:57 μm2=ms: ð13Þ

Set C6 equals set C2 but uses a T2 constraint different than

Equation 11, given by

T2S = 70ms, ð14Þ

a choice inspired by previous estimates of the voxel T2 value in

white matter at 3 T (Wansapura, Holland, Dunn, & Ball Jr, 1999;

Whittall et al., 1997) and results in white matter lesions obtained in

this work. Note that compared to SMT and NODDI, sets C3 and C5

use the “ball” constraint (DΔ = 0) for the “non-stick” compartment

rather than defining its shape from a tortuosity relation (Szafer, Zhong,

Anderson, & Gore, 1995). The difference was negligible in the investi-

gated regions herein (see Supporting information). Finally, the original

NODDI model employs a slight rearrangement of the “stick” and CSF

fractions (Zhang et al., 2012).

The motivations for the different constraints are related to the

data for which the corresponding models are intended. One type of

constraint concerns compartment relaxation times (and proton densi-

ties), which cannot be estimated unless the acquisition features encod-

ing dimensions sensitive to these properties. Most biophysical models

are not designed for variable relaxation weighting and typically use the

density assumption, given by

SPD;k�AT1;k�AT2;k = S0, for all k, ð15Þ

as in sets C2–C5 (with a different T2 for CSF). The dMRI data

obtained for multiple TE used here, however, allow the constraint of

equal “ball” and “stick” T2 values (Equation 11) to be tentatively

relaxed in the minimally constrained model. Our multiple TE data were

acquired for b ≤ 0.5 ms/μm2, thus probing the TE dependence of the

first cumulant of the diffusion attenuation (the mean diffusivity, MD)

and yielding the following relation

MD TEð Þ = 1 – fS
0 TE, T2B, T2Sð Þ½ ��DI;B + fS

0 TE, T2B, T2Sð Þ�DI;S, ð16Þ

where fS
0 = [SS/S]b = 0 is the relaxation-weighted “stick” signal fraction

before diffusion attenuation. For simplicity, Equation 16 assumes fC = 0.

TABLE 1 Parameters and sets of constraints for the model-based analysis

Constraint set npar S0 fS fC T2B T2S DI;B DI;S

C0 (minimally constrained) 7 - - - - - - -

C0 iterated non-cortex 5 - Iterateda 0 - - - -

C0 iterated cortex 6 - Iterateda - - - - -

C1 (SMTb,c) 5 - - 0 - - Equation 10 -

C2 (Ball and stick/racketsd,e) 5 - - 0 - T2B - -

C3 (SMTc) 4 - - 0 - T2B Equation 10 -

C4 (CODIVIDE) 5 - - - - T2B - DI;B

C5 (NODDIc,e) 4 - - - - T2B Equation 10 0.57

C6 (Ball and stick/racketsd,e,f) 5 - - 0 - 70 - -

Relaxation times are in ms and diffusivities are in μm2/ms; The“-” denote free parameters.
a fS 2 [0, 0.0125, 0.0375, …, 0.9875].
b Featuring two free T2 parameters.
c With a “ball-shaped” (DΔ = 0) “non-stick” compartment.
d Featuring two free isotropic diffusivity parameters.
e Powder-averaged.
f Using a different T2 constraint.
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Together with an estimate of the voxel T2 value, this relation may allow

estimation of both T2B and T2S. However, the gained precision depends

on the difference between “ball” and “stick” isotropic diffusivities, which

is clear when considering that the change in MD with respect to TE,

dMD=dTE = dfS
0=dTE� DI;S – DI;B

� �
, ð17Þ

approaches zero as DI;S approaches DI;B.

Another type of constraint concerns diffusion properties. Aside from

parameters related to variation across orientations, conventional multi-

shell dMRI only allows the estimation of two diffusion parameters

(Kiselev & Il'yasov, 2007), extended to three if multiple shapes of the

b-tensor are used (Lasi�c et al., 2014; Lampinen et al., 2017). The mini-

mally constrained model (set C0) features four diffusion parameters

(fS, fC, DI;B, and DI;S), and thus the sets of constraints designed for

conventional multi-shell dMRI (C3 and C5) use two diffusion con-

straints and leave two parameters free. Conversely, the sets of con-

straints designed for b-tensor encoding (C2, C4 and C6) use one

diffusion constraint and leave three parameters free. Finally, set C1 was

designed for b-tensor encoding but still uses two diffusion constraints.

Instead of estimating a third diffusion parameter, set C1 relates diffusion

to relaxation through the relations in Equations 10 and 16.

3 | METHODS

3.1 | Subjects, acquisition and postprocessing

Data were acquired on a Siemens MAGNETOM Prisma 3T system

(Siemens Healthcare, Erlangen, Germany) in three subject groups: A

(n = 5; age = 32 ± 4 years; all male), B (n = 20; age = 25 ± 4 years;

male/female = 11/9), and C (n = 10; age = 70 ± 10 years; male/female =

5/5). Subjects in groups A and B were healthy volunteers, who were

either scanned specifically for this study (group A) or for a previous study

(group B; Lampinen et al., 2017). The elderly subjects in group C were

scanned for a larger study that included both patients with Parkinson's

disease and controls. These subjects were included to study age-related

white matter lesions regardless of their disease status, wherefore we ran-

domly selected five subjects with lesions (patients/controls = 3/2) and

five subjects without lesions (patients/controls = 4/1).

We performed dMRI with b-tensor encoding using a prototype

echo-planar diffusion sequence (Szczepankiewicz, Sjölund, Ståhlberg,

Lätt, & Nilsson, 2016) with encoding gradient waveforms optimized

for minimal TE (Sjölund et al., 2015). Data were acquired with both

LTE and STE. To obtain diffusion-relaxation correlation data, Groups

A and C were additionally scanned with LTE sequences that repeated

the same set of low b-values and directions for different

TE. T1-weighted MPRAGE images were acquired for segmentation

purposes. The experiments were approved by the regional ethical

review board in Lund, and all subjects gave informed consent.

