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The yeast Dsl1 complex, which comprises Dsl1, Tip20, and Sec39/Dsl3, has been
shown to participate, as a vesicle-tethering complex, in retrograde trafficking from the
Golgi apparatus to the endoplasmic reticulum. Its metazoan counterpart NRZ complex,
which comprises NAG, RINT1, and ZW10, is also involved in Golgi-to-ER retrograde
transport, but each component of the complex has diverse cellular functions including
endosome-to-Golgi transport, cytokinesis, cell cycle checkpoint, autophagy, and mRNA
decay. In this review, we summarize the current knowledge of the metazoan NRZ complex
and discuss the “moonlighting” functions and intercorrelation of their subunits.

Keywords: autophagy, CATCHR tether complex, cell cycle, endoplasmic reticulum, mRNA decay, NAG, RINT1,

ZW10

INTRODUCTION
The unicellular organisms Escherichia coli and yeast
Saccharomyces cerevisiae have roughly 4300 and 6600 genes,
respectively, whereas the multicellular organism human contains
22,000–26,000 genes. One may feel that the number of the human
genes is too small, given the complex architecture and function
of human being. The limited number of genes in multicellular
organisms may be due to a strong selective pressure; cells might
have evolved not to increase the number of genes because more
energy and time are necessary to carry extra genes and accurately
transcribe and translate them. To prevent the increase in gene
number, multicellular organisms might adopt a strategy to reuse
certain proteins for very different cellular processes. Jeffery
(1999) coined the term “moonlighting protein” to describe
proteins with multiple roles. The list of moonlighting proteins
continued to expand and now includes components implicated in
membrane trafficking (reviewed by Copley, 2012; Royle, 2013).

The Dsl1 complex in yeast comprises Dsl1 (VanRheenen
et al., 2001), Tip20 (Sweet and Pelham, 1993), and Sec39/Dsl3
(Mnaimneh et al., 2004; Kraynack et al., 2005). This com-
plex is a member of the Complex Associated with Tethering
Containing Helical Rods (CATCHR) family (Yu and Hughson,
2010) and has been implicated in tethering of Golgi-derived
transport vesicles with the endoplasmic reticulum (ER) (Andag
et al., 2001; Reilly et al., 2001; Andag and Schmitt, 2003; Zink
et al., 2009; Diefenbacher et al., 2011). In 2004, using an
immunoaffinity method we isolated from rat liver membranes
a large complex containing syntaxin 18, an ER-associated solu-
ble N-ethylmaleimide-sensitive factor attachment protein recep-
tor (SNARE) implicated in membrane fusion (Hatsuzawa et al.,
2000), and found that the complex includes ZW10 and RINT1
(Hirose et al., 2004). Several lines of evidence suggest that ZW10

and RINT1 are the mammalian counterparts of yeast Dsl1 and
Tip20, respectively, although the amino acid sequence identities
between the yeast and mammalian proteins are very low (∼14%).
Intriguingly, both ZW10 and RINT1 had been discovered as cell
cycle checkpoint proteins (Williams et al., 1992; Xiao et al., 2001).
Nowadays, the mammalian Dsl1 complex is known to partici-
pate not only in membrane trafficking and cell cycle but also
in other cellular processes including autophagy. In this review,
we will focus on the moonlighting functions of the mammalian
Dsl1complex, alternatively called the NRZ complex. Regarding
the detailed structural and functional features of the Dsl1 com-
plex and other CATCHR family complexes, we refer readers to
some excellent reviews (Bröker et al., 2010; Brown and Pfeffer,
2010; Schmitt, 2010; Yu and Hughson, 2010; Bonifacino and
Hierro, 2011; Spang, 2012; Hong and Lev, 2014).

DSL1 COMPLEX: A TETHER AT THE ER
In eukaryotic cells, communication between organelles in the
secretory and endocytic pathways is mediated by membrane-
bound vesicles that transit between organelles. Transport vesicles
are formed at the donor compartment, traffic to their destination,
lose their coat, and fuse with the acceptor compartment. Docking
and fusion of transport vesicles with the target membrane involve
an initial contact mediated by Rab GTPases and tethering factors,
followed by SNARE-catalyzed membrane fusion.

