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An elastic element in the protocadherin-15 tip link
of the inner ear
Raul Araya-Secchi1, Brandon L. Neel1 & Marcos Sotomayor1

Tip link filaments convey force and gate inner-ear hair-cell transduction channels to mediate

perception of sound and head movements. Cadherin-23 and protocadherin-15 form tip links

through a calcium-dependent interaction of their extracellular domains made of multiple

extracellular cadherin (EC) repeats. These repeats are structurally similar, but not identical in

sequence, often featuring linkers with conserved calcium-binding sites that confer mechanical

strength to them. Here we present the X-ray crystal structures of human protocadherin-15

EC8–EC10 and mouse EC9–EC10, which show an EC8–9 canonical-like calcium-binding linker,

and an EC9–10 calcium-free linker that alters the linear arrangement of EC repeats. Molecular

dynamics simulations and small-angle X-ray scattering experiments support this non-linear

conformation. Simulations also suggest that unbending of EC9–10 confers some elasticity to

otherwise rigid tip links. The new structure provides a first view of protocadherin-15’s non-

canonical EC linkers and suggests how they may function in inner-ear mechanotransduction,

with implications for other cadherins.
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I
n the vertebrate inner ear, sound and head movements are
transformed into electrical signals by specialized mechano-
receptors called hair cells1–3. These cells feature a bundle of

actin-filled projections (stereocilia) arranged in a staircase
formation that get deflected upon mechanical stimulation
(Fig. 1a)4. The tip of each stereocilium is linked to its tallest
neighbor by a ‘tip link’ filament essential for hair-cell mechano-
transduction (Fig. 1b)5–9. Tip links convey force and gate
inner-ear transduction channels to initiate sensory perception10.

Biophysical studies have shown that gating of hair-cell
channels is directly mediated by a soft ‘gating spring’, which
could be in series with the tip link, or be the tip link itself11–14.
After channel opening by the gating spring, transduction currents
decrease in two phases through fast and slow adaptation3,15–18.
Myosin motors are thought to mediate slow adaptation19,
while the mechanism underlying fast adaptation, including a
possible calcium-dependent release element, is not completely
understood2.

Identification of the molecular components of the hair-cell
transduction machinery has been challenging20. The exact
molecular composition of the hair-cell transduction channels is
still controversial, but a consensus on the molecular components

of tip links has recently emerged. Immature tip links are
likely formed by homotetrameric protocadherin-15 (PCDH15)
proteins21, while mature tip links are made of cadherin-23
(CDH23) and PCDH15 heterotetramers (Fig. 1c)22–27.

Cadherins form a large superfamily of proteins that include
the classical cadherins mediating calcium-dependent cell–cell
adhesion28,29. Most members of the superfamily have an
N-terminal extracellular domain made of five to six
extracellular cadherin (EC) repeats, followed by a single-pass
transmembrane helix and a C-terminal cytoplasmic domain.
CDH23 and PCDH15 are unusual members of the family that
feature 27 and 11 EC repeats, respectively (Fig. 1c)30,31.
The ultrastructure of tip links6 and molecular dynamics (MD)
simulations of CDH23 EC repeats with canonical calcium-
binding sites32 suggest that tip links are stiff and may not form
the long-sought gating spring, yet the elasticity of the entire
complex and of non-canonical EC repeats is unknown. Recent
sequence analyses and structures of cadherins have revealed
unusual calcium-free inter-repeat linkers in some members of the
superfamily33. Bound calcium ions have been shown to provide
structural rigidity to cadherins34–36, so the presence of unusual
sites may confer flexibility and perhaps affect the tertiary and
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Figure 1 | Hair-cell mechanotransduction and structure of PCDH15. (a) Schematic representation of a cochlear hair-cell stereocilia bundle highlighting the

location of the tip link. (b) Mechanotransduction apparatus. PCDH15 directly conveys force to transduction channels. (c) The tip link is formed by the

tip-to-tip interaction between CDH23 and PCDH15 parallel dimers25. Inset shows the location of the repeats studied here. (d) Ribbon diagram of PCDH15

EC8–10. Calcium ions in the EC8–9 linker are shown as green spheres. The calcium-free EC9–10 linker is bent. (e) Topology diagram of PCDH15 EC8–10.

A typical cadherin fold with seven b strands (labeled A to G) is observed for all EC repeats. The structure shows a novel EC9–10 310 helix (blue arrow) at

the EC9–10 linker and an atypical EC10 FG-a loop (red arrow). Residues that form the EC9–10 interface are highlighted with an asterisk (*).
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quaternary arrangement of the cadherins that harbor them.
Analysis of the PCDH15 sequence shows unusual calcium-
binding sites in some of its inter-repeat linkers. Here we present
the X-ray crystal structures of repeats EC8–10 and EC9–10
refined at 2.8 and 3.35 Å resolution, respectively, which show an
EC9–10 calcium-free linker that alters the linear arrangement of
PCDH15’s EC repeats (Fig. 1d). We suggest that the unusual
features of these PCDH15 repeats affect the elastic response of the
tip link and are relevant for its function in sensory perception.

Results
Overall structure of PCDH15 EC8–10 repeats. To understand
the role of non-canonical tip-link EC repeats, the human proto-
cadherin-15 EC8–10 (PCDH15 EC8–10) and the mouse EC9–10
(mmPcdh15 EC9–10) fragments were refolded from inclusion
bodies produced in Escherichia coli and used for crystallization
and structural determination (see Methods). The solved structure
of the human PCDH15 EC8–10 (2.8 Å; Table 1; Supplementary
Fig. 1) contained 333 residues starting from Ser 795 (EC8) to Glu

1,125 (numbering corresponds to the processed protein) followed
by two histidine residues that are part of the purification tag. The
structure for mouse Pcdh15 EC9–10 (3.35 Å, Table 1) contained
228 residues starting from Met 898 to Glu 1,125 (in the most
complete protomer of the four found in the asymmetric unit).
Since both human and mouse structures show similar features, we
will focus on the human PCDH15 EC8–10 structure unless
otherwise stated. Overall, each of the three EC repeats shows an
architecture similar to that of classical cadherins, with the typical
Greek-key motif comprised of seven b strands forming a b
sandwich fold (Fig. 1d,e). In addition, repeats EC8 and EC9
feature an a-helix between b strands C and D, also observed in
some of the CDH23 and PCDH15 EC1–2 repeats27,32,37. Even
though there are structural similarities with other members of the
superfamily, several features make the PCDH15 EC8–10
fragment unique.

