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Role of Brain Arterial Remodeling in
HIV-Associated Cerebrovascular
Outcomes
Antonio Spagnolo-Allende and Jose Gutierrez*

Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States

As the life expectancy of people living with HIV (PLWH) on combination antiretroviral

therapy (cART) increases, so does morbidity from cerebrovascular disease and

neurocognitive disorders. Brain arterial remodeling stands out as a novel investigational

target to understand the role of HIV in cerebrovascular and neurocognitive outcomes.

We therefore conducted a review of publications in PubMed, EMBASE, Web of

Science and Wiley Online Library, from inception to April 2021. We included search

terms such as HIV, cART, brain, neuroimmunity, arterial remodeling, cerebrovascular

disease, and neurocognitive disorders. The literature shows that, in the post-cART

era, PLWH continue to experience an increased risk of stroke and neurocognitive

disorders (albeit milder forms) compared to uninfected populations. PLWH who are

immunosuppressed have a higher proportion of hemorrhagic strokes and strokes caused

by opportunistic infection and HIV vasculopathy, while PLWH on long-term cART have

higher rates of ischemic strokes, compared to HIV-seronegative controls. Brain large

artery atherosclerosis in PLWH is associated with lower CD4 nadir and higher CD4

count during the stroke event. HIV vasculopathy, a form of non-atherosclerotic outward

remodeling, on the other hand, is associated with protracted immunosuppression.

HIV vasculopathy was also linked to a thinner media layer and increased adventitial

macrophages, suggestive of non-atherosclerotic degeneration of the brain arterial wall in

the setting of chronic central nervous system inflammation. Cerebrovascular architecture

seems to be differentially affected by HIV infection in successfully treated versus

immunosuppressed PLWH. Brain large artery atherosclerosis is prevalent even with long-

term immune reconstitution post-cART. HIV-associated changes in brain arterial walls

may also relate to higher rates of HIV-associated neurocognitive disorders, although

milder forms are more prevalent in the post-cART era. The underlying mechanisms of

HIV-associated pathological arterial remodeling remain poorly understood, but a role has

been proposed for chronic HIV-associated inflammation with increased burden on the

vasculature. Neuroimaging may come to play a role in assessing brain arterial remodeling

and stratifying cerebrovascular risk, but the data remains inconclusive. An improved

understanding of the different phenotypes of brain arterial remodeling associated with

HIV may reveal opportunities to reduce rates of cerebrovascular disease in the aging

population of PLWH on cART.
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INTRODUCTION

Despite the effectiveness of modern combination antiretroviral
therapy (cART), HIV infection continues to be frequently
accompanied by cerebrovascular disease and cognitive decline
(1–3). Arterial remodeling is emerging as a possible link
betweenHIV infection and cerebrovascular disease and, possibly,
cognitive disorders (4–6). However, our understanding of the
pathogenic role of HIV in arterial remodeling, especially among
the increasing population of people living with HIV (PLWH)
in long-term cART, remains limited. In this review, we will
discuss potential mechanisms underlying HIV-associated arterial
remodeling. We will also summarize our current understanding
of the potential role that HIV-associated arterial remodeling
plays in cerebrovascular disease and cognitive disorders among
PLWH, especially among those aging with HIV and in cART.
To that end, we conducted a review of publications in PubMed,
EMBASE, Web of Science, and Wiley Online Library, from
inception to April 2021. We included search terms such
as HIV, cART, brain, neuroimmunity, arterial remodeling,
cerebrovascular disease, stroke, and neurocognitive disorders.

HIV AND CEREBROVASCULAR DISEASE
IN THE cART ERA

The life expectancy of PLWH is now generally approaching that
of the general HIV-seronegative population, thanks to the advent
of cART in the mid-1990s (7–9). Although fewer PLWH are
dying of AIDS-related diseases, the prevalence of comorbidities
in PLWH that are not caused by AIDS, such as cardiovascular
disease, remains high compared with HIV-seronegative controls.
Cardiovascular disease is the second leading, non-AIDS cause of
death among PLWH in the United States, and third in Europe
(10). This includes cerebrovascular disease, which remains
prevalent among PLWH even after the widespread adoption
of cART (11–13). For instance, while the seminal Strategic
Timing of Antiretroviral Therapy (START) study demonstrated
a 40% reduction in AIDS-related diseases with early cART
administration (14), early cART and lower AIDS rates did not
preclude increased cerebrovascular risk in PLWH (15).

Studies conducted in high-income countries have established
that PLWH in the post-cART era have a 1 to 5% population
burden of stroke, while 4 to 34% show ischemic brain lesions
on autopsy (16–19). In the United States (US), the total number
of primary stroke diagnoses made in PLWH rose by 67%
between 1997 and 2006, according to a population study of
hospital stroke diagnoses (13). The timing of this increase,
quite notably, coincided with the propagating adoption of cART
and the simultaneous decrease, by 7%, of stroke admissions
in the general population. The authors remarked that the case
increase was mostly caused by a rise in ischemic rather than
hemorrhagic stroke hospitalizations among PLWH. They also
reported that the proportion of PLWH hospitalized for ischemic
stroke had more than doubled in the studied period. In a
2019 analysis of a large US healthcare claims database (20),
stroke rates in PLWH were shown to be nearly triple that of

HIV-seronegative controls, adjusting for sex and age. In 2015,
men living with HIV enrolled in the US-based Veterans Aging
Cohort Study were still shown to have an increased risk of
ischemic stroke compared to HIV-seronegative controls (21).
Hemorrhagic stroke, on the other hand, wasmore frequently seen
in the immunosuppressed than those on stable cART (22, 23).
In Europe, a Danish population-based cohort study showed the
incidence of cerebrovascular events in PLWH was 1.6 times that
of HIV-seronegative controls, adjusting for traditional vascular
risk factors (24). This rate, it should be noted, may indeed be
higher. Since both HIV and cART are independently associated
with traditional cardiovascular risk factors, adjusting for them
may have negatively biased those results (25–28). Stroke burden
among PLWH in low-to-middle-income countries is less well-
defined, but a higher burden of HIV and AIDS, along with
increasing prevalence of traditional risk factors, makes these
populations even more vulnerable to cardiovascular events (29,
30). In Malawi, for instance, the second most common cause of
stroke in 2017 was HIV (29) and in 2010, a reference hospital in
Tanzania reported that 20% of stroke cases co-occurred with HIV
infection (31).