Tethering factors, which not only facilitate long-range inter-
actions between transport vesicles and the acceptor membrane
but also coordinate SNARE complex assembly, can be classified
into two groups, large proteins with extended coiled-coils and
multisubunit protein complexes. The CATCHR complexes are a
subfamily of the multisubunit tethering complexes consisting of
the Dsl1, COG, exocyst, and GARP complexes (Yu and Hughson,
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2010). Despite subtle sequence homology among their subunits,
the CATCHR family tethers have strong three-dimensional struc-
tural homology.

The yeast Dsl1 complex, which comprises three subunits
(Dsl1, Tip20, and Sec39/Dsl3) (Figure 1A), has been implicated
in tethering of Golgi-derived transport vesicles on the ER (Andag
et al., 2001; Reilly et al., 2001; Andag and Schmitt, 2003; Zink
et al., 2009; Diefenbacher et al., 2011). Although all these proteins
are rich in α-helices, their origins may be different; Dsl1 and
Tip20 have a common α-helical fold, thus originating from
an ancestral CATCHR protein (Tripathi et al., 2009), whereas
Sec39/Dsl3 lacks the shared fold and thus appears to be derived
from a non-related protein (Ren et al., 2009). The Dsl1 com-
plex resides on ER membranes and binds to and regulates the
assembly of the ER SNAREs Ufe1, Sec20, Use1/Slt1, and Sec22
(Figure 2A) (Kraynack et al., 2005; Ren et al., 2009; Diefenbacher
et al., 2011). The Dsl1 complex has been predicted to form

FIGURE 1 | Subunit compositions of the Dsl1 (A), NRZ (B), and RZZ (C)

complexes. ZWINT is not included in the RZZ complex, but shown here
because it may have a role corresponding to Tip20/RINT1 in the Dsl1/NRZ
complexes. The ZW10-binding site on ROD has not been mapped. N and C
indicate the N- and C-terminal regions, respectively.

a 20-nm-tall tower from the ER surface, which can allow an
interaction with COPI-coated vesicles (Ren et al., 2009). The
COPI (α- and δ-COPs)-binding sites in Dsl1 have been defined
to its central acidic region (Andag and Schmitt, 2003), which is
located in the tip of the tower (Ren et al., 2009). An additional
role of the Dsl1 complex is to assist uncoating of COPI-coated
vesicles tethered on ER membranes. In this role, Dsl1 may block
domains in COPI that drive repolymerization and the formation
of large COPI aggregates (Zink et al., 2009).

While the roles of the yeast Dsl1 complex have been so far
entirely limited to the tethering function on the ER, one study
has suggested the involvement of the Dsl1 complex in peroxi-
some biogenesis. Previously, peroxisomes were recognized as an
autonomous organelle, but recent studies have revealed a primary
role of the ER in the de novo formation of peroxisomes (reviewed
by Agrawal and Subramani, 2013). Searching for ER-associated
proteins responsible for this role revealed that all Dsl1 com-
plex components are required for peroxisome biogenesis (Perry
et al., 2009). It was speculated that Dsl1 complex components
may function as a tether for retrograde carriers from peroxisomes
(Nagotu et al., 2010) or an anchor to recruit dynein for peroxi-
some biogenesis (Perry et al., 2009), but the mechanism by which
Dsl1 complex subunits regulate peroxisome biogenesis should be
elucidated in future studies.

The mammalian counterpart of the Dsl1 complex was iden-
tified by us (Hirose et al., 2004; Aoki et al., 2009) and was later
called the NRZ complex for its subunit names, NAG (Sec39/Dsl3),
RINT1 (Tip20), and ZW10 (Dsl1) (Civril et al., 2010) (Figure 1B
and Table 1). Like the yeast Dsl1 complex (Sweet and Pelham,
1993; Kraynack et al., 2005; Ren et al., 2009; Tripathi et al., 2009;
Diefenbacher et al., 2011), the NRZ complex is associated with the
ER SNAREs syntaxin 18 (Ufe1), BNIP1 (Sec20), p31 (Use1/Slt1),
and Sec22b (Sec22) (Figure 2B) (Hatsuzawa et al., 2000; Hirose
et al., 2004; Nakajima et al., 2004; Aoki et al., 2009; Uemura et al.,