The first unique structural feature of PCDH15 EC8–10 is a
canonical-like calcium-binding site at the EC8–9 linker with a
novel torsion between these EC repeats. In addition, the EC9–10
linker is calcium-free and bent (90�; Fig. 1d), with an EC9–10 310

helix and an EC10 FG-a loop that define the EC9–10 interface.
Each of these structural features is discussed below.

PCDH15 EC8–9 linker shows a canonical-like Ca2þ -binding site.
The PCH15 EC8–9 sequence contains most of the canonical
motifs involved in calcium binding (Supplementary Fig. 2), which
typically define three calcium-binding sites, labeled 1 to 3, with
several conserved, negatively-charged residues coordinating cal-
cium ions (Fig. 2a–c; XEXBASE and DYE from the first EC repeat,
DXNDN at the linker, and DXD and XDXTOP from the second
EC repeat). As expected, the structure shows three bound calcium
ions. However, a comparison with PCDH15 EC1–2 (Fig. 2b,c)
and other cadherins reveals that the distance between calcium
ions at positions 2 and 3 is larger in PCDH15 EC8–9 (8.48 Å
versus an average of 6.84 Å for 41 canonical linkers; Fig. 2b,c,f;
Supplementary Table 1). The most similar arrangement of cal-
cium ions is observed for those found in the C-cadherin EC4–5
linker, with a distance of 7.93 Å, but most, if not all other linkers
show a canonical arrangement. In PCDH15 EC8–9, the side chain
of Asp 933 in the DXD motif, which usually bridges calcium ions
at sites 2 and 3, only coordinates calcium at site 3 in a ‘canonical-
like’ architecture. In addition, the overall orientation of EC8 with
respect to EC9 appears contorted and bent when compared with
that of the CDH23 and PCDH15 EC1–2 repeats and other
cadherin structures (Fig. 2e; Supplementary Fig. 3). The canonical
DXNDN linker motif is DMNDY (897–901) in PCDH15 EC8–9,
with the carbonyl oxygen of Tyr 901 coordinating calcium. It is
likely that the bulky and conserved side chain of Tyr 901 and two
proline residues after the DXD motif in EC9 (934–935; also
conserved, Supplementary Fig. 4) cause the bending and atypical
separation observed between ions at sites 2 and 3.

To determine the stability of the canonical-like arrangement of
calcium ions, we performed two equilibrium MD simulations of
PCDH15 EC8–10 in solution (Table 2; Supplementary Table 2).
The unusually large distance between calcium ions at sites 2 and 3
in linker EC8–9 was fairly constant (8.1±0.2 Å) throughout these
trajectories (4400 ns; S1b; 500 ns; S1c; Fig. 2f), suggesting that
the observed conformation is stable in solution. The orientation
of EC9 with respect to EC8 shows some variability, but is
maintained over time (Fig. 2d,e; Supplementary Fig. 5a). Overall,
our PCDH15 EC8–10 structure and simulations suggest that the
EC8–9 linker is distinct from canonical cadherin linkers.

PCDH15 EC9–10 linker is bent and lacks Ca2þ -binding sites.
Sequence analysis indicates the absence of canonical calcium-
binding motifs in the PCDH15 EC9–10 linker across different

Table 1 | Statistics for protocadherin-15 structures.

HsPCDH15 EC8-10 MmPcdh15 EC9-10*

Data collection
Space group P 63 2 2 P 31

Unit cell parameters
a, b, c (Å) 157.93, 157.93,

142.90
143.54, 143.54,

95.60
a, b, g (�) 90, 90, 120 90, 90, 120

Molecules per
asymmetric unit

1 4

Beam source APS-24-ID-C APS-24-ID-E
Wavelength (Å) 0.9792 0.9792
Resolution limit (Å) 2.803 3.35
Unique reflections 26,222 31,590
Completeness (%) 99.4 (99.7) 100 (100)
Redundancy 7.8 (8.1) 5.9 (5.8)
I/s(I) 3.77 (4.09) 6.96 (2.03)
Rmerge 0.077 (0.68) 0.256 (0.93)
Rmeas 0.083 (0.73) 0.281 (1.02)
Rpim 0.029 (0.25) 0.116 (0.42)
CC1/2 0.977 (0.856) 0.913 (0.759)
CC* 0.994 (0.960) 0.975 (0.929)

Refinement
Resolution range (Å) 49.40–2.80

(2.87–2.80)
46.98–3.35
(3.44–3.35)

Rwork (%) 17.1 (35.6) 15.94 (21.5)
Rfree (%) 19.9 (38.7) 19.59 (23.9)
Residues (atoms) 333 (2,664) 900 (7,023)
Water molecules 69 25
r.m.s. deviations

Bond lengths (Å) 0.011 0.010
Bond angles (�) 1.247 1.078

B-factor average
Protein 72.6 78.4
Ligand/ion 89.79 73.63
Water 60.33 34.15

Ramachandran Plot Region (PROCHECK)
Most favoured (%) 90.2 85.5
Additionally allowed (%) 9.4 14
Generously allowed (%) 0.3 0.5
Disallowed (%) 0.0 0.0

PDB ID code 4XHZ 5KJ4

*Tertatohedrally twinned. Twin operator (twinning fraction): h, k, l (0.258); � k, � h, � l
(0.243); � h, � k, l (0.245); k, h, � l (0.254).
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species. The XEXBASE, DYE and DXNDN motifs in EC9 are
replaced by XAX, NEE and HPG-E, while the DXD and XDXTOP

motifs in EC10 are replaced by AIN and DSL (Supplementary
Figs 2 and 4). Consistently, the PCDH15 EC9–10 region shows a
calcium-free linker that is bent (B90�) and breaks the linear
arrangement of EC repeats. The bending at EC9–10 is similar to
that observed in a structure of Drosophila N-cadherin (DNcad),
which also has a calcium-free linker (PDB codes 3UBH, 3UBG)33,
and to the conformation adopted by T-cadherin (Tcad/CDH13)
in calcium-free conditions (3KR5)38. However, the PCDH15
EC9–10 linker is L-shaped, while DNcad is V-shaped, and Tcad
without calcium is U-shaped (Supplementary Fig. 6a–d). In
addition, the PCDH15 EC9–10 linker has structural features not
observed in DNcad, Tcad or any other cadherin structures39–41.
A unique EC9–10 310 helix is located in the middle of the EC9–10
linker (His 1,007–Ile 1,011; blue arrow in Fig. 1d,e), and an
atypical EC10 FG-a loop (Leu 1,091–Asn 1,105; red arrow in
Fig. 1d,e) form an EC9–10 interface that stabilizes the observed
bent conformation of the linker.