The post-cART rise in HIV-associated stroke events, some
researchers originally suspected, could be caused by the overall
increase in HIV infections, possible side effects of new cART
drugs, improved survival on cART, or even just better recognition
of stroke symptoms among PLWH (2). The exact causes,
however, remain difficult to pin down even today. Studies trying
to determine stroke rates in HIV-positive populations often rely
on incomplete data regarding cardiovascular risk factors and on
standardized disease codes that may not appropriately capture
cerebrovascular events among PLWH (12). Nonetheless, the
literature strongly supports the existence of cerebrovascular risk
in HIV infection beyond what would be explained by traditional
risk factors. Compared to HIV-seronegative controls, PLWH
with cerebrovascular disease may be younger and less likely to
have the rates of high blood pressure and elevated cholesterol
typically seen in stroke patients (11, 32, 33). Surveys of PLWH
have shown a premature occurrence of stroke events compared
to their HIV-seronegative counterparts, especially in low-to-
middle-income countries (34).

Interestingly, a cohort of elite controllers (PLWH who
maintain undetectable viral load without cART) still showed
increased coronary atherosclerosis and biomarkers of immune
activation compared to HIV-seronegative controls (35). This
points to reasons other than high viremia and cART side effects
to explainHIV-associated atherosclerosis. The SMART study also
showed that interrupting cART in immunocompetent PLWH
led to increase in cardiovascular events, compared to those
whose cART continued after immune reconstitution, providing
further support for the role of cART in prevention, rather
than promotion, of cardiovascular disease in PLWH (36). A
separate cohort of elite controllers showed higher median carotid
intima-media thickness than seronegative controls, adjusting for
traditional cardiovascular risk factors (37). Moreover, autopsy
studies have found altered vascular caliber in the brain of
PLWH who experienced long-term viral suppression before
death (1, 5, 38–40).
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A multicenter cohort study in the US also showed that
the Framingham Stroke Risk Score underestimated long-
term risk of stroke among men living with HIV (41). In
fact, standard cardiovascular risk prediction functions that
were developed for use in the general population tend to
systematically underestimate risk in PLWH (26). This exposes the
limitations in our current understanding of the pathophysiology
of cerebrovascular disease among PLWH, which may differ from
that of people who are HIV-seronegative. Even in the absence
of AIDS, the inflammatory effects of HIV may be contributing
to vascular disease in the brain, with varying effects depending
on immunological and cART status (42). Inflammation-mediated
vascular remodeling may therefore be playing a key role in HIV-
associated cerebrovascular disease, beyond the isolated effects of
chronically high viremia, which is much less commonly seen
post-cART. Furthermore, the effects of cerebrovascular changes
in HIV infection may not be limited to stroke: they may also have
a role to play in the HIV-associated neurocognitive disorders, still
prevalent in the post-cART era (43–46).

HIV-ASSOCIATED ENDOTHELIAL
DYSFUNCTION

Arterial remodeling is the process in which arteries undergo
structural and functional changes as a response to biological
stimuli. A response that results in increase in arterial size
is defined as outward remodeling (e.g., dolichoectasia,
aneurysm), whereas a decrease in size or caliber is defined
as inward remodeling (e.g., atherosclerosis) (47). Arterial
remodeling can also be described as hypertrophic (thickening
of the vascular wall), eutrophic (constant wall thickness) or
hypotrophic (thinning of the wall) (48). When the endothelium
is functionally intact, it senses stimuli such as blood flow
and shear stress to modulate arterial remodeling (49, 50). A
dysfunctional endothelium could alter the production or passage
of vasoconstricting and vasodilating signals, thereby altering
the natural course of arterial remodeling. Studies have shown
that in PLWH, even after long-term cART, HIV-associated
endothelial dysfunction can be present and flow-mediated
dilation of arteries impaired (51–53). Endothelial dysfunction
leads to abnormal clotting and increased nitric oxide production,
altering vessel tone, permeability and chemokine expression.
This leads to leukocyte transendothelial migration (2, 36, 54–56).
The ultimate consequence of these changes is wall remodeling,
plaque formation and/or increased presence of inflammatory
cells in the vessel wall. As a consequence of HIV-induced
arterial remodeling, both thrombus formation (cause of ischemic
strokes) and possibly rupture (cause of hemorrhagic strokes)
may be precipitated (2, 57).

While HIV-associated endothelial dysfunction (and its
compromise of brain vasculature) is becoming a clearer
independent entity in the literature, the mechanisms through
which it may lead to arterial remodeling and adverse
cerebrovascular outcomes remains unclear. HIV-1 is not
understood to be directly vasculotropic. Endothelial cells do,
however, express the receptors needed for viral entry (CD4 and

CXCR5) (58). While viral replication does not take place in these
cells, endothelial function may nonetheless be altered in ways
that could initiate and propagate atherogenesis (2). Circulating
HIV-infected immune cells, freely circulating HIV, HIV proteins
(released by host cell lysis or actively secreted), and HIV-induced
proinflammatory cytokines; all have the potential to activate the
endothelium (59, 60). A 2011 biomarker study of 44 PLWH and
29 seronegative controls proposed soluble CD163 (sCD163),
a monocyte- and macrophage-specific molecule, as a marker
of HIV activity (61). In that study, in PLWH who initiated
cART in early HIV infection (≤1 year), sCD163 decreased to
levels comparable to HIV-seronegative individuals. In those who
initiated cART later (>1 year after infection), however, sCD163
remained chronically elevated. The same study also found
plasma soluble CD14 levels elevated in individuals with chronic
HIV infection, before and after cART initiation, compared
with HIV-seronegative controls. Both molecules, sCD14 and
sCD16, have been found to play a role in atherogenesis in
PLWH (62).