FIGURE 2 | Interactions between tethers and SNAREs. (A) On yeast
ER membranes, Tip20 and Sec39 bind to the N-terminal regions (N) of
Sec20 and Use1/Slt1, respectively. The region of Dsl1 shown in blue
represents an acidic region that interacts with COPI components. (B)

On the mammalian ER, RINT1 and NAG bind to the N-terminal regions

of BNIP1 and Use1/p31, respectively. (C) On the mammalian TGN,
SNAREs binds the COG complex directly or indirectly through RINT1.
The COG complex model (Oka et al., 2005; Ungar et al., 2005) has
been slightly modified. N and C indicate the N- and C-terminal regions,
respectively.
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Table 1 | Features of subunits of the human NRZ and RZZ complexes.

Proteins Binding regions with

partners

Structural features

ZW10 (779 aa*) 1–170 aa: RINT1,
dynamitin
1–82 aa: ZWINT

Putative coiled-coil
regions** (13–38 aa,
53–83 aa, 107–130 aa,
356–383 aa,
616–636 aa)

RINT1 (792 aa) 1–264 aa: ZW10, COG1 Putative coiled-coil
regions (60–92 aa,
101–126 aa, 163–183 aa)

151–256 aa: UVRAG
358–440 aa: RBL2/p130
257–792 aa: Rad50

NAG (2371 aa) 1036–2371 aa:
ZW10-RINT1

β-propeller (1–420 aa)

Sec39-like
(734–1355 aa)

ROD (2209 aa) 1–350 aa: Zwilch β-propeller (1–390 aa)
Sec39-like
(557–1153 aa)

Zwilch (591 aa) Not determined Putative coiled-coil
regions (69–89 aa,
290–311 aa)

*aa, amino acids.
**window size = 21.

2009). The yeast Dsl1 complex interacts with another SNARE,
Ykt6 (Meiringer et al., 2011), but it is not clear whether or not the
NRZ complex binds to the mammalian ortholog of this SNARE.
The mechanism underlying SNARE complex assembly appears
to be somewhat different between mammals and yeast. In mam-
mals, the assembly of the ER SNAREs occurs in the absence of
RINT1 (Arasaki et al., 2006), whereas yeast Tip20 plays a piv-
otal role in ER SNARE complex assembly (Kraynack et al., 2005;
Diefenbacher et al., 2011). Moreover, the binding of Sec22b to
syntaxin 18 in mammals creates high-affinity binding sites for
BNIP1 and p31 (Aoki et al., 2008), whereas yeast Ufe1, Sec20,
and Use1/Slt1 form a stable complex in the absence of Sec22
(Kraynack et al., 2005).

The Dsl1 complex is conserved in plants. Screening for
Arabidopsis mutants that abnormally accumulate the precur-
sors of storage proteins, 2S albumin and 12S globulin, in dry
seeds identified a mutant, designated maigo2 (MAG2: At3g47700)
(Li et al., 2006). MAG2 is the ortholog of RINT1 (Tip20).
Affinity purification identified three MAG2-binding proteins,
MIP1 (At2g32900), MIP2 (At5g24350), and MIP3 (At2g42700).
MIP1 and MIP2 share sequence homology with ZW10 (Dsl1)
and NAG (Sec39/Dsl3), respectively, (Li et al., 2013). MIP3 is a
member of the Sec1 family domain-containing proteins, named
SCFD2. SCFD2 is present in mammals, and may bind to ZW10
(Hutchins et al., 2010), although our original study failed to detect
this protein in the syntaxin 18 immunoprecipitates (Hirose et al.,
2004). Instead, we found Sly1/SCFD1 in the precipitates (Hirose
et al., 2004), likely due to the direct binding of Sly1/SCFD1 to syn-
taxin 18 (Yamaguchi et al., 2002). The Arabidopsis Dsl1 complex is
implicated in abscisic acid-mediated response to abiotic stresses.
This response may be related to Dsl1 complex-mediated mem-
brane trafficking between the ER and Golgi (Zhao et al., 2013).

