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Abstract: Euonymus species from the Celastraceae family are considered as a source of unusual genes
modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of
genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and
accumulate acetylated triacyglycerols. The gene from Euonymus europaeus (EeDAcT) encoding the
DAcT was identified, isolated, characterized, and modified for cloning and genetic transformation
of plants. This gene has a unique nucleotide sequence and amino acid composition, different from
orthologous genes from other Euonymus species. Nucleotide sequence of original EeDAcT gene was
modified, cloned into transformation vector, and introduced into tobacco plants. Overexpression
of EeDAcT gene was confirmed, and transgenic host plants produced and accumulated acetylated
triacylglycerols (TAGs) in immature seeds. Individual transgenic plants showed difference in amounts
of synthesized acetylTAGs and also in fatty acid composition of acetylTAGs.
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1. Introduction

Euonymus is a cosmopolitan genus of the family Celastraceae containing more than two hundred of
species [1] mostly native in East Asia. Species Euonymus alatus L. is widely distributed and traditionally
used as a medicinal plant in many Asian countries. More than 230 chemical compounds have been
identified and isolated from it, including sesquiterpenoids, diterpenoids, triterpenoids, flavonoids,
phenylpropanoids, lignans, steroids, alkaloids, and other compounds [1,2]. Generally, Euonymus
species have the potential for treatment of many injuries, inflammation, and oxidative stress as well as
diseases including cancer, diabetes, and others [2,3]. Euonymus europaeus L. (spindle tree, European
spindle) is distributed in temperate climates from Central to Eastern Europe. It is mainly considered as
an ornamental shrub and its homogenous wood is easy to work for special products. Bark, leaves, and
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seeds contain compounds of medicinal and veterinary value [4]. However, spindle tree is not grown as
a farm plant.

An interesting and not common trait of plants from the family Celastraceae is the constitution of
oils in their fruits containing seeds surrounded by arils. Oil contains unique storage lipid molecules of
3-acetyl-1,2-diacyl-sn-glycerols (acetylTAGs) in an amount of more than 90% of all triacylglycerols
(TAGs) [5]. An acetyl group at the sn-3 position complements two residues of saturated or unsaturated
C16–C18 fatty acids on the glycerol molecule. Introduction of an acetyl group substantially changes the
properties of lipid molecules and parameters of oil. Such oil is attractive due to significantly improved
parameters important in the production of biodiesel (especially reduced viscosity, freezing at lower
temperature, unnecessary esterification), emulsifiers, lubricants, and plasticizers as well as in food
production and human nutrition (lower caloric content, positively affects the gut microbiota) [6–8].

There are also interesting variations in the composition of fatty acids in TAGs and acetylTAGs
in fruits present among different Euonymus species. The most studied species is E. alatus L., but
E. europaeus L. is one of the few occurring naturally in Europe. Its dominant fatty acid in mature
seeds is the monounsaturated oleic acid (C18:1), in contrast to E. alatus L. where the linoleic acid
(C18:2) is dominant [9]. The ratio of oleic acid to linoleic acid at the sn-1 and sn-2 positions of
3-acetyl-1,2-diacyl-sn-glycerols in mature seeds separates E. europaeus and E. alatus into different
subgenus of the Euonymus L. [10]. A vegetable oil with a high content of acetylTAGs and higher
proportion of monounsaturated oleic acid would be very advantageous for the production of biodiesel
when compared with oils with a high content of polyunsaturated fatty acids [11,12]. However, none of
the vegetable oils has such a composition of fatty acids, TAGs, and acetylTAGs that would make all the
biodiesel parameters optimal. Synthetic biology, genetic engineering, and transgenesis could be the
solution for the creation of a commercial oil crop that would produce an ideal vegetable oil with a
high proportion of desired fatty acids (C18:1, C16:1), moreover, stored in the form of acetylTAGs. The
cultivation of such a crop should eliminate many current social, economic, and technical consequences
associated with biodiesel production [13]. The design of oil biosynthesis in plants, that would be
optimal for biodiesel production or other applications, could also be achieved through the engineering
of acyltransferases and sn-1,2-diacylglycerol:acyl-CoA acyltransferases (DGATs) synthesizing the final
TAGs and regulating their content and composition in the plant [14,15]. A novel type of DGAT enzyme
has been identified in seeds of E. alatus L. This enzyme was named Euonymus alatus diacylglycerol
acetyltransferase (EaDAcT) [16] and it accumulates a high level of 3-acetyl-1,2-diacyl-sn-glycerols
(acetylTAGs) as their major storage lipids [17]. The gene encoding EaDAcT would be very interesting for
its functional introduction into commercial oil crops. Euonymus itself is not suitable for the large-scale
production of vegetable oil with acetylated TAGs. The expression of EaDAcT gene controlled by
seed-specific promoter really resulted in the production of acetylTAGs in the seed oil of transgenic
Arabidopsis thaliana [16]. Later, camelina (Camelina sativa L. Crantz.) and soybean (Glycine max L.)
were transformed with the same EaDAcT gene, and transgenic plants accumulated acetylTAGs at up
to 70 mol% of seed oil [6]. Genes encoding DGATs from another Euonymus species could provide
a perspective for biotechnological production of acetylTAGs in transgenic organisms. This has
been demonstrated with genes Ef DAcT, EtDAcT, EbDAcT, and EkDAcT isolated from E. fortune,
E. atropurpureus, E. maackii, and E. kiautschovicus and expressed in transgenic yeast S. cerevisiae [18].