Sequence parameters for all diffusion acquisitions are shown in

Table 2.

The dMRI data were corrected for eddy-currents and subject

motion using ElastiX (Klein, Staring, Murphy, Viergever, & Pluim,

2010) with extrapolated target volumes (Nilsson, Szczepankiewicz,

van Westen, & Hansson, 2015). Before model fitting, data were

arithmetically averaged across diffusion-encoding directions

(powder-averaged) for each b-value and each b-tensor shape. For

the purpose of ROI definition and image registration, we performed

a DTI analysis of LTE data at b ≤ 1 ms/μm2. All processing was

performed using software available in the multidimensional

dMRI toolbox (https://github.com/markus-nilsson/md-dmri) (Nilsson

et al., 2018).

TABLE 2 Diffusion sequences used in the study

B-tensor encoding (LTE + STE) Multiple TE (LTE)

Group A Group B Group C Group A Group C

TR (ms) 7,000 4,000 5,200 7,000 6,900

TE (ms) 100 106 106 50,90,120,150 50,85,120,155

Matrix size 110 × 110 128 × 128 128 × 128 110 × 110 128 × 128

Number of slices 30 27 35 30 35

Resolution (mm2) 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Slice thickness (mm) 2 4 4 2 4

PI factora 2 2 2 2 2

Partial Fourier 0.75 0.75 0.75 0.75 0.75

b-values (ms/μm2) 0.1,0.5,1.0,1.5,2.0b 0.1,0.5,1.0,1.5,2.0b 0.1,0.5,1.0,1.5,2.0b 0.1, 0.5c 0, 0.5c

bΔ-values 1 and 0 1 and 0 1 and 0 1 1

# directions/b-value 6, 10, 12, 16, 20 6, 6, 10, 16, 30 6, 6, 10, 16, 30 6, 6 1, 6

Number of samples 128 136 136 12 12

Scan time (min) 15.5 9 12 7 4.5

Maxwell compensationd Yes No No Yes No

Head coil array 64 ch 20 ch 20 ch 64 ch 20 ch

Data prev. published No Yese No No No

a GRAPPA.
b All acquired using both LTE and STE.
c Both acquired using LTE for all TE.
d Szczepankiewicz and Nilsson (2018).
e Lampinen et al. (2017).
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3.2 | Regions of interest

The study used data from 11 bilateral regions of interest (ROIs;

Figure 1), including one white matter region, with or without lesions,

together with two deep gray matter regions, and eight cortical gray

matter regions. This selection of ROIs is motivated below.

To investigate the variation in microscopic anisotropy against the

variation in axonal content, the gray matter ROIs were selected to fea-

ture either a high or a low myelin content. Myelin content was used

as a proxy for axonal content, since histology literature provides little

information on the latter in gray matter. Deep gray matter was repre-

sented by the high myelin ventrolateral thalamus and the low myelin

mediodorsal thalamus (Danos et al., 2003). Cortical gray matter with

low myelin was represented by the primary auditory cortex (Bock,

Kocharyan, Liu, & Silva, 2009; Hopf, 1955), primary visual cortex

(Bock et al., 2009), primary motor cortex (Hopf, 1956) and posterior

cingulate cortex (Morris, Paxinos, & Petrides, 2000), and low myelin

cortical gray matter was represented by the insular cortex (Öngür,

Ferry, & Price, 2003), medial orbitofrontal cortex (Hopf, 1956), polar

plane (Hopf, 1955), and anterior cingulate cortex (Öngür et al., 2003).

To investigate whether T2 relaxation is likely to confound density

estimates, the ROIs were selected to represent the main categories of

healthy brain tissue—white matter, deep gray matter, and cortical gray

matter—together with an example pathology in the form of white

matter lesions. The anterior corona radiata was chosen to represent

white matter, both because it is a typical site for white matter lesions

and because it has a low orientation coherence (Mollink et al., 2017),

which simplified our biophysical modeling.

The ROIs were defined manually for groups A and C, using the S0

and directionally encoded color (DEC) maps from DTI, and automati-

cally for group B, using the Desikan-Killany and Destrieux parcella-

tions of Freesurfer. The automatic procedure involved registering the

S0 image from DTI to the MPRAGE using rigid-body registration

implemented in ElastiX. A visual inspection assessed that the registra-

tions yielded proper alignments and that the resulting ROIs were

located within the cortex and minimally affected by EPI distortions.

DTI parameters were used to make final adjustments of these ROIs:

to reduce contamination with CSF and white matter, we excluded

voxels with high mean diffusivity (MD > 1.1 μm2/ms) and high orien-

tation coherence (FA > 0.5). For all ROIs, the signal was averaged

across voxels before further analysis.

3.3 | Brain patterns of microscopic anisotropy from
b-tensor encoding

The level of microscopic anisotropy was assessed for all ROIs

(Figure 1) by the MKA parameter obtained from the b-tensor encoded

data (Table 2) in the representation-based analysis using Equation 1.