There is a homolog of MAG2, named MAG2-like (MAG2L:
At1g08400) in Arabidopsis (Li et al., 2006), and MAG2L is partially
redundant with MAG2 in response to environmental stresses
(Zhao et al., 2013).

RZZ COMPLEX: ALTERNATE ZW10-CONTAINING COMPLEX
To preserve genetic information, the genomes of organisms must
be accurately replicated and segregated before cell division. In
eukaryotes, during mitosis and meiosis, sister-chromatid segrega-
tion occurs after all kinetochores form stable bipolar microtubule
attachments. If not correctly attached to the spindle, kinetochores
activate the spindle assembly checkpoint, leading to the block of
cell cycle progression.

ZW10 (Zeste White 10) and ROD (Rough Deal) were dis-
covered as proteins that are required for faithful chromosome
segregation in Drosophila (Karess and Glover, 1989; Williams
et al., 1992). Both proteins were found to be conserved in humans
(Starr et al., 1998; Scaërou et al., 2001). At the onset of mitosis,
these proteins redistribute from the cytoplasm to kinetochores
(Williams et al., 1992; Scaërou et al., 1999) and recruit the
core spindle checkpoint proteins Mad1-Mad2 to microtubule-
unattached kinetochores (Buffin et al., 2005; Kops et al., 2005;
Gassmann et al., 2010). Once all kinetochores become stably
attached to the spindle, ZW10 and ROD are transported away
from kinetochores by dynein (Howell et al., 2001; Wojcik et al.,
2001; Basto et al., 2004). The removal of these proteins from kine-
tochores acts as a signal for the termination of the spindle check-
point (Basto et al., 2000; Chan et al., 2000). ZW10 interacts with
dynamitin, a subunit of the dynein-dynactin complex (Echeverri
et al., 1996), thereby recruiting this motor to kinetochores (Starr
et al., 1998). ZW10 and ROD form a large complex of 800 kDa,
and immunoaffinity purification identified the third component,
Zwilch (Williams et al., 2003), which encouraged Karess (2005)
to call this complex RZZ for ROD-ZW10-Zwilch (Figure 1C).
The binding of ROD and NAG to ZW10 is mutually exclusive,
suggesting that the RZZ and NRZ complexes exist as distinct enti-
ties. Structural prediction revealed unexpected similarity between
ROD and NAG. They share an N-terminal β propeller followed
by an α solenoid, which is a characteristic structure of certain
nucleoporins such as Nup133 and vesicle coat subunits such as
clathrin heavy chain and α-COP (Civril et al., 2010). In Nup133,
the C-terminal α solenoid structure is responsible for the localiza-
tion at the nuclear pore complex in interphase and at kinetochores
in mitotic cells, whereas the N-terminal β propeller domain inter-
acts with CENPF, which can recruit dynein-dynactin via NudE
or its homolog NudEL (Stehman et al., 2007; Bolhy et al., 2011).
This protein–protein interaction chain (Nup133-CENPF-NudE
or NudEL-dynein-dynactin) is reminiscent of the RZZ-mediated
recruitment of dynein-dynactin to kinetochores. ROD binds to
Zwilch through its N-terminal β propeller domain (Civril et al.,
2010), as does Nup133 to CENPF.

Zwilch and RINT1, both of which are ZW10 binding partners,
do not share any structural similarity, suggesting that Zwilch is
not a descendant of the ancestral CATCHR protein (Civril et al.,
2010). Moreover, in contrast to RINT1, Zwilch and ROD are not
well conserved in eukaryotes (Schmitt, 2010), raising the possibil-
ity that the RZZ complex was generated after the occurrence of the

www.frontiersin.org June 2014 | Volume 2 | Article 25 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Membrane_Traffic/archive


Tagaya et al. Mammalian Dsl1 complex

NRZ complex accompanied by the acquisition of an additional
function by ZW10. This is consistent with the view that the RZZ
complex is a fairly recent add-on to the core spindle checkpoint
complex (Vleugel et al., 2012). ROD and Zwilch always co-occur
in Opisthokonta, and their co-occurrence correlates well with
the presence of flagella and centrioles in Opisthokonta (Schmitt,
2010). The co-appearance of ROD and Zwilch might allow micro-
tubules and their motor dynein to function in the termination of
spindle checkpoint.