Continuous, cumulative exposure to noxious viral particles
and inflammatory signals over time, which happens even while in
cART, may damage the endothelium, increasing its permeability
and promoting leucocyte invasion into the vessel wall. A
chronic inflammatory state may then set the stage for arterial
wall remodeling. Circulating HIV protein Tat, for example,
has been found to cause coronary endothelial dysfunction
and non-compliance, oxidative stress and disruption of brain
microvascular endothelial function, in animal models and in
humans (63, 64). In a macaquemodel, Simian Immunodeficiency
Virus protein Nef was associated with a range of pathological
vascular phenotypes, from medial hypertrophy to thrombosis
(65, 66). In a porcine model, HIV protein Nef was shown to
decrease endothelium-dependent vasorelaxation in pulmonary
arteries (66). Both Nef and Tat have been associated with
increases in endothelial apoptosis, angiogenesis, inflammatory
cytokines and cell adhesion molecules (67). During initial
infection, before viremia can be suppressed by cART, increased
circulation of viral proteins and active inflammation may
lead to a more rapid and dramatic remodeling of vascular
architecture (68).

Viral protein Gp120, in both soluble and surface-bound forms,
has also been shown able to alter function of bystander cells
that are not directly infected with HIV, including endothelial
cells. It has been associated with endothelial cell apoptosis,
adhesion molecule expression, production of inflammatory
cytokines, increased expression of matrix metalloproteinases,
and increased permeability (69–73). A study found Gp120 to
promote endothelial cell senescence in humans; a phenotype
that promotes inflammation, vasoconstriction, and thrombus
formation (74, 75). The chronic effects of HIV proteins on
the endothelium may be intertwined with (and confounded
by) the effects of concomitant cART. cART-induced endothelial
damage has been shown to play a role in the mechanism of
endothelial dysfunction and cerebrovascular risk. However, the
deleterious effects of cART are mostly thought to occur through
metabolic abnormalities, not direct endothelial damage (2, 55,
76). While some specific ART classes (e.g., protease inhibitors)
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and individual drugs (e.g., abacavir) have been associated with
increased cerebrovascular risk, current cART regimes are largely
believed to reduce the risk overall, not increase it (42, 76). There
is also variability in the ability of different antiretrovirals to reach
therapeutic concentrations in cerebrospinal fluid (CSF): under
suboptimal drug pressure, continuous replication of HIV in the
central nervous system (CNS) is possible (77). This is evidenced
by CSF viral escape, in which HIV RNA can be detected in CSF
when it is undetectable in plasma. CSF viral escape occurs in
4 to 20% of PLWH, has been associated with cART regimes
of protease inhibitors and nucleoside reverse transcriptase
inhibitors, and with CNS inflammation (78, 79). This exposes the
cerebrovascular endothelium to higher concentrations of viral
particles and proteins, despite systemic viral suppression. It is
possible that HIV-coded proteins interact with traditional risk
factors, chronic inflammation, and cART, to ultimately cause
endothelial dysfunction. This, in turn, may lead to pathological
phenotypes of arterial remodeling and ultimately cerebrovascular
disease, as represented in Figure 1 (67). Such interactions are
sure to be complex, however, and much remains to be discovered
about them.

HIV-ASSOCIATED INWARD ARTERIAL
REMODELING

Compared to HIV-seronegative controls, PLWH in long-term
cART continue to show increased rates of atherosclerosis,
an extreme phenotype of inward remodeling, with associated
increase in risk of acute ischemic events (80, 81). The
current body of knowledge of HIV-associated atherogenesis
has been gained mostly through clinical studies, with very
few experimental studies to help explain the mechanisms
for this association, although it is well-accepted that HIV
infection promotes accelerated atherosclerosis in extra and
intracranial arteries (57, 82). A 2015 US-based brain bank
study described a direct association between HIV status and
inward remodeling of intracranial arteries (57). They observed
that, compared with HIV-seronegative controls, PLWH had a
predisposition for inward remodeling of brain large arteries,
with thicker media, thicker arterial walls, and smaller lumen-
to-wall ratio. These associations were found after adjusting
for vascular risk factors, with no statistical difference in
stenosis or calcification. With a sample of 142 HIV-positive
and 142 HIV-seronegative brain donors, half of all brain
infarcts among the PLWH in that study were attributed to
one of two arterial remodeling extremes: atherosclerosis or
dolichoectasia. Atherosclerosis accounted for a quarter of brain
infarcts in the study’s PLWH sample. Intracranial atherosclerosis
was significantly associated with a lower CD4 nadir and a
higher antemortem CD4 count. This, the authors noted, was
a novel finding, and one which agreed with HIV-associated
changes that had been reported in extracranial arteries by other
studies (83, 84). It suggested a role for the immune system
in the development of atherosclerosis, one in which a bigger
difference between CD4 count before and after successful cART
results in greater vascular inflammation. Successfully treated

FIGURE 1 | HIV-coded proteins as a cause of endothelial dysfunction and

arterial remodeling. Adapted from “HIV proteins and endothelial dysfunction:

implications in cardiovascular disease,” by A. R. Anand, G. Rachel and D.

Parthasarathy, 2018, Frontiers in cardiovascular medicine, 5, p. 185 (https://

www.frontiersin.org/articles/10.3389/fcvm.2018.00185/full). CC BY.

HIV infection with immune reconstitution could therefore be
associated with higher rates of inward remodeling of intracranial
arteries, compared to immunocompromised PLWH (who would
present a different remodeling phenotype) and to HIV-
seronegative controls. The exact mechanisms linking inward
remodeling and ultimately atherosclerosis with HIV, however,
remain unexplained.