MKA values were compared using paired two-tailed t-tests between

the high myelin ventrolateral thalamus and the low myelin mediodor-

sal thalamus and between the low and high myelin cortical ROIs. To

enable detection of smaller effect sizes, the latter comparison used

data from the larger group B, and the signal from each subject was

averaged across the voxels of all four ROIs representing either high or

low myelin. In addition, we compared the contrast of the MKA maps

with a myelin-stained coronal brain section obtained from a subject

FIGURE 1 Regions of interest (ROIs). The study used 11 bilateral ROIs, representing white matter with or without lesions, together with deep

and cortical gray matter with high or low myelin content. In group A (n = 5), we manually defined five ROIs: white matter (anterior corona
radiata), deep gray matter with high myelin (ventrolateral thalamus) and low myelin (mediodorsal thalamus), and cortical gray matter with high
myelin (primary auditory cortex) and low myelin (insular cortex). In group B (n = 20), we used the Desikan-Killany and Destrieux parcellations of
Freesurfer to define eight cortical ROIs: four with high myelin (primary auditory cortex, primary visual cortex, primary motor cortex, and posterior
cingulate cortex) and four with low myelin (insular cortex, medial orbitofrontal cortex, the polar plane and anterior cingulate cortex). In group C
(n = 10), we defined the anterior corona radiata as in group A but classified it as either “normal-appearing” (NA; n = 5) or “lesion” (n = 5). All ROIs
were bilateral. The anterior corona radiata of group A is shown on a DEC map from DTI and the remaining group A and C ROIs are shown on top
of DTI S0 images. The group B ROIs are shown on top of MPRAGE images [Color figure can be viewed at wileyonlinelibrary.com]
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outside of the imaged group. A 6 μm thick section was cut at the level

of the anterior thalamus and stained for myelin using Luxol fast blue

together with Cresyl violet counter staining of nuclear structures.

3.4 | Biophysical modeling with compartment-
specific T2 values

We first assessed the minimally constrained model's (Equation 5) pre-

cision to estimate the “stick” fraction from the b-tensor and multiple

TE data (Table 2) from the group A and C ROIs (Figure 1). The preci-

sion was assessed by plotting a metric of goodness of fit against dif-

ferent values of the “stick” fraction, fixed prior to the fitting in

40 steps between zero and one. If data determine all model parame-

ters, the plot should exhibit a clear minimum for some “stick” fraction.

If data are insufficient, however, multiple “stick” fractions should yield

a similarly good fit and result in a flatter plot. The CSF fraction was

fixed to zero in the non-cortical regions. The CSF fraction was free in

the cortex, reducing the precision, but the procedure still yielded a

good representation of the range of data-compatible “stick” fractions

(see Supporting Information).

Goodness of fit was defined as the normalized residual variance

(NRV) obtained by dividing the residual variance (σR2) by the signal

variance due to noise (σ2noise), according to

NRV = σR2=σ2noise = Σnpa;i Si – S0ið Þ2= n – kð Þ
h i

= σ2noise=nvoxel
� � ð18Þ

where npa;i is the number of powder-averaged directions for the i:th

combination of measurement parameters (b, bΔ, and TE), Si and S'i are

the powder-averaged signals obtained from the measurement and

predicted by the fit, respectively, n is the total number of samples

(Table 2) and k is the number of parameters that were free to vary in

the fitting (Table 1). The value of σ2noise was estimated, for each ROI,

as the voxel and b-value average of the STE signal variance across the

multiple repetitions.

For group C, the model was extended to feature the tissue T1

value (T1B/S = T1) and the constraint T1C = 5,700 ms to account

for the repetition time differences between the b-tensor data and

the multiple TE data (Table 2). The precision in the estimated tis-

sue T1 value was likely low given the rather long repetition times

used in both sequences, but it was included as a nuisance

parameter.

3.5 | Brain region rankings by the “stick” fractions of
constrained biophysical models

The six constrained “submodels” of the minimally constrained model

(Table 1) were fitted to the b-tensor and multiple TE data (Table 2)

from the group A and C ROIs (Figure 1). First, we ensured that the

constrained models yielded precise solutions by plotting the goodness

of fit (Equation 18) against fixed values of the “stick” fraction. Second,

we tested whether there was a statistically significant disagreement

between how the models ranked these regions with respect to the

“stick” fraction. A metric for disagreement between rankings was

defined according to

m =
XI

i = 1

XJ

j = 1

rij − rih i� �2
, ð19Þ

where I = 7 and J = 6 are the numbers of regions and models, respec-

tively, rij is the i:th region's ranking from the j:th model, and hrii is the
i:th region's average ranking. To test the statistical significance for

potential ranking differences between models, we compared the

observed value for m against a probability distribution simulated

under the null hypothesis of equal rankings. The simulation created

105 sets of rankings by noising a set of “stick” fractions that equaled

those observed but were pre-sorted to agree between models. The

added noise was distributed as ε 2 N(0, σ/ns), where σ is the standard

deviation across subjects (ns = 5). Code for performing this procedure

is available on https://github.com/belampinen/ranking_test together

with example data. Third, we assessed whether the different sets of

constraints were compatible with data. To this end, the models were

compared with respect to the fit quality obtained in different regions,

defined as the sum of squared residuals (SSR) pooled from the com-

bined fits in all subjects.

FIGURE 2 Parameter maps from the representation-based analysis (Equation 1) of b-tensor data. (a) The mean diffusivity (MD) contrast was

similar between white and gray matter. The level of isotropic heterogeneity (MKI) was generally low but higher in regions with partial volume
effects from CSF. The level of microscopic anisotropy (MKA) was high in white matter and low in gray matter such as the cortex. (b) The level of

microscopic anisotropy reflected the level of myelination seen in a coronal myelin-stained histology slice (obtained from a different subject). From
left to right: (1) the myelin-poor mediodorsal thalamus, (2) the myelin-rich ventrolateral thalamus, and (3) the internal capsule. Voxels with
MD ≥ 2 μm2/ms are colored blue. The shown example is from group A [Color figure can be viewed at wileyonlinelibrary.com]
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4 | RESULTS

4.1 | Brain patterns of microscopic anisotropy from
b-tensor encoding

The representation-based analysis (Equation 1) produced high-quality

maps of the level of microscopic anisotropy (MKA; Figure 2a). A strong

contrast in anisotropy was observed between white and gray matter,

with high levels in white matter and low levels in gray matter in gen-

eral and in the cortex in particular. The level of isotropic heterogeneity

(MKI) was generally low, except in regions with substantial partial vol-

ume effects between tissue and CSF. The contrast in mean diffusivity

(MD) was flat across the brain tissue with similar levels in white and

gray matter.