In Drosophila there is no NAG ortholog, and ROD may func-
tion as a substituent for NAG in membrane trafficking (Wainman
et al., 2012). In Drosophila spermatocytes, ROD and ZW10 accu-
mulate at the Golgi apparatus, as well as the ER in the case of
ZW10, and these proteins are required for Golgi stack integrity
(Wainman et al., 2012). The presence of ZW10 on both ER
and Golgi membranes has also been reported in COS-7 (Varma
et al., 2006) and rodent cells (Arasaki et al., 2007). Depletion
of Drosophila RINT1, as well as mutations in the ZW10 and
ROD genes, causes apparent alteration in Golgi morphology and
reduces the number of Golgi stacks. In contrast, Zwilch is not
associated with membranes and its mutation does not affect Golgi
structure (Wainman et al., 2012). ZW10 and RINT1 are nec-
essary for another membrane trafficking-related event, meiotic
cytokinesis in spermatocytes, but not for mitotic one (Williams
et al., 1992). In ZW10 or RINT1 mutant spermatocytes, regular
central spindles and actomyosin rings can assemble, but furrow
ingression halts prematurely due to a defective plasma membrane
addition. On the other hand, neither ROD nor Zwilch is required
for cytokinesis (Wainman et al., 2012).

MULTIPLE FUNCTIONS OF NRZ SUBUNITS
ZW10
During interphase, in addition to the retrograde transport from
the Golgi to the ER, ZW10 may participate in dynein-mediated
movement of endosomes and lysosomes (Varma et al., 2006). It
is not clear whether ZW10 functions in the anterograde trans-
port from the ER to the Golgi, which is mediated by dynein-
dynactin that moves toward the minus-end of microtubules
(Presley et al., 1997). One study showed that depletion of ZW10
causes the release of dynein from membranes (Varma et al.,
2006). Moreover, ZW10 moves along microtubules toward their
minus-end and accumulate at the centrosome in interphase and
at kinetochores in mitosis, when the interaction of ZW10 with
dynein-dynactin is stabilized (Inoue et al., 2008; Famulski et al.,
2011). However, a recent study strongly suggests that ZW10 acts
as a tether rather than a dynein anchor (Majeed et al., 2014). It
should be clarified in future studies how ZW10 participates in
tethering despite the lack of an acidic region responsible for the
interaction with COPI-coated vesicles in yeast Dsl1 (Andag and
Schmitt, 2003; Schmitt, 2010).

At the onset of mitosis, microtubules switch their role from the
transport of membranous structures, such as Golgi, endosomes,
lysosomes, and transport vesicles, to that of non-membranous
chromosomes as well as of kinetochore proteins. ZW10, ROD,
and perhaps many other kinetochore proteins are supposed
to move along microtubules from the cytosol to the nucleus
(Williams et al., 1992; Scaërou et al., 1999). The finding that Golgi

disassembly is required for entry into mitosis (Sütterlin et al.,
2002) might be related to this phenomenon. Presence of the Golgi
structure might be an “obstacle” for massive protein transport
along microtubules to the nucleus, and its loss may allow cytoso-
lic and ER- and Golgi-associated kinetochore proteins to enter the
nucleus just before and during nuclear envelope breakdown.

During mitosis, ZW10 interacts with several kinetochore-
associated proteins, such as ZWINT (Starr et al., 2000), C19orf25
(Kops et al., 2005), and PIASy (Ryu and Azuma, 2010). ZWINT
was first identified by yeast two-hybrid screen as a ZW10-binding
protein (Starr et al., 2000). This 43-kDa protein, predicted to be
largely coiled-coil, is recruited to kinetochores in early prophase,
before the earliest detection of ZW10, and remains there until
mid-anaphase (Starr et al., 2000; Wang et al., 2004). ZWINT
and RINT1 may have equivalent functions in different ZW10-
containing complexes. Like RINT1 (Inoue et al., 2008), ZWINT
interacts with the N-terminal region of ZW10 and helps the
recruitment of the ZW10-containing complex to the target archi-
tecture, kinetochores (Starr et al., 2000; Wang et al., 2004;
Famulski et al., 2008).