The PCDH15 EC9–10 interface can be divided into three
components (Fig. 3a,b). The first one is the EC9–10 linker formed
by residues Val 1,005 to Arg 1,013, which includes the EC9–10
310 helix. The second corresponds to a mostly hydrophobic core
formed by residues Met 913, Thr 978, Ile 980 and Leu 1,004 in
EC9 interacting with residues Val 1,093, Leu 1,098 and Val 1,100
in the EC10 FG-a loop. Residues Leu 1,006 and Ile 1,011, which
are part of the EC9–10 linker, also participate in hydrophobic

core interactions. The third component of the interface consists
of two supporting loops (Val 914–Asp 917 in EC9 and Ala
1,040–Ser 1,046 in EC10) that may provide stability to the linker
but do not form part of the interface between EC9 and EC10.
Conservation analysis of the interface reveals that most of the
hydrophobic residues are highly conserved, while some of the
polar and charged residues present in the EC9–10 linker and in
the EC10 FG-a loop show more variability (Fig. 3c). The buried
surface area of the EC9–10 interface is 389 Å2. A structure of
mouse Pcdh15 EC9–10 (without EC8), crystalized in a different
condition and space group (Table 1; Supplementary Fig. 7), shows
the same unique features. This suggests that the EC9–10 interface
is robust and that the observed features are not a crystallographic
artifact (Supplementary Discussion).

PCDH15 EC9–10 bent conformation is stable in silico. The
crystallographic, bent conformation of PCDH15 EC9–10 might
not be stable in solution and may represent one of many possible
arrangements for these repeats. To test the flexibility of the
EC9–10 linker we performed equilibrium and steered molecular
dynamics (SMD) simulations of the PCDH15 EC8–10 structure
in solution.

Two equilibrium MD simulations lasting 400 ns (S1b) and
500 ns (S1c) showed a rather stable bent structure and only local
deformation of the EC10 supporting loop (residues 1,040–1,046;
Fig. 4a; Supplementary Figs 8a–d and 9a–d). The orientation of
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Table 2 | Overview of MD simulations.

Label # PDB tsim (ns) Type Slowest speed (nm ns� 1) Smallest force (pN) Size (#atoms) Size (nm3)

PCDH15 EC8–10 S S1a–c 4XHZ 901.2 EQ — — 115,625 16� 10� 7.5
PCDH15 EC8–10 B S1d–e 4XHZ 56.1 EQ — — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S2a–d 4XHZ 65.0 PCV(COM) 0.2 — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S3a–d 4XHZ 1,512.7 PCF — 10 204,024 28� 10� 7.5
PCDH15 EC8–10 B S4a–d 4XHZ 106.4 EQ — — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S5a–e 4XHZ 885.2 PCV 0.02 — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S6a–c 4XHZ 32.8 PCV(COM) 1.0 — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S7a–d 4XHZ 361.9 EQ — — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S8a–c 4XHZ 27.6 PCV(NVE) 1.0 — 204,024 28� 10� 7.5
PCDH15 EC8–10 B S9a–g 4XHZ 670.5 EQ — — 204,024 28� 10� 7.5
DNcad EC2–3 S10a–b 3UBG 51.21 EQ — 134,046 22� 7.1� 8.9
DNcad EC2–3 S11a–c 3UBG 283.7 PCF — 10 134,046 22� 7.1� 8.9
DNcad EC2–3 S12a–b 3UBG 151.2 PCV 0.1 — 134,046 22� 7.1� 8.9
Chimeric complex S13a–c — 61.2 EQ — — *209,952 44� 6.9� 7.3
Chimeric complex S14a–b — 177.5 PCV 0.1 — *209,952 44� 6.9� 7.3
PCDH15 EC9–10S5b-75ns S15a–b — 2,122.0 EQ — — 105,545 13� 9.1� 9.2
PCDH15 EC9–10S5b-76ns S16a–b — 7,351.0 EQ — — 98,124 13�9.2�8.8

Overview of cadherin MD simulations. Labels indicate the system and protein used (S: small system; B: big system for SMD). Type denotes the simulation protocol used (equilibrium: EQ, constant-
velocity SMD: PCV, and constant-force SMD: PCF). COM denotes simulations in which forces were applied to the center of mass of multiple atoms (Supplementary Table 2). NVE indicates simulations
performed in the microcanonical ensemble. Initial size of the systems is indicated in the last column. Simulations with the chimeric complex (indicated with an *) involve two systems encompassing
209,952 and 209,942 atoms.
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PCDH15 EC10 with respect to EC9, monitored throughout the
simulations, indicates some flexibility (Fig. 4a,b; Supplementary
Fig. 5b), which is reflected in large values for the overall
root-mean-square deviation of Ca atoms (r.m.s.d.-Ca between 4
and 6 Å), but stable values for individual EC repeats (o2.5 Å;
Supplementary Figs 8a and 9a). In simulation S1b, a discrete
jump in r.m.s.d.-Ca was observed for EC10 at B300 ns, which
correlates with a ‘flip’ in the conformation of the supporting loop
(residues 1,040–1,046) following the rupture of a Gly 1,009:O–Ile
1,042:N hydrogen bond and with the partial unfolding of the
EC9–10 310 helix (Fig. 3f; Supplementary Fig. 9a,c,d). This
transition was not observed in simulation S1c (Supplementary
Fig. 8a,c,d). Also, unbending was not observed and the
end-to-end angle and distance were stable throughout both
simulations (Supplementary Figs 8e,f and 9e,f). This suggests that
the EC9–10 repeats are bent in solution, spontaneously and
occasionally transitioning between two very similar bent states.

To further probe the bent conformation observed in the
PCDH15 EC9–10 structure, we performed equilibrium MD
simulations of partially stretched conformations of PCDH15
EC8–10 obtained from SMD simulations. Three sets of relaxa-
tions were performed. In the first set (S4 series), stretched states

were obtained from a fast constant velocity SMD simulation
performed at 2 nm ns� 1 (S2a; t¼ 3.8, 4, 4.3 and 5 ns) and used as
starting conformations for the new simulations (S4a–d).
Similarly, in the second set (S9a–g series), stretched states were
obtained from a slow constant-velocity SMD simulation
performed at 0.1 nm ns� 1 (S5b, t¼ 60, 67, 70, 75, 76, 81 and
101 ns). In the last set (S7a–d), stretched states were obtained
from a constant-force SMD simulation (100 pN, S3c; t¼ 3, 7.5, 10
and 26 ns). All relaxations lasted o100 ns. The native, bent
conformation was recovered (r.m.s.d.-Cao5 Å) for six out of
15 simulations (Fig. 4c; Supplementary Movie 1). In these cases,
native hydrogen bonds and hydrophobic interactions were
restored. In some simulations, relaxation of overly stretched
states resulted in bent, twisted conformations in which EC10 was
unable to fit back into EC9 as observed in our crystal structures.
This suggests that re-bending (to a native conformation) of overly
stretched and twisted states may occur in longer timescales, while
unbending is easily reversible after small-scale stretching.