The MKA values were higher in ROIs expected to feature a higher

myelin content (Figure 3, Table 3). Pure white matter (the anterior

corona radiata) featured the highest values of MKA, the thalamus fea-

tured intermediate values and the cortex featured the lowest values.

Within the thalamus, the MKA values were significantly higher in the

myelin-rich ventrolateral thalamus compared to in the myelin-poor med-

iodorsal thalamus (mean ± SD; 0.71 ± 0.08 vs. 0.42 ± 0.05; t(4) = 19,

p < 0.001). Within the cortex, the MKA values were significantly higher

in the four combined high myelin regions compared to in the four com-

bined low myelin regions (0.37 ± 0.04 vs. 0.20 ± 0.02; t(19) = 31,

p < 0.001). Finally, when featuring a lesion, the anterior corona radiata

exhibited decreased MKA values and increased values of MKI and MD,

compared to normal-appearing white matter.

There was a correspondence in contrast between the maps of

microscopic anisotropy and the myelin-stained histology slice

(Figure 2b). Both the MKA maps and the myelin-stain were bright in

white matter and dark in cortical gray matter. The correspondence

was seen also between substructures, for example, in the intensity

gradient between the myelin-poor mediodorsal thalamus and the

myelin-rich ventrolateral thalamus. The MKA map was comparatively

hyperintense in some white matter regions, including the internal cap-

sule and the corpus callous, possibly reflecting a high orientation

coherence and anisotropic diffusion in the extracellular space.

FIGURE 3 Parameter values from the representation-based analysis (Equation 1) of b-tensor data. The parameter representing microscopic

anisotropy (MKA) yielded the overall strongest contrast between regions, and the MKA values were higher in regions expected to feature a higher
myelin content. In general, the MKA values were highest in white matter, intermediate in the thalamus and lowest in the cortex. In particular, the
MKA was significantly higher in the myelin-rich ventrolateral thalamus compared to in the more myelin-poor mediodorsal thalamus (p < 0.001;
group A) and in the combined high myelin cortical regions compared to in the combined low myelin cortical regions in (p < 0.001; group B).
Meanwhile, no clear trend was observed in the parameters representing the mean diffusivity (MD) and the isotropic kurtosis (MKI). White matter
featuring a lesion (the anterior corona radiata; group C) exhibited reduced MKA values and increased MKI and MD values compared to normal-
appearing (NA) white matter [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Biophysical modeling with compartment-
specific T2 values

Precise estimation of compartment-specific T2 values was not possi-

ble in the brain (Figure 4a), which precluded accurate estimation of

the “stick” fraction. The first row shows powder-averaged signal

curves in different brain regions (presented by column) with multi-

echo signal curves in inset plots. The second row shows how well the

minimally constrained model could explain the signal for different

fixed “stick” fractions in terms of the NRV (Equation 18). The flat “val-

leys” in the residual variance corresponded to acceptable “stick” frac-

tions between, for example, 0.3 and 0.7 in the anterior corona radiata

and between 0.0 and 0.7 in the primary auditory cortex. The cause for

the low precision is seen in the signal data. While there was a large

effect of varying the b-tensor shape (difference between LTE versus

STE reveals microscopic anisotropy), the multi-echo data did not

reveal any obvious TE dependence of the mean diffusivity (change in

slope of signal with TE, Equation 16). As a result, the data did not sup-

port estimation of all parameters of the high-capacity C0 model, and

thus wide ranges of “stick” fractions could explain data equally well in

all regions.

The flat “valleys” were related to wide ranges of acceptable

compartment-specific T2 values and diffusivities, as shown by the

third and fourth rows of Figure 4a. For example, acceptable T2 values

for the “stick” compartment ranged between 57 and 93 ms in the

anterior corona radiata and between 44 and 118 ms in the primary

auditory cortex. Although the isotropic diffusivity was generally higher

in the “ball” compared to the “stick” compartment, the difference was

apparently insufficient to yield precise compartment-specific T2

values (Equation 17).

Results from white matter lesions stood in contrast to those from

the healthy brain. In the lesions, data did allow precise estimation of

the “stick” fraction, and the ranges of data-compatible “stick” fractions

were narrow (Figure 4b, second row). The signal exhibited a TE

dependence (first row) and the “ball” compartment featured a longer

T2 value (third row) and higher isotropic diffusivity (fourth row) com-

pared to the “stick” compartment. These results would be expected

for lesions of the ischemic type, where histological findings have

shown a loss of tissue integrity that enlarges the extracellular space

(Englund & Brun, 1990).

Table 4 shows parameter values from all five lesions. The “stick”

fraction exhibited a considerable variation, between approximately

0.25 and 0.45, consistent with white matter lesions lying on a spec-

trum of tissue changes with varying severity (Gouw et al., 2010).

Despite this apparent heterogeneity, the diffusion and relaxation

properties of “sticks” were similar across lesions, and the estimated

values were similar to values previously reported in healthy white

matter. The “stick” T2 values were between 60 and 80 ms, similar to

those reported for this region in Veraart, Novikov, and Fieremans

(2017), and the isotropic diffusivities were approximately 0.7 μm2/ms,

similar to in Veraart, Novikov, and Fieremans (2017) and Dhital,

Reisert, Kellner, and Kiselev (2017). A possible interpretation of this

finding is that the remaining axons inside white matter lesions retain

properties close to those in normal tissue.

4.3 | Brain region rankings by the “stick” fractions of
constrained biophysical models

As expected, all constrained models (Table 1) obtained precise solu-

tions when fit to the combined b-tensor and multiple TE data.