ZWINT may also play a role in membrane trafficking in inter-
phase cells. It interacts with membrane trafficking proteins such
as Rab3c, SNAP25, SNAP29, and GM130 (Lee et al., 2002; van
Vlijmen et al., 2008; Hutchins et al., 2010). Both Rab3c and
SNAP25 bind to the same region of ZWINT (amino acids 79–
179), which includes a putative coiled-coil region (van Vlijmen
et al., 2008). Rat ZWINT, called SIP30 for SNAP-25 interacting
protein of 30 kDa, is upregulated in the central nervous system in
response to neuropathic pain (Zhang et al., 2009), and is required
for neuropathic pain-evoked aversion (Han et al., 2014).

A very recent study has revealed an unexpected role for
ZWINT. ZWINT has been shown to directly interact with Beclin1
whose loss results in a significant reduction of the outer kineto-
chore proteins including ZW10, leading to a defect in chromo-
some congression (Frémont et al., 2013). Beclin1 is the mam-
malian ortholog of yeast ATG6/VPS30 and a typical moonlighting
protein participating not only in autophagy, but also in endocy-
tosis, apoptosis, and inflammation (reviewed by Salminen et al.,
2013).

RINT1
RINT1 was originally discovered as a Rad50-interacting protein
required for G2/M cell cycle checkpoint control (Xiao et al., 2001).
Depletion of RINT1 causes not only partial Golgi fragmenta-
tion (Arasaki et al., 2006; Sun et al., 2007), but also defects in
mitosis, including the formation of multiple spindle poles and
frequent chromosome missegregation (Lin et al., 2007). RINT1
heterozygous mice quite often developed multiple tumors due to
haploinsufficiency, suggesting that RINT1 serves as a tumor sup-
pressor (Lin et al., 2007). However, a recent integrative functional
genomics study has validated that RINT1 is a glioblastoma onco-
gene that can confer tumorigenicity to primary nontransformed
murine astrocytes in vivo (Quayle et al., 2012). An additional role
for RINT1 is to interact with Rb-related 2 (RBL2/p130) and con-
trol telomere length (Kong et al., 2006). Yeast Tip20 may function
in the nucleus because crystal-like structures are formed in the
nucleus of Tip20 mutants (Spang, 2012).
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Recent studies by us revealed an unanticipated involvement of
RINT1 in endosome-to-trans-Golgi network (TGN) trafficking.
Deletion of RINT1 causes a more severe dispersal of TGN pro-
teins than that of cis-Golgi proteins due to a defect in endosome-
to-TGN trafficking (Arasaki et al., 2013). In this context, RINT1
does not work with ZW10, but cooperates with the COG com-
plex (Figure 2C), another member of the CATCHR family com-
plexes (Yu and Hughson, 2010). RINT1 binds to COG1 through
its N-terminal 264-amino acid region, which is also a ZW10-
binding region (Hirose et al., 2004; Arasaki et al., 2006). This
fact may explain why the COG-containing RINT1 complex is
distinct from the NRZ complex. RINT1 binds to the SNARE (C-
terminal coiled-coil) domain of syntaxin 16, a SNARE implicated
in endosome-to-TGN trafficking (Mallard et al., 2002), and regu-
lates SNARE complex assembly presumably at the TGN (Arasaki
et al., 2013). The region of COG1 responsible for the association
with RINT1 is the N-terminal 93-amino acid region contain-
ing a putative coiled-coil region, which has been identified as a
VPS51-like domain in the Pfam database. VPS51 is a member
of the GARP complex consisting of VPS51/Ang2, VPS52, VPS53,
and VPS54 (Pérez-Victoria et al., 2010). Although RINT1 binds
to the VPS51-like domain of COG1, it does not bind to Vps51
or other GARP subunits (Arasaki et al., 2013). The COG and
GARP complexes are also involved in endosome-to-TGN traffick-
ing through the interaction with TGN SNAREs (Pérez-Victoria
and Bonifacino, 2009; Pérez-Victoria et al., 2010; Laufman et al.,
2011, 2013; Willett et al., 2013). The requirement of many dif-
ferent tethers for endosome-to-TGN trafficking likely reflects the
presence of multiple sources of vesicles that traffic to the TGN.
Moreover, the participation of RINT1 in this pathway may reflect
adaptation to the demand for more diverse transport routes from
endosomes to the TGN in mammals compared with those in a
unicellular organism, yeast.