To explore stability and re-bending at longer timescales, two
additional relaxations of stretched states of PCDH15 EC9–10
were performed using the Anton supercomputer42. The stretched
states, obtained from simulation S5b (at 75 and 76 ns), were
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simulated for 2.2 and 7.3 ms, respectively (Supplementary
Fig. 10a,b). As previously observed in simulation S9d (Fig. 4c),
the S5b-75 ns stretched structure quickly re-bends to the native,
EC9–10 crystallographic conformation with r.m.s.d.-Ca o3 Å
(S15b; Supplementary Fig. 10a). Interestingly, minor fluctuations
in r.m.s.d.-Ca with minimal variations of end-to-end angle
suggest again that PCDH15 EC9–10 can transition between two
very similar bent conformations in solution. This simulation also
confirms that a bent EC9–10 is stable over microseconds.
In contrast, the S5b-76 ns stretched structure did not recover
the native, crystallographic conformation, as indicated by
large r.m.s.d.-Ca values (48 Å) during 7.3 ms of dynamics
(Supplementary Fig. 10b). However, it did adopt a
conformation in which the repeat orientation and angle
resembles the native, crystallographic state. Recovery of the
native EC9–10 bent conformation from overly stretched and
twisted states may require timescales 47 ms. Restricted
conformational freedom in the context of an entire tip link
might prevent twisting and favour faster re-bending.

EC9–10 bent conformation is consistent with SAXS data.
To experimentally validate the structure of PCDH15 EC8–10 in
solution, its molecular shape and particle dimensions were
studied using small-angle X-ray scattering (SAXS). A repre-
sentative SAXS profile is shown in Fig. 5a, from which estimates
of the radius of gyration (Rg) can be obtained (Supplementary
Table 3). Two alternate analyses indicate Rg values of 37.1±1.1 Å
(Guinier analysis; Supplementary Fig. 11a) and 40.6±0.2 Å
(indirect Fourier transform of SAXS profile with maximum
dimension Dmax¼ 130 Å; Fig. 5b). Both estimates are in good
agreement with each other and with the theoretical Rg obtained
from the PCDH15 EC8–10 structure (37 Å). This suggests that
shape is maintained in solution.

An analysis using the Kratky and Kratky–Debye plots
generated from SAXS data (Supplementary Fig. 11b,c) indicates
that the protein is folded in solution, but it exhibits significant
flexibility. This flexibility may arise from inter-repeat motion
(Figs 2d,e and 4a,b; Supplementary Figs 8 and 9) or the presence
of a C-terminal tail including EC11 residues and a His-tag used
for protein purification. Despite this flexibility, ab initio modeling
from the experimental scattering profiles produced PCDH15
EC8–10 shapes (in solution) that are in remarkable agreement
with crystallographic data (Fig. 5c). Both the EC8–9 contortion
and the EC9–10 kink can be observed in the filtered shape
reconstruction showing an S-shaped molecule. Fits of scattering
profiles obtained from the SAXS model and the PCDH15 EC8–10
structure are in good agreement with the SAXS data (green and
red lines in Fig. 5a). Overall, these results indicate that the

PCDH15 EC8–10 crystallographic conformation, including
bending at EC9–10, is also observed in solution.

Forced unbending of PCDH15 EC8–10 in silico. The function
of tip links is to convey force and pull open inner ear transduc-
tion channels. To facilitate this process, myosin motors pull on tip
links and keep a resting tension that maintains transduction
channels optimally poised to respond to external mechanical
stimuli16,19. In frogs, resting tension is likely to be B10 pN
(B5 pN per strand for a dimeric tip link), while external
physiological stimuli could reach 4100 pN (refs 13,14). The
elasticity of the entire tip link is unknown, but previous studies on
the elasticity of CDH23 suggest that its EC repeats are stiff and
inextensible unless large forces are applied to unfold them32.
The structure of PCDH15 EC8–10 suggests an alternate scenario
where EC9–10 unbending might be relevant during force
transduction: as force is applied to tip links, unbending results
in protein extension without unfolding (tertiary structure
elasticity: TSE43,44). If unbending requires low force (o10 pN),
resting tension in the native tip link may keep PCDH15 EC9–10
unbent and TSE will not play a key role in mechanotransduction.
If, on the other hand, intermediate forces (410 pN) are required
to unbend EC9–10, its TSE will affect channel gating.

To test the elastic response of PCDH15 EC8–10 we performed
an extensive set of SMD simulations using constant-force and
constant-velocity stretching approaches. In the constant-force
simulations, the solvated EC8–10 repeats were stretched by
applying a constant force to N- and C-terminal Ca atoms in
opposite directions. Four simulations with forces of 10, 25, 50 and
100 pN were carried out (S3a, S3d, S3b and S3c; Table 2).
Complete unbending of EC9–10 was observed as an end-to-end
length increase of B4 nm for all simulations in which forces were
410 pN (Fig. 6a).

For the 10 pN simulation, lasting 1.03 ms, complete unbending
was not observed (Fig. 6a–d). A sudden B2 nm increase in the
end-to-end distance was observed at tE330 ns, which lasted for
B120 ns (Fig. 6a). This length increase correlates with the
rupture of the Gly 1,009:O–Ile 1,042:N backbone hydrogen bond
at the EC9–10 linker (Fig. 6b,c,e–h), which allows EC10 to rotate
about its long principal axis and change the position of the helix
in the FG-a loop (residues 1,091–1,095). The EC9–10 linker
(Val 1,005:Ca–Arg 1,013:Ca) and a backbone hydrogen bond
between His 1,007 and Glu 1,010 also extend, although more
subtly. The EC10 rotation correlates with a decrease in the Leu
1,004–Ala 1,096 distance (Fig. 6c). As the simulation progressed
with the 10 pN force applied, the native conformation was
recovered at tE480 ns along with the Gly 1,009:O–Ile 1,042:N
hydrogen bond. Yet again, at tE880 ns, a second stretching event
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of B2 to B3 nm is observed, with the same displacement of the
helix in the FG-a loop. Partial recovery of the native conforma-
tion is observed at t41 ms (Fig. 6h) and no unbending or EC10
unfolding were observed, as reported by interatomic distances
Arg 1,013:O–Ala 1,040:N and Arg 1,013:N–Ala 1,040:O (Fig. 6b).
A similar, albeit less pronounced, lengthening event was observed
in one of the equilibrium MD simulation of the structure
(Supplementary Fig. 9), suggesting that the EC9–10 linker can
readily extend B1 nm and transition between the native, crystal
conformation, and a slightly unbent conformation. Complete
unbending is thus predicted to occur in two steps and only at
forces 410 pN.