In a another brain bank study, from 2018 (85), it was
observed that intimal lymphocytic inflammation was involved
in brain arterial remodeling, possibly contributing to the
cerebrovascular pathological findings in that PLWH sample.
The authors analyzed large brain arteries from 84 PLWH and
78 HIV-seronegative controls. In brain samples of PLWH with
antemortem CD4 count over 200, and of HIV-seronegative
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controls, a higher number of CD3T cells infiltrating the intima
was associated with histological markers of hypertrophic inward
remodeling. In samples from PLWH with CD4 counts less than
200, however, the presence of CD3T cells in the intima was
associated with hypertrophic outward remodeling instead. The
researchers hypothesized that “a sufficient” CD3T cell count
may be needed to generate an inflammatory response that leads
to inward remodeling in HIV, with subsequent luminal and
blood flow reductions. The authors also reported that adventitial
CD3T cells were decreased among PLWH compared to HIV-
seronegative controls. The decrease was more pronounced in
samples belonging to immunosuppressed PLWH. The CD3T
cell numbers in the intima, however, did not differ by HIV
status, as they did in the adventitia, and adventitial CD3T
cells were not associated with atherosclerosis. The authors of
that study could not elucidate the exact role of CD3T cells in
brain arterial remodeling, as that marker comprises a variety
of cell subpopulations with different functions. Their results,
however, pre-suppose that inflammatory cells in the brain
of PLWH may affect distinct arterial layers differently, and
immune cell quality and quantity in each layer may be associated
with immune status and disease history. It is possible that
CD3T cells are involved in brain inflammatory changes such as
HIV-associated vasculitis, arterial dilatation and inflammation
limited to the CSF (86, 87). The use of a semi-quantitative
measurement of CD3T cells, and the fact that all HIV-positive
brain samples proceeded from the same site, were limitations
to this study. Its results nonetheless point to the existence
of differential markers of inflammation in, and differential
remodeling of, brain arteries in immunocompromised
PLWH when compared to immunocompetent PLWH and to
HIV-seronegative individuals.

Biomarker studies indicate that there may also be a
role for monocyte-macrophage activation in HIV-associated
atherosclerosis. A study using a transgenic mouse model (88)
showed that, in mice with an ApoE−/− phenotype who also
expressed HIV-1, HIV expression was enough to accelerate
atherosclerosis, with increased caspase-1 pathway activation in
inflammatory monocytes. The same study also analyzed in vivo
samples from PLWH and postmortem samples from an HIV-
positive human tissue bank. The authors documented that in
vivo plasma IL-18 was higher in PLWH compared with HIV-
seronegative controls. Higher IL-18 levels were associated with
markers of monocyte-macrophage activation and non-calcified,
inflammatory coronary plaques. In the postmortem tissue sample
of PLWH, aortic plaques were associated with caspase-1-positive
cells and CD 163-positivemacrophages. This study demonstrated
that exposure toHIVmay independently accelerate atherogenesis
in humans. It also highlighted the possible role of the
caspase-1 pathway and of monocyte-macrophage activation in
HIV-associated atherogenesis.

Cerebrovascular disease mechanisms in PLWH may also
vary according to CD4 count. In a retrospective study of
PLWH (89) it was seen that, among 115 stroke cases, most
(22%) were due to large artery atherosclerosis (17%, due to
small artery disease; 16%, infectious; 8%, cardioembolic; 21%,
cryptogenic; and 16%, other causes). They found that large

artery atherosclerosis was significantly associated with longer
HIV infection and CD4 nadir less than 200. In the same sample,
stroke due to large artery atherosclerosis was associated with
higher CD4 count in the year prior to stroke, independent of
CD4 nadir. They concluded that large artery atherosclerosis was
the most frequent stroke mechanism in PLWH whose nadir
CD4 count was less than 200 (which suggests cART start later
in infection history) and whose CD4 count near the time of
the stroke was higher (which suggests successful cART). These
in vivo results support those of the brain bank study described
above (85), where hypertrophic inward remodeling, of which
atherosclerosis constitutes an extreme, was most frequently
seen in brain arteries of PLWH with higher antemortem
CD4 count.

Detecting HIV-associated brain arterial remodeling in
PLWH, in vivo, however, remains a challenge. Imaging has a
limited diagnostic or prognostic role in HIV-associated arterial
remodeling. But this role may be expanded in the future, with the
advent of more advanced or specific imaging procedures. Black-
blood MRI (BBMRI), for example, is an advanced technique
that allows better visualization of the vascular wall thickness by
nulling the signal from the vascular lumen. In current practice,
it is mostly used to assess visual markers of cardiovascular
and cerebrovascular risk from eccentric lipid-rich plaques
(90). But in PLWH it could be used to measure the vessel wall
thickness (91, 92), as seen in the example presented in Figure 2,
abstracted from the 2019 study “Subclinical Atherosclerosis
Imaging in People Living with HIV” (93). In an imaging
study with subjects with low traditional cardiovascular risk,
HIV-status was significantly associated with increased vascular
thickening, after adjusting for age (92). In another study, PLWH
on cART also showed increased carotid artery wall thickness
on MR imaging compared to HIV-seronegative controls with
similar cardiovascular risk (94). In sum, the full potential of
MRI techniques to measure arterial remodeling in PLWH
in a way that could be clinically relevant remains undefined,
but promising.

HIV-ASSOCIATED OUTWARD ARTERIAL
REMODELING

While inward remodeling leads to vessel stenosis and
atherosclerosis, outward remodeling is usually accompanied
by media thinning and vessel dilation (4, 95). In the same
US-based 2015 brain pathology study described above (57),
the researchers found that outward remodeling was the
“defining arterial phenotype” among PLWH that experienced
prolonged immunosuppression prior to death. They correlated
dolichoectasia (an extreme outward remodeling phenotype)
with media thinning and higher viral load at the time death.
Furthermore, higher lumen-to-wall ratio was the only arterial
remodeling variable associated with cryptogenic brain infarcts
in their PLWH sample. This somewhat confounded their other
finding that inward remodeling was linked to HIV, albeit in
HIV-positive cases with higher antemortem CD4 counts. The
authors posited that immune reconstitution (with increased
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FIGURE 2 | Black-blood MR imaging of the carotid arteries. Adapted from “Subclinical atherosclerosis imaging in people living with HIV,” by I. C. Schoepf, R. R.