Autophagy is a process to engulf, degrade, and recycle cyto-
plasmic contents, and is required for cell survival in response
to starvation. Recent work by Liang and colleagues (He et al.,
2013) revealed a connection between RINT1 and autophagy.
UV-radiation resistance-associated gene (UVRAG) interacts with
Beclin1 through its coiled-coil region, which in turn activates
phosphatidylinositol 3-kinase for autophagy (Liang et al., 2006;
Itakura et al., 2008). It also plays a role in endocytosis under basal
conditions (Liang et al., 2008). He et al. (2013) discovered that,
in fed cells, UVRAG is associated with RINT1 and participates
in tethering of COPI vesicles in cooperation with the NRZ com-
plex. Upon starvation, it dissociates from RINT1 and binds to
Beclin1, which in turn promotes ATG9 translocation from the
Golgi to the autophagosome biogenesis site (He et al., 2013). It
should be noted that Beclin1 interacts with ZWINT (Frémont
et al., 2013), suggesting a connection between membrane traf-
ficking (RINT1), kinetochore function (ZWINT), and autophagy
(Beclin1-UVRAG) (Figure 3).

NAG
The neuroblastoma-amplified gene (NAG), alternatively called
neuroblastoma-amplified sequence (NBAS), was first identified
as a gene co-amplified with the MYCN gene in neuroblastoma
(Wimmer et al., 1999). This amplification occurred likely because

a 2.8 Mb non-fragile region containing the MYCN and NAG genes
flanks the FRA2C region, a common fragile site of chromosomes
(Blumrich et al., 2011). The association of NAG with tumor
progression and prognosis remains controversial (Scott et al.,
2003; Weber et al., 2004; Kaneko et al., 2007). Although NAG
is well conserved in eukaryotes, the molecular size is very differ-
ent between fungi and other eukaryotes (Schmitt, 2010). In many
fungi, the molecular size of the predicted NAG orthologs, such as
yeast Sec39/Dsl3, is about 80–100 kDa, whereas in other eukary-
otes, the size is almost 2 to 3-fold larger than fungal proteins
because of the presence of a long N-terminal extension compris-
ing a β propeller domain and a long C-terminal extension, in
addition to the central Sec39-like domain (about 13% homology
between human and yeast).

The larger size of metazoan NAGs may allow them to have
additional functions. Indeed, NAG has been reported to par-
ticipate in nonsense-mediated mRNA decay (NMD) (Longman
et al., 2007, 2013; Anastasaki et al., 2011). The NMD pathway
is an elaborate surveillance mechanism that triggers the degra-
dation of mRNAs containing premature termination codons
(PTCs) and also regulates ∼10% of naturally occurring tran-
scripts (reviewed by Chang et al., 2007). A genome-wide RNA
interference screen in Caenorhabditis elegans identified NAG and
a member of the DEAD/DEAH-box helicases, DHX34, as fac-
tors responsible for the NMD pathway independent of core NMD
factors (SMG1-7) (Longman et al., 2007). This pathway is con-
served in zebrafish and human (Anastasaki et al., 2011), and
NAG and DHX34, like core NMD factors, co-regulate a signif-
icant proportion of genes (Longman et al., 2013). Given that
DEAD/DEAH-box helicases are commonly involved in many
aspects of RNA metabolism including transcription, pre-mRNA
splicing, translation, and mRNA decay (reviewed by Fuller-Pace,
2006), the involvement of DHX34 in the NMD pathway is under-
standable. However, the mechanism underlying NAG-mediated
NMD is totally unknown. Interestingly, a mutation in the NAG
gene has been shown to be a cause for the hereditary short stature
syndrome (SOPH syndrome) in Yakuts, who live in the far east
of the Russian Federation (Maksimova et al., 2010). This autoso-
mal recessive disorder is associated with optic nerve atrophy and
Pelger-Huët anomaly, the latter of which is characterized by an
abnormal nuclear shape in neutrophil granulocytes (Maksimova
et al., 2010). These symptoms may be explained by the fact that
NAG is involved in the NMD pathway and ER function. As the
outer nuclear membrane is contiguous with the ER, disruption of
the ER structure may affect the nuclear morphology.