Figure 5a exemplifies how the ranges of “stick” fractions that fit data

well (low NRV, Equation 18) were narrow (solid lines) compared to for

the minimally constrained model (C0; dashed line). It also shows that

the different constraints tended to “prefer” different values of the

“stick” fraction (location of curve minima).

Comparing seven regions using the six constrained models

yielded rather different patterns of “stick” fractions (Figure 5b), with

significantly different rankings (p = 0.025, rank-based permutation

test). As an example of the difference in rankings we use sets C1 and

C6, which achieved the overall best fits (Figure 5c), and compare the

“stick” fractions in the mediodorsal thalamus and in white matter

lesions. Set C1 indicated significantly higher fractions in the former

compared with the latter (0.48 ± 0.06 vs. 0.37 ± 0.07, t[5] = 3,

p < 0.028), while set C6 indicated the opposite (0.23 ± 0.02

vs. 0.40 ± 0.06, t[5] = −4, p = 0.007), using paired two-tailed t-tests.

Qualitatively, four different ranking patterns could be observed with

respect to the “stick” fraction. The ranking obtained with constraint

set C1 (as arbitrary reference) was contradicted by a switching of the

primary auditory cortex and the mediodorsal thalamus (using C2–C4)

and by comparatively high “stick” fractions in gray matter (using C5)

and in white matter lesions (using C6).

No constrained model obtained a good fit both in healthy brain

and in white matter lesions (Figure 5c). All models obtained similar fit

qualities in white matter and in the thalamus. In the cortex, however,

an overall good fit was only obtained using set C4, which features a

CSF compartment. In general, fits were poorer in the primary auditory

cortex, compared to in the insular cortex, possibly reflecting

TABLE 3 Parameter values from the representation-based analysis

(Equation 1) of b-tensor data (Figure 1 ROIs), with means and inter-
subject standard deviations

MD (μm2/ms) MKI (1) MKA (1)

Group A

Anterior corona radiata 0.92 (0.03) 0.27 (0.06) 0.82 (0.08)

Ventrolateral thalamus 0.82 (0.01) 0.32 (0.03) 0.71 (0.08)

Mediodorsal thalamus 0.86 (0.02) 0.40 (0.02) 0.42 (0.05)

Primary auditory cortex 0.91 (0.04) 0.43 (0.08) 0.32 (0.04)

Insular cortex 0.85 (0.02) 0.22 (0.05) 0.27 (0.04)

Group B (cortex)

Primary auditory 1.01 (0.02) 0.51 (0.03) 0.32 (0.06)

Primary visual 0.99 (0.03) 0.45 (0.04) 0.43 (0.05)

Primary motor 0.96 (0.02) 0.38 (0.04) 0.43 (0.05)

Posterior cingulate 0.92 (0.02) 0.37 (0.03) 0.36 (0.04)

Insular 1.00 (0.01) 0.45 (0.02) 0.19 (0.02)

Medial orbitofrontal 0.95 (0.02) 0.41 (0.03) 0.24 (0.03)

Polar plane 1.00 (0.03) 0.47 (0.05) 0.19 (0.03)

Anterior cingulate 0.96 (0.02) 0.39 (0.03) 0.21 (0.03)

Group C (anterior corona radiata)

Normal-appearing 0.92 (0.05) 0.22 (0.05) 0.74 (0.18)

White matter lesion 1.52 (0.15) 0.36 (0.04) 0.26 (0.06)
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differences in partial volume effects with CSF. Using set C5 (as in

NODDI), however, yielded a poor fit in both cortical regions despite

its CSF compartment, likely due to relating microscopic anisotropy to

mean diffusivity (Lampinen et al., 2017). In white matter lesions,

models using the assumption of equal compartment T2 values

(Equation 11; present in C2–C5) yielded comparatively poor fits, con-

sistent with the substantial T2 differences demonstrated in Table 4.

The fit within lesions was particularly poor using set C4, likely due to

the invalid assumption of equal compartment diffusivities (Table 4).

5 | DISCUSSION

Mapping neurite density requires a correct model for diffusion in both

axons and dendrites. The conventional neurite assumption is that

these structures exhibit highly anisotropic (“stick-like”) diffusion. If this

is the case, their respective prevalence should contribute similarly to

microscopic diffusion anisotropy in the brain, and we would expect a

contrast in MKA that bears similarity to the contrast in neurite density.

In cortical gray matter, histology studies in mice have reported a

rather even split between axons and dendrites and a neurite volume

fraction of approximately 60% (Braitenberg & Schüz, 1998; Chklovskii,

Schikorski, & Stevens, 2002; Ikari & Hayashi, 1981). In white matter,

histology studies have reported a neurite density (intra-axonal volume

fraction) of 30–50% in the corpus callosum of macaque (Stikov et al.,

FIGURE 4 Compartment densities could be estimated independently from T2 relaxation in white matter lesions, but not in the healthy brain.

(a) In the healthy brain, different regions (sorted by column) exhibited rather different levels of microscopic anisotropy, as seen by the difference
between the powder-averaged LTE and STE signal curves (first row). The slopes of the signal curves for different TE (inset plots) revealed no clear
echo-time dependence of mean diffusivity (Equation 16), however, and the regions were not clearly separable by the “stick” fraction of the
minimally constrained model (Equation 5). The goodness of fit plot (second row; Equation 18) showed wide ranges of data-compatible (fixed)
“stick” fraction values, reflecting wide ranges of data-compatible compartment-specific T2 values (third row). For most “stick” fractions, however,
the isotropic diffusivity was higher in the “ball” compartment compared to in the “stick” compartment (fourth row). (b) In white matter (anterior
corona radiata) with a lesion, precise estimation of the “stick” fraction together with compartment-specific T2 values was possible. The “ball”
compartment featured a longer T2 value and a considerably higher isotropic diffusivity compared to the “stick” compartment, resulting in a
sufficient echo-time dependence of diffusion to yield a narrow range of data-compatible “stick” fractions. The plots use shaded lines for individual
subjects and thick lines for group-averages [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Best-fitting solutions for the minimally constrained model

in the five white matter lesion ROIs (Figure 4b)

fS T2B T2S DI;B DI;S

0.46 173 63 1.73 0.71

0.43 137 67 1.72 0.71

0.43 123 70 1.63 0.67

0.35 110 84 1.56 0.74

0.24 169 83 1.78 0.75

Relaxation times are in ms and diffusivities are in μm2/ms.
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2015) and mice (Jelescu et al., 2016) and in the rat spinal cord