Buechel, H. Kovari, D. A. Hammoud and P. E. Tarr, 2019, Journal of clinical medicine, 8(8), p. 1125 (https://www.mdpi.com/2077-0383/8/8/1125). CC BY. Fat

saturated T2-weighted black-blood MR images at the level of the common carotid arteries in a 56-year-old HIV-positive man (A) and a 47-year-old HIV-negative man

(B). Similar imaging technique at the level of the internal carotid arteries in a 56-year-old HIV-positive woman (C) shows narrowing of the vascular lumen bilaterally by a

plaque (small arrows), more significant on the right side. (D) shows similar imaging at the level of internal carotid arteries in a 47-year-old HIV-negative man with no

evidence of atherosclerosis.

numbers of CD3T cells) would generate a different and more
robust inflammatory response, leading to a different remodeling
phenotype, than what is seen in the immunosuppressed. This
hypothesis, however, is yet to been tested.

In the other US-based brain bank study, from 2018 (85),
the authors found that intimal lymphocytic inflammation with
hypertrophic outward remodeling was associated with adventitial
macrophages and increased elastolysis activity. They described
similar findings in a separate study of the same cohort (96).
This association has also been documented in extracranial
arteries, such as in aortic and coronary aneurysmal dilatations
(97–99). The authors of the 2018 brain bank study (85)
proposed that an interaction between immunosuppression and
intimal CD3T cells may potentiate arterial dilatation, rather
than constriction. Adventitial CD3T cell expression was not
associated with intracranial large artery atherosclerosis in their
sample. Consequently, they proposed that inflammatory cells
“may affect the intima differently than the adventitia of brain
arteries.” The exact role of adventitial CD3T cells in arterial
inflammation or remodeling is yet to be described, but it
is certainly possible that these cells are involved in other
inflammation-induced vascular changes. Indeed, separate studies
have associated the presence of CD3T cells with HIV-associated
vasculopathy and arterial dilatation (86, 87). These inflammatory
cells could contribute to adventitial inflammation in PLWHwhile
having a different role in the intimal inflammatory process that
leads to stenosis or atherosclerosis.

Evidence is accumulating in support of an independent role
for HIV in the pathogenesis of vasculopathy. In the current

literature, HIV-associated vasculopathy conventionally refers to
abnormalities of blood vessels that are a direct or indirect
consequence of HIV infection, with no alternative etiological
explanation (42). This diagnosis is usually reserved for PLWH
who present with clinical or radiological features of vasculopathy
and in whom other causes have been ruled out (2). In past clinical
case series, 13 to 28% of ischemic strokes in PLWH had been
attributed to HIV-associated arterial vasculopathy. Most of these
studies, however, did not rule out vasculopathy attributable to
opportunistic infection (3, 100, 101). Evidence of vasculopathy
has also been found in postmortem brain samples of PLWH,
even in subjects with long-term successful viral suppression
before death (102, 103). Animal models have directly linked HIV
infection to vasculopathy, independently from other causes. For
example, a study of the murine AIDS model in mice suggested
that retroviral infection can cause endothelial dysregulation
and vasculopathy. Similar experimental findings have been
corroborated in humans (104–106). Outward remodeling with
thinning of the arterial media layer has been reported as a
possible pre-clinical stage for HIV vasculopathy (38). HIV
infection could be initiating vascular injury in the brain, or
perhaps contribute to further injury to vasculature already
damaged by atherosclerosis, pre-disposing PLWH to stroke. The
exact mechanism of arterial wall damage in the context HIV
remains poorly understood, especially among subjects on long-
term cART. But pathological data suggests that, among people
who died with HIV, antemortem low CD4 counts and low
CD4 nadir were associated with intracranial arterial outward
remodeling involving wall thinning and arterial dilatation (57).
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In vivo imaging may also be an important tool in assessing
outward remodeling phenotypes in brain arteries associated
with HIV infection. A 2019 MRI study (68) using T2-weighted
imagining sequences, found that the vascular caliber of the
anterior cerebral artery, A1 segment, was higher in PLWH
compared to HIV-seronegative controls, matched for sex and
race. Meaningfully, higher CD4T cell count and longer duration
of infection were associated with decrease in A1 caliber of PLWH.
The findings of this study were in agreement with postmortem
observations in brains of PLWH (5, 38, 40). It is therefore possible
that the observed MRI changes in lumen caliber would reflect
HIV-associated vessel wall thinning and/or loss of compliance
with protracted infection. A brain bank study recognized an
association between HIV infection and thinning of medial
arterial layers, which may be a pre-clinical stage in HIV-related
vasculopathy (38). Other studies have established adventitial
inflammation in the context of HIV infection is associated with
a thinner media, and outward remodeling of the arterial wall
that would ultimately lead to dolichoectasia (40, 107). Chronic
HIV-induced damage to the inner endothelial layer could affect
vascular compliance, which could at least partially explain the
arterial luminal changes observed in brain MRI studies of PLWH
(59, 68, 108).