Nicotiana benthamiana NAG comprises 2409 amino acids,
thus can be classified to non-fungal NAGs, and its silencing causes
ER stress and cell death (Lee et al., 2013). This phenotype may be
relevant to that observed in MAG2 mutants (Zhao et al., 2013).

CONCLUSIONS AND PERSPECTIVES
Figure 3 shows the summary of protein–protein interactions
between NRZ components. Many, but not all, interactions are
mediated through putative coiled-coil regions. As described
above, the NRZ complex, as well as the Dsl1complex, consists
of two distinct structural units. ZW10 and RINT are derived
from the CATCHR family ancestor, and NAG is from a different
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FIGURE 3 | Correlation diagram of NRZ complex subunits. ZW10 is the
center for the interactions. Through its N-terminal, putative coiled-coil region, it
interacts with RINT1 for membrane trafficking (Hirose et al., 2004; Inoue et al.,
2008), dynamitin for recruiting the dynein-dynactin complex (Starr et al., 1998;
Inoue et al., 2008), ZWINT for the association with kinetochores (Wang et al.,
2004; Kops et al., 2005). The C-terminal region of ZW10 likely interacts with
NAG and ROD (Kraynack et al., 2005; Aoki et al., 2009; Civril et al., 2010). The
interaction of Zwilch with ZW10 is not tight in the absence of ROD (Civril et al.,

2010). On the other hand, RINT1 interacts with COG1 through its N-terminal,
putative coiled-coil region (Arasaki et al., 2013). This interaction mode may be
a common for the interactions of CATCHR family members. The N-terminal
region is also responsible for the interaction with UVRAG, but in this case,
RINT1 keeps the binding to ZW10 (He et al., 2013). The RINT1 interacts with
RAD50 and RBL2/p130. UVRAG interacts with RINT1 under basal conditions
and, upon starvation, dissociates from RINT1 and interacts with Beclin1. Of
note is that Beclin1 during mitosis interacts with ZWINT, a ZW10 partner.

one. Because a CATCHR family member RINT1 interacts with
another CATCHR family member COG1 (Arasaki et al., 2013), it
is tempting to speculate that RINT1 orthologs in other eukary-
otes may also interact with CATCHR family members. Indeed, a
comprehensive analysis of protein–protein interactions in yeast
demonstrated that Tip20 can interact with COG4 (Uetz et al.,
2000). Like RINT1, ZW10, and its orthologs may also interact
with CATCHR family members. Given that SCFD1 and SCFD2
bind to the mammalian COG4 (Laufman et al., 2009) and plant
MAG2 (Li et al., 2013), respectively, it is worth examining the
interactions between CATCHR family members and Sly1 fam-
ily (SCFD) proteins. The currently available data suggest that
the role of RINT1 in autophagy is passive; it anchors UVRAG
until autophagy induction. However, as the ER is a major source
of autophagosome formation (reviewed by Lamb et al., 2013),
RINT1 and other NRZ complex subunits may have more active
roles in autophagy.

Schmitt (2010) has proposed that the ancestor of animals
and fungi probably expressed both sets of ZW10-interacting pro-
teins (NAG- RINT1 and ROD-Zwilch). Rod and Zwilch encoding
genes have been assumed to be lost independently in different
phylogenetic branches, and Sec39 likely lost the N-terminal β-
propeller domain in parallel with the acquisition of the acidic
COPI-interacting region by Dsl1. We would like to suggest
another possibility. The ancestor of NAG/Sec39 acquired a β-
propeller domain with a C-terminal extension for yet unrevealed
functions, and the occurrence of Zwilch might facilitate the
appearance of ROD by gene duplication. In this context, it is
important to identify proteins that interact with the β-propeller
domain and/or C-terminal extension of NAG. Moreover, elu-
cidation of the molecular mechanism by which NAG mediates

the NMD pathway may provide a clue to the reason for the
association/cooperation of CATCHR proteins with NAG.
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