(Xu et al., 2014). Together with a 20–50% volume fraction of myelin

water (Jelescu, Zurek, et al., 2016; Stikov et al., 2015; Xu et al., 2014)

with fast T2 relaxation (Mackay et al., 1994) that renders it MR-invisi-

ble at our relatively long echo times, an axonal volume fraction of

30–50% corresponds to an MR-visible neurite signal fraction, vaxons/

(1 − vmyelin), in the vicinity of the approximate 60% reported for the

cortex. Thus, histology suggests that the signal fraction of neurites as

observed with dMRI should be similar between gray and white matter,

wherefore, by the neurite assumption, their respective levels of micro-

scopic diffusion anisotropy should be similar. In contrast, however, we

found that microscopic anisotropy differs substantially between gray

and white matter (Figure 2–3, Table 3). Furthermore, regional differ-

ences in microscopic anisotropy were associated with myelin content,

and thus axons, both qualitatively (Figure 2b) and quantitatively

(Figure 3, Table 3), consistent with previous observations in fixed tis-

sue by Jespersen et al. (2010). These observations contradict the

neurite assumption and suggests that highly anisotropic diffusion is a

feature of axons but not dendrites. A non-zero radial diffusivity in

dendrites could be due to, for example, fast exchange with the extra-

cellular space or between short dendritic segments with different ori-

entations. A low axial diffusivity in dendrites is not a sufficient cause,

however, since it would have manifested in a higher MKI, and con-

straints that allow an independent “stick” diffusivity (such as C2)

should have yielded an “adjusted” “stick” fraction (Table 1; Figure 5b).

Our observations could potentially be explained, however, by a low

T2 value in dendrites compared to in axons, since that would con-

found a T2-weighted metric such as the MKA. Lipid composition dif-

fers substantially between white and gray matter (O'Brien & Sampson,

1965), wherefore different degrees of wall relaxation from proton

exchange could be one possible factor. Notably, such T2 differences

would also confound volume fraction estimates under the density

assumption, leading to the second part of our investigation.

Mapping compartment densities using dMRI with a single TE

requires that T2 values are approximately equal across tissue compo-

nents. In white matter lesions, our analysis of b-tensor and multi-echo

data found that water with isotropic diffusivity exhibited a longer T2

value compared to water exhibiting “stick-like” diffusion (Figure 4b,

Table 4). In the healthy brain, however, compartment-specific T2

values could not be estimated (Figure 4a) and potential confounding

effects on the “stick” fraction could not be determined. This lack of

precision also prevented us from directly assessing whether a low T2

value of neurites may explain the low levels of microscopic anisotropy

in gray matter. However, the results did indicate the approximate

ranges of compartment T2 values and diffusivities for which data are

compatible with this hypothesis. Table 5 shows group-averaged

parameter values for the solutions in the flat “valleys” from

Figure 4a. In short, the “stick” fraction could assume values in a vicin-

ity of the expected neurite density (0.5–0.7; area in bold) if the T2

value difference between “neurite” and “non-neurite” tissue was small

in white matter but large in gray matter. For example, ballpark figures

would indicate similar T2 values for neurite and non-neurite tissue

(60–80 ms) in the anterior corona radiata, but much lower T2 values

for neurites (40–50 ms) compared to non-neurite tissue (80–120 ms)

in the cortex. The solutions would also imply a higher axial diffusivity

of neurites in white matter (approximately 2.1 μm2/ms in the anterior

corona radiata) compared to in gray matter (approximately 1.5 μm2/

ms in the cortex). Thus, estimating neurite density may require cor-

recting for such differences, which is a difficult task even using multi-

shell multi-b-tensor and multi-echo data (Figure 4a). Note that appli-

cation of the density assumption of equal compartment T2 values

yields the heterogenous anisotropy observed in the representation-

FIGURE 5 Using different constraints yielded different rankings with respect to the “stick” fraction. (a) The constrained models (solid lines, here

C1 and C4; Table 1) yielded precise estimates of the “stick” fraction, seen by the narrow ranges of (fixed) values that yielded a high goodness of
fit (Equation 18) compared to for the minimally constrained model (dashed line, C0). (b) the six constrained models yielded rather different “stick”
fraction patterns, and produced significantly different rankings (p = 0.025). Thus, this set of “stick” fractions lacks ordinal accuracy across the
domain represented by the healthy brain and white matter lesions, and using these models to index the neurite density may yield constraint-
dependent results. For example, while constraint set C1 would indicate a higher “neurite density” in the mediodorsal thalamus compared to in
white matter lesions, set C6 would indicate the opposite. The error bars indicate standard errors. (c) The quality of fit (in terms of a low sum of
squared residuals, SSR) was generally high in white matter and in the thalamus, but not always in the cortex or in white matter lesions. In the
cortex, only set C4, which featured a CSF compartment, obtained a good fit. In white matter lesions, only sets allowing different compartment T2
values (C1 and C6) obtained a good fit. Note that quality of fit is not enough to rule out poor constraints. For example, using sets C1 and C6,
comparing the mediodorsal thalamus with white matter lesions yielded similar fit qualities but different results, while using sets C3 and C4 yielded

the opposite [Color figure can be viewed at wileyonlinelibrary.com]
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based analysis (Figures 2 and 3; Table 3), and an interpretation that is

in apparent conflict with histology. These results suggest that estimat-

ing neurite density from conventional single-echo dMRI has low accu-

racy. Whether such parameters could still be indices for neurite

density was explored in the third part of our investigation.