Similar constant-force simulations of the bent DNcad EC2–3
structure showed a different mechanical response. The EC2–3
linker is bent with an angle of B80� (Supplementary Fig. 6c)33

and residues expected to form calcium-binding motifs are
replaced by non-charged ones that form an interface with a
buried surface area of 398 Å2 (Supplementary Fig. 6d). For
PCDH15 EC9–10 a total of 16 residues participate on the
interface with a buried surface area of 389 Å2. Yet, the DNcad
EC2–3 interface does not have features similar to those found in
PCDH15 EC9–10 (FG-a loop and EC9–10 310 helix), and it has a
larger fraction of polar residues compared with the more
hydrophobic PCDH15 EC9–10 interface. Consistently, the

DNcad EC2–3 structure unbends fully and quickly (B150 ns)
in simulations with an applied constant force of 10 pN
(Supplementary Fig. 6e,f), and application of larger forces
shows even faster unbending (similar results were obtained
when doing constant-velocity simulations, Supplementary
Fig. 6g,h). Taken together, the PCDH15 EC8–10 and DNcad
EC2–3 simulations suggest that the bent EC9–10 interface is
unique and able to withstand small forces without unbending in a
microsecond timescale. Therefore, its TSE is predicted to be
relevant during mechanotransduction.

Forced unfolding of PCDH15 EC8–10 in silico. To further
explore the elasticity of PCDH15 EC8–10, we carried out con-
stant-velocity SMD simulations in which both protein ends are
attached to springs that are pulled in opposite directions. The
applied force throughout the simulation is obtained from each
spring’s extension. The PCDH15 EC8–10 equilibrated native state
was stretched at speeds that ranged from 0.02 to 10 nm ns� 1

(simulations S2a–d, S5a–e, S6a–c, S8a–c; Table 2; Supplementary
Movie 2). At fast pulling speeds (5 and 10 nm ns� 1), force
increased rapidly (Fig. 7a), with unbending quickly followed
by unfolding of EC10 at the peak force. For the slower
stretching speeds, force barely increased during unbending and
straightening of the EC9–10 linker (phase I), with the structure
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lengthening by B4 nm before forces started to increase rapidly
(phase II) until unfolding occurred (Fig. 7a–f; Supplementary
Fig. 12a). The observation of these two phases suggests that
unbending is important for the elastic response of PCDH15.

Unbending of PCDH15 EC9–10 during the slowest
constant-velocity stretching simulation was similar to unbending
in constant-force mode. Hydrophobic interactions were re-
accommodated as the EC9–10 linker was stretched, with rupture
of the hydrogen bonds that form the EC9–10 310 helix
(His 1,007:O–Glu 1,010:N and Pro 1,008:O–Ile 1,011:N) and
the backbone hydrogen bond Gly 1,009:O–Ile 1,042:N (Fig. 7e).
The helix in the FG-a loop of EC10 (formed by residues
1,091–1,095) rotates towards EC9 at tE280 ns (12.7 nm; Fig. 7g–i)
with a decrease in the distance between Leu 1,004:Cg and Ala
1,096:Cb lasting B50 ns (Fig. 7b,f,j). At this point, the EC9–10
linker was fully extended, but a few contacts between the two EC
repeats remain. As the simulation continued, applied force
increased linearly reaching 4300 pN with little protein extension
until the rupture of a pair of backbone hydrogen bonds (Arg
1,013:O–Ala 1,040:N and Arg 1,013:N–Ala 1,040:O; Fig. 7a,c,d).
These events were accompanied by a sudden drop in applied
force and marked the beginning of EC10 unfolding. A second

force peak correlated with the rupture of backbone hydrogen
bonds Tyr 1,019–Lys 1,108 and Tyr 1,019–Tyr 1,110 (Fig. 7a,c,d).
The maximum force peak associated to unfolding for all constant-
velocity simulations was always 4400 pN (Supplementary Fig. 12a).

Interestingly, a salt bridge between residues Glu 1,010 and Arg
1,013 formed during the slow speed and low force stretching
simulations of PCDH15 EC8–10 (Supplementary Fig. 13). These
residues are part of the EC9–10 linker and do not interact with
each other in the native, crystallographic conformation. However,
this salt bridge is intermittently formed in one of our equilibrium
simulation (S1b) as a consequence of the relaxation of the
EC9–10 310 helix and a conformational change of the EC10
supporting loop (1,040–1,046) discussed above (Supplementary
Fig. 9g). Formation of the Glu 1,010–Arg 1,013 salt bridge may
help prevent unfolding by strengthening the EC9–10 linker in its
extended conformation.

To quantify the stiffness of PCDH15 EC8–10 we computed the
slope of the linear regions of the force versus end-to-end distance
monitored in simulations using the slowest pulling velocities (S5b
at 0.1 nm ns� 1 and S5e at 0.02 nm ns� 1). During unbending
(phase I), the effective spring constants were kS5b-I¼ 30 mN m� 1

and kS5e-I¼ 8.4 mN m� 1. After unbending but before
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unfolding (phase II), we obtained kS5b-II¼ 445 mN m� 1 and
kS5e-II¼ 320 mN m� 1. In contrast, two straight CDH23 EC
repeats lack the first, soft, phase during stretching and their
elasticity is 570 mN m� 1 at 0.1 nm ns� 1 (ref. 32). These results
suggest that the PCDH15 EC8–10 fragment behaves as a soft
spring during unbending (phase I) of the EC9–10 linker.

Additional SMD simulations performed in the NVE ensemble
(S8 series in Table 2 and Supplementary Table 2) or by pulling on
the center-of-mass of multiple Ca atoms at each end of PCDH15
EC8–10 (S2 and S6 series) revealed similar scenarios for
unbending and unfolding.

Unbending and unbinding in an artificial chimeric tip link. To
understand the elastic response of the PCDH15 EC8–10 fragment
in the context of the entire tip link, we designed a ‘chimeric’
model involving all known structures of PCDH15 and CDH23
EC repeats (Fig. 8a). The structure of the tip-link handshake
including CDH23 EC1–2 and PCDH15 EC1–2 was coupled to
PCDH15 EC8–10 via an artificial PCDH15 EC2–8 canonical
linker (Supplementary Fig. 14a). The resulting PCDH15
EC1–2–8–10þCDH23 EC1–2 chimera, including seven EC
repeats, allowed us to test in silico whether unbending and
unfolding of PCDH15 EC9–10 could occur before unbinding of
PCDH15 from CDH23.