CEREBROVASCULAR REMODELING AND
HIV-ASSOCIATED NEUROCOGNITIVE
DISORDERS IN THE cART ERA

HIV-associated neurocognitive disorders (HAND) refer to a wide
range of neuropsychological impairments in the context of HIV
infection. While the cellular and physiological mechanisms that
lead to HAND remain poorly understood, they likely involve
chronic neuroinflammation and have the potential to alter
cerebrovascular architecture (109–111). HIV encephalitis and
widespread neuronal loss, previously thought to have pivotal
roles in the development of HAND, are no longer typically
seen in PLWH on long-term, stable cART who present with
neurocognitive impairments (112). While a recent study of
histopathological phenotypes associated with HAND showed
that pre-synaptic degeneration may precede somatodendritic
degeneration and lead to neurocognitive impairment (113), the
study cohort was composed of individuals with more advanced
illness and high frequency of HIV encephalitis, which may not
be reflective of the growing PLWH population who remain
in long-term cART (114). The introduction of cART, in fact,
reduced the overall frequency of HIV encephalitis from 54%
to less than 15% (115, 116). However, markers of HIV-induced
inflammation in the CNS are still present after viral replication
has been suppressed by cART (117, 118). The post-cART
pathology of HAND seems to have shifted to subtler, chronic
neurodegeneration, affecting more cortical regions (119).

The effects of aging, chronic HIV infection and chronic cART
may interact and cause neurodegeneration. These mechanisms
include neuroinflammation, oxidative stress, DNA damage, cell
senescence and defective proteostasis (proteasome, proteolysis
and autophagy disfunctions) (120). These common alterations

may be synergistic and lead to abnormal accumulation of
proteins typically involved in neuronal damage and dementia
(Amyloid β, Tau, α-synuclein). Dementia cases associated with
HIV in the post-cART era usually also show diffuse astrogliosis,
microglial nodules, white matter alterations and vascular changes
with peri-vascular lymphocytic infiltration (121). Due to the
several common and overlapping molecular markers involved,
trying to differentiate HAND from the mechanisms of normal
aging, Alzheimer’s disease, vascular and other forms of dementia
continues to be a source of controversy and debate (122).
Vascular disease of the brain, however, is almost universally
thought to play a role in post-cART HAND (6, 114, 123, 124).

Neuroinflammation associated with HIV infection has the
potential to compromise normal cerebrovascular function.While
HIV-induced intracranial large artery atherosclerosis would
restrict blood flow, the infection may also cause cerebral small
vessel disease (CSVD), further affecting cerebral perfusion (15,
125–130). While CSVD in the general population is largely
associated with hypertension, diabetes, and aging (131), PLWH
on cART seem to be at even higher risk, unexplained by those
exposures alone. A French study, for instance, revealed that
PLWH with well-controlled infection had twice the prevalence
of silent CSVD as uninfected controls (129). The authors
put forward HIV infection as an independent risk factor for
CSVD. An American study, on the other hand, suggested that
HIV infection and CSVD are independent, additive processes
that together cause brain atrophy and cognitive impairment
(132). The direct effects of HIV on cerebral vessels are also
difficult to separate from the potential toxic effects of long-term
cART. A US-based cross-sectional study, for instance, showed
an association between CSVD and cART regimes that include
protease inhibitors (133), after adjusting for diabetes. Mild CSVD
itself, the same study showed, was associated with HAND.

Irrespective of the specific mechanisms, post-cART HIV
infection increasingly seems associated with cerebrovascular
dysregulation and, ultimately, vascular remodeling leading
to neurocognitive dysfunction, especially in aging PLWH
(116, 134). Small and large intracranial vessel remodeling,
particularly atherosclerosis for those on long-term cART, could
be contributing factors to cognitive impairment in older PLWH
(124). In a 2014 US-based cohort study, PLWH who were over
50 years of age were twice as likely as younger PLWH to have
HAND, even after adjusting for dementia risk factors (135, 136).
A similar risk disparity has been observed in South African
aging cohorts (137, 138). HAND risk increases seen with age,
however, remain confounded by the increasing prevalence of
cerebrovascular risk factors in aging PLWH (139, 140). A 2010
US cohort study of 1,555 adult PLWH, for instance, found
that older age, elevated blood pressure, BMI, high cholesterol,
and a prior diagnosis of AIDS were all associated with worse
neuropsychological performance (141).

A 2016 American cohort study of 197 PLWH showed that
only 10% had a measurable improvement of HAND after cART
introduction, with 77% remaining more or less neurocognitively
stable and 13% deteriorating to more severe HAND while on
cART (142). The START trial, on the other hand, failed to confirm
major improvement of HAND brought on by early cART (14,
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140). HAND, for themost part, does not seem to progress inmost
PLWH on stable cART after immune reconstitution. Still, for
patients diagnosed with HAND who initiate cART, HAND rarely
resolves completely. Some alterations in brain function induced
by HIV infection may therefore be structural, longer lasting
and/or unpreventable even by stable cART. In a US-based 2019
brain bank study that included 94 PLWH, researchers performed
antemortem measures of motor functioning, processing speed,
working memory, verbal fluency, and executive functioning
(143). They reported an association between brain arterial wall
thickening and poorer global cognitive score, processing speed
and verbal fluency. Associations were independent of traditional
vascular risk factors, CD4 count, viral load, or cART use.
Intracranial arterial wall thickening was also associated with both
incident and, more strongly, with worsening HAND at the time
of death. The effects that classic vascular risk factors have on
cognitive performance appear greater in studies of cohorts with
higher CD4 counts (143, 144). The association between classical
vascular risk factors and cognitive performance may therefore be
outweighed by the effects of persistent immunosuppression.

Even accounting for limitations in sample size and biases
inherent to autopsy series, the 2019 brain bank study mentioned
above (143) signals a potential role for arterial remodeling in
HIV-associated neurocognitive decline. This role was studied in
vivo in a 2018 US-based cross-sectional analysis of 72 PLWH
and 36 HIV-seronegative controls, all over 50 years of age (111).
The authors found an association between markers of vascular
remodeling (specifically, lower Tie-2, and higher VEGF) and
worse neurocognitive function only in PLWH, suggesting that
HIV infection moderates this association. Variables other than
HIV itself linking arterial remodeling with HAND, however,
cannot been ruled out. Brain arterial wall thickening is, after all,
naturally associated with aging, Alzheimer’s disease and other
forms of dementia (145). Moreover, while atherosclerosis is a
frequent phenotype of arterial inward remodeling, it is not the
only one (146, 147). Compensatory intimal thickening with no
atheroma may result from the normal aging process, resulting
in wall thickening and arterial stiffness (145, 148). Diabetes, also
associated with HAND, could likewise confound the association
between arterial remodeling and cognitive scores (149, 150).
In the same 2019 brain bank study from above (143), possible
mechanisms linking viral suppression, lumen preservation, and
cognition remained undetermined. That viral suppression and
cART use were both associated with larger luminal diameters and
better cognition was, nonetheless, highly suggestive (143, 151).
It is also possible that HIV-associated inflammation may act as
an effect modifier in the association between intracranial arterial
wall thickness and cognition, as opposed to having an individual
causal effect. Further studies measuring systemic inflammation
and cerebrovascular pathology would be necessary to test if this
is the case. Still, there is accumulating evidence of a possible role
for HIV-induced vascular remodeling in the development and
progression of HAND post-cART initiation, a role that should
be further explored.