An index with sensitivity to a physical quantity could be useful

even if lacking absolute accuracy, for example, by having the ordinal

accuracy to allow comparisons between regions, conditions, or time

points. When confounding effects grow large compared to the effect

of interest, however, results become increasingly dependent on the

choice of model constraints. Here, when ranking seven regions with

respect to the “stick” fraction, using six different sets of constraints

yielded significantly different rankings (Figure 5b). From this observa-

tion, we draw two conclusions concerning the range of conditions

represented by the healthy brain and white matter lesions. First, as

there can only be one true ranking with respect to a given quantity,

such as neurite density, this range of conditions violates the domain

of validity for this set of “stick” fractions. Second, this range of condi-

tions likely features important confounding factors. We suspect com-

partmental T2 differences to be one such factor, both because of its

strong impact on estimated volume fractions (Figure 4), and because

three different patterns were observed when constraining it in three

different ways (C1: Equation 10; C2–C5: Equation 11; C6:

Equation 14). Another such factor may be isotropic heterogeneity, a

confounder for microscopic anisotropy (Mitra, 1995) that is misrepre-

sented by NODDI (Lampinen et al., 2017), seeing that set C5 yielded a

strikingly different pattern compared to the other sets using the den-

sity assumption (C2–C4; Equation 11). Note that disagreement in

ranking was not always related to difference in quality of fit, so fit

quality is not enough to rule out invalid constraints. For example,

when comparing the mediodorsal thalamus with white matter lesions,

sets C1 and C6 yielded very different results for similar fit qualities,

while sets C3 and C4 yielded similar results for very different fit quali-

ties. Although this experiment was discouraging for the prospect of

finding a widely applicable neurite density index, overcoming some of

these issues should be possible through more extensive acquisitions

and/or additional validation work.

Our investigation indicates that accurate estimation of the neurite

density requires accounting for different diffusion and/or T2 proper-

ties between axons and dendrites. As a consequence, true neurite

density estimation may not be feasible with moderate b-values and

limited ranges of TE. Obtaining indices of the neurite (or axonal) den-

sity may be possible, although their usefulness is limited to conditions

where confounding factors are small or can be reliably constrained.

One such condition could be healthy white matter, where the effects

of T2 relaxation (Clark & Le Bihan, 2000; Tax et al., 2017) and

TABLE 5 Data-compatible “stick” fractions (fS) for the minimally constrained model in the healthy brain (Figure 4a), with corresponding

parameters

fS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Anterior corona radiata

T2B − − 47 51 56 65 80 − −

T2S − − 92 78 69 62 57 − −

DI;B − − 1.02 1.12 1.19 1.25 1.30 − −

DI;S − − 0.73 0.70 0.69 0.67 0.66 − −

Ventrolateral thalamus

T2B − 47 47 51 57 66 80 105 −

T2S − 104 84 72 63 57 52 50 −

DI;B − 0.83 0.96 1.03 1.08 1.11 1.13 1.18 −

DI;S − 0.71 0.62 0.60 0.59 0.58 0.57 0.59 −

Mediodorsal thalamus

T2B 48 49 53 57 63 70 81 − −

T2S 111 76 61 53 48 45 43 − −

DI;B 0.82 0.93 0.98 1.02 1.05 1.09 1.14 − −

DI;S 0.63 0.54 0.51 0.49 0.49 0.49 0.51 − −

Primary auditory cortex

T2B 56 62 67 72 80 92 115 − −

T2S 108 60 47 44 44 45 45 − −

DI;B 0.72 0.72 0.72 0.77 0.86 1.02 1.20 − −

DI;S 0.77 0.78 0.78 0.68 0.56 0.47 0.46 − −

Insular cortex

T2B 67 74 80 87.5 97 − − − −

T2S 114 64 55 50.7 48 − − − −

DI;B 0.84 0.85 0.90 0.95 0.98 − − − −

DI;S 0.58 0.61 0.49 0.46 0.47 − − − −

Shown values are group-averages from the flat “valleys” of (best fitting) solutions in Figure 4a, with remaining values replaced with ‘-’. Values associated
with “stick” fractions that are similar to approximate neurite density estimates from histology (0.5–0.7) are written in bold. Relaxation times are in ms and
diffusivities are in μm2/ms.
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isotropic heterogeneity (Dhital, Kellner, Reisert, & Kiselev, 2015;

Szczepankiewicz et al., 2015) appear to be small, and where excellent

(ex-vivo) correlations have been demonstrated between the “stick”

fraction and histological metrics of axonal density (Jespersen et al.,

2010). Thus, in healthy white matter, existing methods such as WMTI

(Fieremans, Jensen, & Helpern, 2011), NODDI or SMT may be able to

capture the relative variation of axonal density. However, the often used

“neurite” label suggests a domain of validity that also encompasses gray

matter, where neurites may exhibit different diffusion and/or relaxation

properties (Table 5) and their disentangling may be further complicated

by CSF contamination. Extending a neurite density index to examine

pathology entails additional challenges, including new tissue components

in tumors (Wen et al., 2015), exchange between tissue components in

stroke (Lätt et al., 2009), and perturbing effects on T2 relaxation

(Figure 4b) in demyelination and/or degenerative conditions, where the

former could mimic axonal loss simply by expanding the pool of MR-

visible water with low diffusion anisotropy. In forthcoming searches for

the neurite density with dMRI, studies should attempt to elucidate the

contribution of dendrites to microscopic anisotropy, to inform con-

straints by exploring relations between diffusion and non-diffusion prop-

erties, using, for example, correlation techniques such as those presented

by Benjamini and Basser (2018) or by de Almeida Martins and Topgaard

(2018), and to delineate the domains of validity for prospective index

parameters. The current state of evidence suggests that reporting results

in terms of the “stick” signal fraction, or possibly the axonal density index

in healthy white matter, would promote the most useful interpretations

of clinical studies using biophysical models.