Constant-velocity SMD simulations of the chimeric complex
using stretching speeds of 0.1 and 1 nm ns� 1 (simulations S14a
and S14b1–3, respectively; Table 2; Supplementary Table 2)
showed unbending of EC9–10 followed by unbinding of PCDH15
from CDH23 without significant unfolding of any of the EC
repeats (Fig. 8b; Supplementary Movie 3; Supplementary
Fig. 14c–f). Force monitored throughout these simulations
(Fig. 8c; Supplementary Figs 12b and 14b) revealed the
same two phases observed for PCDH15 EC8–10 alone.
Unbending during a 7 nm extension of the complex (phase I)
required low forces (o100 pN) with an effective stiffness of
kS14a-I¼ 8.4 mN m� 1 at 0.1 nm ns� 1 (compared with
kS5b-I¼ 30 mN m� 1 for EC8–10 at the same speed). Stretching

at slower speeds of longer tip links may reveal an even smaller
effective spring constant. Stretching of the straightened structure
(phase II) resulted in a rapid increase of the applied force
(kS14a-II¼ 142 mN m� 1) until unbinding happened at forces
4400 pN (Fig. 8c; Supplementary Figs 12b and 14b). Unfolding
of EC10 required more force (794.4±107.9 pN and 650 pN at
1 and 0.1 nm ns� 1, respectively) than the unbinding of the
chimeric complex (651.6±41.6 pN and 420 pN at 1 and
0.1 nm ns� 1; Supplementary Fig. 12). These simulations suggest
that the PCDH15 EC9–10 linker does not unfold and may unbend
before unbinding during tip-link-mediated mechanotransduction.

Discussion
The structural studies and simulations of PCDH15 presented here
provide a first view into its non-canonical cadherin EC repeats
and their function as part of inner-ear tip links. Our data suggest
that EC9–10 is bent in solution, that TSE stemming from
unbending is relevant for hair-cell mechanotransduction, and
that PCDH15-CDH23 unbinding occurs before unfolding of
individual EC repeats of known structure.

The most striking feature of the PCDH15 EC8–10 structure is
the bent conformation adopted by the calcium-free EC9–10
linker. Multiple lines of evidence suggest that this conformation is
particular and favoured in solution. First, the lack of calcium-
binding motifs sequences at the EC9–10 linker is highly
conserved across different species. In addition, EC9 and EC10
have unusual and unique structural features involved in bending,
namely an EC9–10 310 helix and an EC10 FG-a loop that form
part of an interface that keeps EC9 stuck to EC10. These features
are also conserved with only subtle differences between
mammalian, aves and reptilian, amphibian and actinopterygian
sequences. Last, short and long timescale MD simulations as well
as SAXS experiments strongly support a bent and somewhat
flexible conformation in solution. Interestingly, the highest
resolution views of tip links in situ show what could be
interpreted as a bent EC9–10 linker near the point of membrane
insertion of PCDH15 (Fig. 3d in Kachar et al.6).
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The existence of the EC9–10 bent conformation has important
implications for PCDH15 function in sensory transduction. Tip
links are constantly subjected to forces that may range from 1 to
4100 pN (refs 12–14), and force-induced transitions from bent
to straightened conformations might regulate transduction-
channel gating and adaptation. SMD simulations predict that
unbending of EC9–10 does not happen at 10 pN, suggesting that
this bent conformation will exist in native tip links, even when
myosin motors are applying a resting tension of B10 pN to them
(B5 pN per strand for a dimeric tip link). We note that EC11 and
a straight EC10–EC11 linker would provide a longer ‘lever arm’
that would result in a larger applied torque at the same force,
which may favour unbending at smaller forces. However, the
human EC10–11 linker lacks one of the residues involved in
calcium binding (Supplementary Fig. 2), and might have
enhanced flexibility that would hamper the action of a longer
lever arm (Supplementary Fig. 15). Unbending transitions
provide a soft elasticity that resembles TSE predicted for ankyrin
repeats43 and titin domains44. Small, but not negligible force is
required to reversibly straighten these proteins without unfolding,
a process that will affect how force is conveyed to transduction
channels.

Biophysical experiments predict the existence of a soft hair-cell
‘gating spring’ with an elasticity of B1 mN m� 1, a value
estimated from measurements in timescales of several hundreds
of microseconds12,14. While ultra-structural studies of tip links6

and simulations of CDH23 EC1–2 (ref. 32) suggest that tip links
are stiff, our data indicates that TSE in PCDH15 will render the
lower end of tip links somewhat elastic (Fig. 8d). Constant-
velocity simulations predict an effective spring constant of
B8 mN m� 1 with a working distance of B5 nm originating
from EC9–10 unbending TSE. In the context of a dimeric tip link,
where parallel unbending of two EC9–10 repeats would render
PCDH15 stiffer (416 mN m� 1), either other parts of PCDH15
or other components of the transduction apparatus must provide
the missing elasticity. However, the spring constant estimates
from simulations represent an upper boundary to physiological
values, as stretching speeds in silico are significantly faster than
those used in the experiments that were used to estimate the
gating spring constant (Supplementary Discussion).

In PCDH15, the EC5–6 linker lacks calcium-binding residues
and might unfold, be flexible, or adopt a bent conformation as
well33,38,45,46. Also, a possible EC12 repeat and its linker to EC11
could provide additional elasticity along with the lipid membrane
around the transduction channel47,48. Electrophysiological
measurements suggest that if the tip link is the gating spring,
it might stretch by 200 nm for extreme mechanical deflection of
hair bundles49. Unbending only provides a 5 nm extension,
implying that such large stretching would either require unfolding
of EC repeats or membrane tether formation at the tip link
insertion point50,51. Regardless of the mechanism, the elastic
response of the whole transduction apparatus will be dominated
by the softest component, yet to be determined. Clearly, more
complete structural models of the hair-cell transduction
apparatus are required to dissect out the exact contribution of
each of its components to the gating spring elasticity, with
unbending TSE of PCDH15 EC9–10 being part of it.

Unbending of PCDH15 EC9–10 could also regulate adaptation
in hair-cell mechanotransduction. In constant-force simulations,
unbending results in a B5 nm lengthening of the structure at
forces 410 pN. Tip link lengthening due to unbending could lead
to decreased tip link tension and channel closure. In this
speculative scenario, PCDH15 EC9–10 would play a role similar
to that of a hypothetical ‘release element’ thought to mediate fast,
calcium-dependent adaptation52,53. Calcium would have to
regulate this process allosterically through other PCDH15 and

CDH23 EC repeats with calcium-binding motifs, thereby
introducing a non-linear response and modulating the stiffness
of the release element as proposed by Martin et al.53.