While more severe forms of HAND have become rare
post-cART (43), there is evidence for widespread vascular
cognitive impairment (VCI) in aging PLWH, albeit in milder and

subclinical forms (129, 143, 152, 153). VCI refers to all types
of cognitive disorder associated with cerebrovascular disease,
regardless of specific mechanisms (154). It comprises cognitive
deficits ranging from mild cognitive impairment to dementia.
While the neuropsychological and neuroimaging phenotypes of
VCI and HAND are largely overlapping and may even represent
aspects of the same neuropathological entity for PLWH, the
literature mostly describes them independently (43). In PLWH
on long-term cART, mild forms of both HAND and VCI are
associated with persistent subclinical or clinical cerebrovascular
disease, with HIV acting as a vascular risk factor (34, 155, 156).
Further studies have posited that HIV-induced chronic immune
activation, immune senescence, viral reservoir activity, microbial
translocation, and reactivation of its commonly associated
pathogens (such as CMV and herpes simplex) are also involved
in mild HAND and VCI (112, 114, 157, 158).

Although the exact causes remain unknown (and are sure
to be multifactorial and complex), both VCI and HAND are
thought to be, at least partially, generated and/or worsened by
HIV-induced cerebrovascular disease (110, 159). HIV-induced
intracranial arterial remodeling may therefore play a pathogenic
role in both entities. Some researchers have put forward a new
hypothesis proposing that the neurovasculature may actually be a
primary target for chronic HIV injury (112, 160). Endothelial cell
surfaces, they propose (and we have discussed), are chronically
perturbed in PLWH who are successfully treated and virally
suppressed. This, they posit, leads to chronic alteration of the
neurovascular unit, altering the brain’s arteries, microvasculature
and, subsequently, blood perfusion. Results from the National
NeuroAIDS Tissue Consortium brain gene array study may
back up this theory (160). The authors of that study found
that HAND (without HIV encephalopathy) is characterized by
abnormal regulation of gene transcription in brain endothelial
cells (161). This chronic alteration of neurovascular biology
may be a prevalent process in virally suppressed PLWH.
Neurovascular unit damage-associated forms of VCI and HAND
could indeed be the more prevalent forms in the post-cART.
This would help explain the milder clinical profile of cognitive
impairment in cohorts of PLWH on long-term, successful
cART, in whom acute inflammatory infiltrates of the brain are
rarely seen, while low-grade chronic immune activation is much
more prevalent (6, 123, 162–165). In the patients who remain
immunocompromised, however, acute inflammation would
continue to be the more prevalent mechanism of injury to brain
vasculature (112, 160).

CONSIDERATIONS REGARDING
SARS-COV-2 AND HIV COINFECTION

The coronavirus disease 2019 (COVID-19) pandemic is caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). This virus binds to the angiotensin-converting enzyme
2 (ACE2) to infect cells (166, 167). This enzyme is expressed
in the lungs, small intestine and brain (168). The expression of
ACE2 in cortical neurons and glia makes them susceptible to
SARS-CoV-2, which may explain the high incidence of anosmia
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and other neurological deficits seen in COVID-19 (169). In
the brain, however, ACE2 is also expressed in endothelial and
smooth muscle cells. ACE2 normally counteracts the effects
of ACE1 and angiotensin II. Overexpression of ACE2 in
neuronal cells and endothelial progenitor cells, in fact, has a
protective effect from ischemic stroke (170, 171). As SARS-CoV-
2 invades cells it depletes ACE2 through receptor endocytosis,
leaving ACE1 unopposed. Resulting angiotensin II excess impairs
endothelial function, leading to a proinflammatory state with
organ-damaging effects seen in the lungs, heart and brain
(172). SARS-CoV-2 proliferation in vascular endothelial cells
also leads to endothelialitis (173). SARS-CoV-2 antigens can
activate the complement system, macrophages, and neutrophils,
further damaging endothelial cells. This injury may compound
the loss ACE2’s vasoprotective effects (174). This is particularly
concerning given that even limited injury to the endothelium of
cerebral vessels can initiate in situ thrombosis and lead to strokes
(175, 176).

Recent retrospective studies of PLWH hospitalized due to
COVID-19 conducted in the US, however, found no significant
differences in clinical outcomes of PLWH compared to HIV-
seronegative controls (177, 178). Cohort studies conducted in
Spain similarly reported a lack of significant differences in
COVID-19 hospitalization outcomes for the two groups (179,
180). One of those studies further noted that PLWH receiving
cART regimes that included tenofovir disoproxil fumarate with
emtricitabine had indeed lower risk of COVID-19 infections
and hospitalizations, compared to PLWH receiving other cART
regimes (180). But these results remain in need of confirmation
in other populations. While possible interactions of SARS-CoV-
2 and HIV are actively being researched, the possible long-term
effects remain unknown, especially as it relates to PLWH on
long-term cART. It is possible that SARS-CoV-2 may compound
endothelial damage brought on by chronic HIV infection in
the brain vasculature, with certain cART regimes offering more
protection from these effects. Nevertheless, the research on
SARS-CoV-2 infection in PLWH is still too nascent to offer
any conclusions.