We note several limitations with the present study. First, the wave-

forms used to produce linear and spherical tensor encoding had slightly

different timing properties. Lundell et al. (2017) demonstrated in ex vivo

monkey brain that using waveforms with different “spectral content”

may confuse time-dependent diffusion for microscopic anisotropy. We

investigated this by comparing LTE obtained using waveforms that have

either “tuned” or “detuned” encoding spectra (e.g., similar or different

timing properties) with respect to the waveform used for STE (see Sup-

porting Information). No systematic effects of diffusion time were

observed, which is in line with multiple studies showing negligible time

dependence in living brain tissue for clinically relevant diffusion times,

both in humans (Clark, Hedehus, & Moseley, 2001; Clark & Le Bihan,

2000; Nilsson et al., 2009) and animals (Niendorf, Dijkhuizen, Norris, van

Lookeren Campagne, & Nicolay, 1996; Ronen, Moeller, Ugurbil, & Kim,

2006). Second, the waveforms used for groups B and C were not opti-

mized for negligible concomitant fields, which may induce a positive bias

in microscopic anisotropy (Szczepankiewicz & Nilsson, 2018). From

assessing the data for characteristic gross signal errors, however, we do

not believe that the effect was large for the waveforms used in this

study. Furthermore, such bias should have no systematic impact on the

intercortical comparisons performed with the group B ROIs; and the

group C data was only extracted from relatively deep parts of the brain

(the corona radiata) where the effects of concomitant fields should be

small (Szczepankiewicz & Nilsson, 2018). Third, due to the SNR penalty

from studying deep gray matter while using small voxels, we acquired

multi-echo data for a maximum b-value of 0.5 ms/μm2. Accordingly, we

could only rely on a TE dependence of the mean diffusivity to separate

compartment T2 values (Equation 16), an effect that has previously been

demonstrated to be small in the healthy brain (Clark & Le Bihan, 2000;

Qin et al., 2009; Tax et al., 2017; Veraart, Novikov, & Fieremans, 2017).

Acquiring multi-echo data for higher b-values may be a promising way

forward (Veraart, Novikov, & Fieremans, 2017). Simulations presented in

the supporting information indicate that extending our dataset with mul-

tiple TE to higher b-values could yield sufficient precision. However, the

strong attenuation associated with such data may necessitate dealing

with the Rician noise floor (Veraart, Novikov, & Fieremans, 2017) and

also complicate motion correction (Nilsson et al., 2015). Fourth, our data

had some heterogeneity due to being acquired under different condi-

tions. For example, group B lacked data for multiple TE and group C con-

tained subjects both with and without Parkinson's disease. We do not

believe this an issue, however, seeing that the relatively large group B

allowed comparisons of the (T2-weighted) microscopic anisotropy across

healthy cortical regions (Figure 3), and that Parkinson's disease seems to

have a subtle impact on diffusion (Surova et al., 2016) compared with the

effects of white matter lesions studied in group C. Fifth, part of the

data analyzed in the cortex were acquired with lower resolution

(2 × 2 × 4 mm3; group B) and likely suffered partial volume effects with

white matter and CSF. The impact on results from CSF was likely small,

however. While the MKA was almost twice as high in high myelin cortex

compared to in low myelin cortex, the MKI—a measure of isotropic

heterogeneity and indirectly of partial volume effects with CSF

(Figure 2a)—was similar (Figure 3; Table 3). With that said, future studies

could benefit from CSF nulling by the use of an inversion pulse. Sixth,

our minimally constrained model featured the “ball” constraint, thus

assuming isotropic diffusion outside of “stick-like” structures, which may

be inaccurate in regions with high orientation coherence (Fieremans

et al., 2011; Novikov, Veraart, et al., 2018; Reisert, Kellner, Dhital,

Hennig, & Kiselev, 2017). As a consequence, our white matter investiga-

tion was limited to the low-coherence anterior corona radiata. Seventh,

our minimally constrained model assumed T1 relaxation and proton den-

sity to be equal across compartments. Although we believe that these

effects may be important and should be considered in future studies,

they were outside the scope of the current work. Finally, we point out a

limitation intrinsic to most biophysical models that describe complex tis-

sue with a few parameters: bias due to simplification. For example, the

neurite interpretation could be biased if the “stick” compartment cap-

tures water in the tree-like processes of protoplasmic astrocytes that are

closely associated with gray matter dendrites, or water in the long pro-

cesses of fibrous astrocytes that accompany white matter axons (Sun &

Jakobs, 2012). Although we believe water diffusion not to appear “stick-

like” in astrocytes due their fast aquaporin-facilitated exchange (Badaut

et al., 2011), we acknowledge that more work is needed in this arena.

6 | CONCLUSIONS

This work investigated three challenges associated with estimating

the neurite density with dMRI. Analysis of data from brain regions

with low orientation coherence and white matter lesions suggested

that neurite density estimation requires accounting for different diffu-

sion and/or T2 properties between axons and dendrites, which is not

feasible with conventional multi-shell dMRI acquired with a single

echo time. Obtaining parameters that index the neurite (or axonal)
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density may be possible, but confounding factors may prevent their

use in particular outside healthy white matter. Finding a reliable neur-

ite density index in gray matter or pathology likely requires finding

correlations between diffusion and non-diffusion properties as well as

an improved understanding of diffusion in dendrites.
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