In addition to unbending, unfolding of PCDH15 EC repeats
can also drastically alter how force is conveyed to transduction
channels. Calcium is known to help prevent mechanical
unfolding in cadherins36,54, and mutations that alter cadherin
calcium-coordinating residues cause deafness (see Supplementary
Discussion and Supplementary Fig. 16). A calcium-free inter-
repeat linker in PCDH15 could be prone to unfolding32.
Constant-velocity SMD simulations of PCDH15 EC8-10 predict
unfolding forces of B440 pN at 0.02 nm ns� 1 (Supplementary
Fig. 14f), smaller than those monitored for unfolding of CDH23
EC1–2 repeats with bound calcium ions, but similar to those
predicted for CDH23-PCDH15 unbinding27,32. Simulations of an
artificial chimeric model involving all published structures of tip
link EC repeats suggest that unbending of EC9–10 is followed by
unbinding without any relevant unfolding, as observed for other
classical cadherins55,56. However, this artificial model does not
take into account the effect of parallel dimerization (see below)
and does not incorporate the behaviour of other EC repeats and
atypical linkers that may unfold before unbinding occurs.

Relating the nanomechanics of tip link structures to
microscopic correlates of hair-cell bundle motion and
channel gating obtained from biophysical experiments is
challenging47,48,57. Tip links are enormous proteins, and
structures for many EC repeats are still missing. While most
CDH23 EC repeats are predicted to be canonical, several
PCDH15 EC repeats have atypical sequence features that may
alter their structure and function. In addition, tip links are
supposed to be made by parallel dimers of PCDH15 and CDH23
interacting tip-to-tip (‘parallel’ is defined here to describe two
proteins with their N- to C-termini directions aligned). Parallel
dimerization may further alter, perhaps in trivial ways, the
mechanical response of the whole assembly58. Glycosylation
could also modulate dimerization and elasticity of PCDH15
(ref. 59) (see Supplementary Discussion and Supplementary
Fig. 17). Moreover, while sound transduction is a fast process that
can occur in microseconds, SMD simulations are performed at
stretching velocities that match only part of the spectrum of
physiological stimuli and that may not completely capture the
viscoelastic response60 of tip link cadherins (see Supplementary
Discussion). Yet our structure and simulations of PCDH15
EC8–10 points to a key mechanical component of the tip link that
is elastic and that must be incorporated in hair-cell transduction
models.

Overall, the data presented here strongly suggest that the bent,
calcium-free linker in PCDH15 EC9–10 plays a relevant
mechanical role in hair-cell transduction. Our findings may have
implications beyond PCDH15 function in the inner ear.
Sequence analyses have shown that calcium-free linkers
are found in multiple members of the cadherin superfamily,
yet their function is unknown. Lack of a common sequence motif
among these calcium-free linkers (except for the absence of
calcium-binding residues) suggests that they could provide a
variety of conformations and play diverse roles in cadherin
function33. Perhaps some of these linkers endow non-classical
cadherins with specific mechanical functions beyond the classical
paradigm59,61.

Methods
Expression and purification of PCDH15 EC8–10. Human protocadherin-15
repeats EC8-10 (PCDH15 EC8–10) and mouse protocadherin-15 repeats
EC9–10 (mmPcdh15 EC9–10), were subcloned into NdeI and XhoI sites
of the pET21a vector. These PCDH15 repeats were expressed in BL21CodonPlus
(DE3)-RIPL cells (Stratagene) cultured in TB and induced at OD600¼ 0.6 with
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1 mM of IPTG at 37 �C for B16 h. Cells were lysed by sonication in denaturing
buffer (20 mM TrisHCl (pH 7.5), 6 M guanidine hydrochloride, 10 mM CaCl2 and
20 mM imidazole). The cleared lysates were loaded onto Ni-Sepharose (GE
Healthcare), eluted with denaturing buffer supplemented with 500 mM imidazole
and refolded by overnight dialysis against 20 mM TrisHCl (pH 8.0), 150 mM KCl,
400 mM arginine and 5 mM CaCl2 using MWCO 2,000 membranes. Refolded
protein was further purified on a Superdex200 column (GE Healthcare) in
20 mM TrisHCl (pH 8.0), 150 mM KCl and 5 mM CaCl2 and concentrated by
ultrafiltration to 2 mg ml� 1 for crystallization (Vivaspin 10 KDa).

Crystallization and structure determination. Crystals were grown by vapor
diffusion at 4 �C by mixing 1 volume of protein and 0.5 volumes of reservoir
solution (0.1 M MES (pH 6.5), 1.6 M NaCl for PCDH15 EC8–10, and 0.095 M
HEPES-Na (pH 7.5), 0.19 M CaCl2, 26.6% v/v PEG 400, 5% v/v glycerol anhydrous
for mmPcdh15 EC9–10). Crystals of PCDH15 EC8–10 were cryoprotected in
reservoir solution plus 25% glycerol. All crystals were cryo-cooled in liquid N2.
X-ray diffraction data was collected as indicated in Table 1 and processed with
HKL2000. Both structures were determined by molecular replacement using
PHASER62. A separate homology model for each repeat was used as initial
search model for the PCDH15 EC8–10, while the mmPcdh15 EC9–10 structure
was determined using EC9–10 from the PCDH15 EC8–10 structure. Model
building was done with COOT63 and restrained TLS refinement was performed
with REFMAC5 (ref. 64). The mmPcdh15 EC9–10 structure was indexed in
space group P 31 after detecting tertatohedral twinning. Refinement for this
structure used the ‘Twin Refinement’ option in REFMAC5 after achieving
Rwork and Rfree valuesB40%. Data collection and refinement statistics are
provided in Table 1.

Small-angle X-ray scattering analysis. SAXS data was collected at the SIBYLS
beamline in the Advanced Light Source facility (Berkeley, CA) as described65.
Three different concentrations of purified PCDH15 EC8–10 were analysed: 1, 1.5,
2 mg ml� 1. Higher concentrations were not tested due to protein aggregation
observed above 2 mg ml� 1. Data were collected in 20 mM TrisHCl (pH 8.0),
150 mM KCl and 5 mM CaCl2 at 20 �C and using four exposure times of 0.5, 1,
2 and 5 s. Buffer matched controls were used for buffer subtraction. Data analysis
was carried out with PRIMUS66 and the ATSAS program suite. Estimates of the
radius of gyration (Rg) from the Guinier region were measured with PRIMUS.
Maximum dimension (Dmax) of particles was estimated from an indirect Fourier
transform of the SAXS profiles using GNOM67. Values of Dmax between 120 and
140 Å provided the best solutions. Ab initio modeling was carried out with
DAMMIF68 using results from GNOM and considering qo0.2. Fifteen models
were generated and averaged, and a filtered envelope was produced with
DAMAVER69 with a mean normalized spatial discrepancy (NSD) of 1.04±0.06
(one model rejected). Model scattering intensities were computed from PCDH15
EC8–10 (4XHZ) using FoXS70.