DISCUSSION

The vast majority of PLWH reside in low-to-middle-income
countries, where overall stroke incidence has more than doubled
in the last 40 years (181, 182). It is thus expected that global
stroke incidence in PLWH will continue to increase (183).
In high-income countries, on the other hand, the absolute
numbers of stroke in PLWH on cART are comparatively low
(42). Nonetheless, the relative rise in HIV-associated ischemic
stroke post-cART introduction is still a public health concern.
Therefore, developing the capacity to prevent cerebrovascular
morbidity and mortality in an aging PLWH population
constitutes an increasingly urgent public health priority, for both
low-to-middle- and high-income countries.

The literature reveals that PLWH on cART still suffer
higher rates of cerebrovascular disease than the general
population (10–13). Stroke in PLWH occurs pre-maturely and

is less associated with traditional risks factors compared to
HIV-seronegative controls (11, 12, 32, 33). Ischemic stroke is
the type most often associated with HIV in the post-cART
era, with hemorrhagic stroke remaining the more frequent
form in immunocompromised PLWH (3, 22, 23, 184). But
significant gaps in the literature remain regarding the specific
pathophysiology of cerebrovascular disease in PLWH. These
gaps may preclude health providers and researchers from
more accurately assessing and preventing cerebrovascular risk
in PLWH, compared to HIV-seronegative populations. Still,
considering the available data, emphasizing cardiovascular risk
reduction interventions to optimize cardiovascular health is
essential for maintaining brain health in an aging PLWH
population. Such interventions may mitigate the effects of
HIV-associated pathological cerebrovascular remodeling, when
combined with appropriate and sustained cART (132).

Increasing evidence shows that vascular endothelium is
affected by circulating HIV products in the context of long-term
cART, even with low or undetectable viremia and no discernible
direct interaction between endothelial cells and the virus (51–53).
HIV-induced endothelial dysfunction is a likely precursor to
arterial remodeling. The endotheliummay initiate and propagate
atherogenesis while also inducing thrombus formation, pre-
disposing PLWH to ischemic stroke (2, 57). In order to
minimize the effects of HIV in brain vascular endothelium, cART
regimes that are more likely to reach and maintain therapeutic
concentrations in the CNS should be favored. Still, the complex
interactions between HIV-infection, circulating HIV particles,
cART, and traditional cerebrovascular risk factors leading to
arterial remodeling remain poorly understood. Additionally,
endothelial damage induced by of SARS-CoV-2 and HIV
coinfection, in the context of the COVID-19 pandemic, is a
possibility. This and other possible long-term effects of the
COVID-19 pandemic on PLWH on cART, however, remain to
be seen.

HIV infection is associated with inward remodeling in general,
and atherosclerosis in particular, of intracranial arteries (57,
82). Because lower CD4 nadir is associated with intracranial
large artery atherosclerosis, even after prolonged immune
reconstitution brought on by cART (89), proper population
screening leading to early HIV diagnosis is essential. Early
diagnosis would allow for the start and maintenance of cART
before an accentuated drop in CD4 occurs, which could
potentially help prevent brain atherosclerosis associated with a
lower CD4 nadir.

Arterial remodeling may also play a role in HAND,
especially in the milder forms which patients on stable cART
more often express (116, 134). Both small and large vessel
atherosclerosis have been linked to cognitive impairment in
older PLWH (124). Long-term cART and viral suppression,
on the other hand, were associated with larger intracranial
arterial vessel diameters and better cognition (143, 151).
The current literature shows that treated HIV infection is
associated with premature aging, which affects the brain (128).
However, the extent of the overlap betweenHIV-induced changes
in the brain of PLWH, non-HIV types of dementia, and
normal aging, remains a matter of debate. While the exact

Frontiers in Neurology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 593605

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Spagnolo-Allende and Gutierrez HIV-Associated Brain Arterial Remodeling

mechanisms through which PLWH on cART develop VCI and
HAND are unknown, they are at least partially originated or
worsened by intracranial cerebrovascular remodeling (110, 159).
Interventions aimed at preventing pathological brain vascular
remodeling may, therefore, have some positive effects on the
overlapping forms of HIV-associated cognitive decline post-
cART. Such interventions and their effects are also targets for
future research.

Neuroimaging may have a role to play in the future of
cerebrovascular risk assessment and prevention in HIV infection.
MRI techniques have been able to detect the arterial wall
thickening and atherosclerosis associated with treated HIV
infection (91, 92). MRI also showed some promise in measuring
HIV-associated vasculopathy in vivo. A recent imaging study,
for instance, showed that anterior cerebral artery caliber was
higher in PLWH compared to controls, but higher CD4T cell
count and longer-treated HIV infection were associated with
decreases in that same caliber (68). MR imaging may therefore
be used in the future to assist in elucidating the natural history
of arterial remodeling in successfully treated HIV infection,
but the current literature on this subject remains limited and
inconclusive. The clinical and screening applications of imaging
these for the benefit of PLWH cerebrovascular health remains to
be tested.

No pharmacological interventions were found in the literature
that would significantly reverse HIV-associated pathological
brain arterial remodeling. For the general population, statin
therapy has shown some effect on improving pathological

remodeling phenotypes and atheroma composition, leading to
modest improvement of microvascular function in coronary
artery disease (185). Statins have also shown some protective
effects against stroke and other embolic events in patients
with aortic atherosclerotic plaques (186). Therapeutics that
would reverse pathological arterial remodeling in the brain
of PLWH, however, have not been studied. Therefore, it is
recommendable that effective HIV long-term care continues
to be accompanied by standard cardiovascular risk prevention,
which has the potential to impede the progression of pathological
vessel remodeling. More research leading to an improved
understanding of brain arterial remodeling phenotypes
associated with HIV may reveal further therapeutic targets.
These targets would present opportunities to reduce the burden
of cerebrovascular disease and cognitive impairment in the aging
population of PLWH on cART.
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