Simulated systems. The psfgen, solvate and autoionize VMD71 plugins were used
to build all systems (Table 2; Supplementary Table 2). The structure of PCDH15
EC8–10 used for simulations consists of residues 795 to 1,116. The structure of
DNcad EC2–3 (PDB code 3UBG) comprises residues 540 to 747. Hydrogen atoms
were automatically added to protein structures and crystallographic water
molecules. Residues D, E, K and R were assumed to be charged. Histidine residues
were assumed neutral, and their protonation state was chosen to favour the
formation of evident hydrogen bonds. Additional water molecules and randomly
placed ions were used to solvate the systems at the desired ion concentration
(150 mM KCl for PCDH15 EC8–10 and 150 mM NaCl for DNcad EC2–3).

To perform long timescale MD simulations using the Anton supercomputer
(see below) a special set of systems was built to adhere to size limitations
(o120,000 atoms). Conformations of stretched PCDH15 EC8–10 were taken from
SMD simulation S5b at 75 and 76 ns. Two new structures were generated: PCDH15
EC9–10S5b-75ns and PCDH15 EC9–10S5b-76ns comprising residues 899 to 1,116
corresponding to PCDH15 EC9–10 only. These two structures where solvated and
ionized as mentioned above.

The chimeric complex was constructed by linking together the tip-link
handshake (CDH23 EC1–2þPCDH15 EC1–2; 4APX) and PCDH15 EC8-10
(4XHZ, Fig. 8a). The artificial EC2–8 linker was created based on the high sequence
similarity between EC repeats at the linker regions and using truncated and aligned
structures of PCDH15 (EC1–2 residues 1–232, EC7–8 residues 787–796 and
EC8–10 residues 797–1,116). The resulting model for the linker was energy-
minimized in vacuum (2,000 steps), and subsequently analysed with the
CheckMyMetal server72 to ensure proper coordination of calcium ions
(Supplementary Fig. 14a). Coordinates of the entire chimeric complex are
available upon request.

Molecular dynamics simulations using NAMD. MD simulations were performed
using NAMD 2.10 and 2.11 (ref. 73), the CHARMM36 force field for proteins
with the CMAP correction and the TIP3P model for water74. A cutoff of 12 Å
(with a switching function starting at 10 Å) was used for van der Waals interactions
along with periodic boundary conditions. The Particle Mesh Ewald method was

used to compute long-range electrostatic forces without cutoff and with a grid
point density of 41 Å� 3. A uniform 2 fs integration time step was used together
with SHAKE. Langevin dynamics was utilized to enforce constant temperature
(T¼ 300 K) when indicated, with a damping coefficient of 0.1 ps� 1 unless
otherwise stated. Constant pressure simulations (NpT) at 1 atm were conducted
using the hybrid Nosé-Hoover Langevin piston method with a 200 fs decay
period and a 50 fs damping time constant. In one equilibrium simulation (S1c)
the Ca atoms of residues 797, 833, 876 and 888 of EC8 were restrained
(kr¼ 1 kcal mol� 1 Å� 2) to avoid motions that may result in clashes between
neighboring periodic images.

Molecular dynamics simulations using Anton. Anton is a massively parallel
special purpose machine for molecular dynamics simulations42. Systems (PCDH15
EC9–10S5b-75ns and PCDH15 EC9–10S5b-76ns) pre-equilibrated using NAMD
(S15a and S16a; Supplementary Table 2) were converted to the Anton-compatible
Maestro format using the convertNAMDtoDMS.py script provided by
NRBSC/PSC. Anton and NAMD simulations used the same force field. Simulations
were performed in the NpT (300 K, 1 atm) ensemble with the Multigrator
integration framework. Infrequent updates of both thermostat and barostat
improve the performance of the simulation and numerical integration accuracy. In
our simulation protocol, the Langevin thermostat75 was updated every 24 steps and
the MTK barostat was updated every 240 steps. The integration time step was set to
2 fs and frames were saved every 240 ps. Long-range electrostatic interactions were
calculated using the k-Gaussian split Ewald method with a 64� 64� 64 grid.
Accurate cut off values ranged between 10–13 Å and were automatically calculated
by the Anton setup protocol based on the chemical features of the systems. SHAKE
was used to constrain all bonds involving hydrogen atoms.

Simulations and analysis tools. Each system was energy-minimized and
equilibrated in the constant number, pressure and temperature ensemble (NpT),
and the resulting state was used to perform subsequent equilibrium and SMD
simulations (Table 2). Constant-velocity stretching simulations used the SMD
method and the NAMD Tcl forces interface. Constant-velocity SMD simula-
tions76–79 were performed by attaching Ca atoms of N- and C-terminal residues to
independent virtual springs of stiffness ks¼ 1 kcal mol� 1 Å� 2, or where indicated,
by attaching the center of mass (COM) of groups of Ca atoms to the same type of
virtual springs. The stretching direction was set along the x axis matching the
vector connecting terminal regions of the protein. The free ends of the springs were
moved away from the protein in opposite directions at a constant velocity. Applied
forces were computed using the extension of the virtual springs. Plotted forces
correspond to those applied to the N-terminal atoms unless otherwise stated.
Stiffness was computed through linear regression fits of force-distance plots.
Maximum force peaks and their averages were computed from 50 ps running
averages used to eliminate local fluctuations. Average and standard deviation of
force versus distance curves were obtained by computing these quantities using
data grouped in 1-Å bins. In constant-force SMD simulations, end-to-end or
COM-to-COM distances were computed as the distances between individual SMD
atoms or center-of-mass of SMD atoms at opposite protein ends, respectively.
Principal axes of EC repeats were computed using the Orient VMD plugin.
Sequence alignments were performed with MUSCLE. Plots and curve fits were
prepared with QtiPlot. Molecular images were created with the molecular graphics
program VMD71.

Data availability. Coordinates for PCDH15 EC8–10 and Pcdh15 EC9–10 have
been deposited in the Protein Data Bank with entry codes 4XHZ and 5KJ4. Dif-
fraction images were deposited in the SBGrid Data Bank with entry codes 139 and
331. The remaining data that supports the findings of this study are available from
the corresponding author upon reasonable request.
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