The EeDAcT gene could be used in genetic engineering of plants, especially oil crops, in designing
of plant oils tailored for biofuel production as well as for nutritional applications. Therefore, aims of
this study were to (i) isolate and characterize the natural gene encoding diacylglycerol acetyltransferase
from Euonymus europaeus L. (EeDAcT), (ii) modify the nucleotide sequence of isolated natural EeDAcT
gene to be suitable for cloning, (iii) transfer modified EeDAcT gene into the host plants and confirm the
ability of modified EeDAcT gene to affect the lipid synthesis and to produce acetylated triacylglycerols.
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2. Materials and Methods

2.1. Plant Material

Seeds of Euonymus europaeus L. used for isolation of DAcT gene, subsequent synthetic gene
synthesis, cloning, and plant transformation were collected at the place of its natural occurrence in
locality Hrachovište (Slovakia). Tobacco plants (Nicotiana tabacum L.), cv. Petit Havana SR1, were
cultivated from seeds obtained from the Gene Bank of the Slovak Republic (Research Institute of Plant
Production, Piešt’any, Slovakia).

2.2. Lipid Analysis

Deep-frozen plant material was mixed with a solution of chloroform and methanol (2:1, v/v)
according to [19] Folch et al. (1957). The mixture was filtered through a paper filter into an Erlenmeyer
flask, and potassium chloride (0.97%) was added. After gentle shaking, the mixture was centrifuged
(1000× g, 5 min) to separate into two layers. The lower layer was collected, and solvents were
evaporated under vacuum at 40 ◦C. The resultant oil was flushed with nitrogen and stored at −20 ◦C
until further analysis. Yield of extracted oil was calculated.

Extracted lipids were dissolved in chloroform and applied on the thin-layer chromatography (TLC)
silica gel 60 plates (Merck KGaA, Darmstadt, Germany). Plates were developed in a hexane:ether:acetic
acid (80:20:1) system, visualized by iodine vapors [20], and scanned and evaluated using the
UN-SCAN-IT 6.0 Graph Digitizing Software, Version 6.0 (Silk Scientific, Inc., Orem, UT, USA) [21].

Spots of lc-TAGs (long-chain TAGs) and acetyl-TAGs were scraped off the TLC plates into test
tubes and extracted for methylation and gas chromatography (GC) measurements according to [22].
Fatty acids methyl esters were analyzed by gas chromatography with mass spectrometry (GC-MS)
using the Agilent 7890B/5977A Series GC/MSD System (Agilent Technologies, Santa Clara, CA, USA)
under the following conditions: column temperature program—initial temperature 150 ◦C, 4 min,
then increased at 3 ◦C/min to 230 ◦C (held for 5 min), and finally increased at 15 ◦C/min to 280 ◦C
(maintained 19 min). Inlet parameters (capillary column inlet): temperature 250 ◦C, pressure 10.8 psi,
total helium pressure 169.32 mL/min, splitless. HP-5ms ultra inert column: dimensions 30 m × 250 µm
× 0.25 µm, initial temperature 150 ◦C, pressure 10.8 psi, flow rate 0.82746 mL/min, average value
34,613 cm/s. The injection volume of the sample was 4 µL.

MS parameters: MSD transfer line temperature 280 ◦C, ion source temperature 230 ◦C, quadrupole
temperature 150 ◦C, electron energy 70 eV, record full mass spectra (SCAN type), gain factor 1,
scanning range 50–550 m/z, scan speed 1.562 (N = 2). Fatty acid identification was performed by
comparing the mass spectra of samples with the spectra in the NIST 2007 library databases. The
chromatograms were evaluated based on the area of peaks. The sums of saturated (SFA), mono-
(MUFA) and poly-unsaturated (PUFA) fatty acids were calculated from fatty acid values.

2.3. EeDAcT Gene Isolation, Sequencing, and Modification

The plant genomic DNA from E. europaeus was extracted from 1 g of fresh leaves using the
NucleoSpin® Plant II kit (Macherey-Nagel GmbH & Co. KG, Dueren, Germany). Primers derived from
1,2-diacyl-sn-glycerol:acetyl-CoA acetyltransferase (DAcT) gene of E. alatus L. (GenBank accession
no. GU594061.1) were used for amplification of the homologous gene EeDAcT from E. europaeus
L. The complete DNA sequence of EeDAcT gene was amplified using forward and reverse primers
5′-AATCAAGCGAAACCCATCAC-3′ and 5′-ATCACAAACCCCATCACCAT-3′. Expected size of
the PCR product was 1092 bp. The PCR reaction mixture (25 µL) contained 1 × PCR buffer, 1.5 mM
MgCl2, 10 pM of both primers, 0.2 mM each of dNTP and 0.5 U PlatinumTM Taq DNA polymerase
(Invitrogen Corp., Carlsbad, CA, USA), and 100 ng of genomic template DNA from E. europaeus. The
PCR was performed in Mastercycler® ep (Eppendorf, Hamburg, Germany) using following parameters:
denaturation at 94 ◦C for 3 min, followed by 30 cycles, each consisting of 94 ◦C for 1 min, 58 ◦C for 30 s,
72 ◦C for 1 min, and the final extension at 72 ◦C for 10 min.
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The total RNA from E. europaeus was extracted from 1 g of plant tissues using the TRIzol reagent
method (Invitrogen Corp., Carlsbad, CA, USA) from root, stem, leaf, aril, pericarp, and immature
seed. Potential residues of genomic DNA were removed by DNase treatment (Fermentas, St. Leon-Rot,
Germany). Concentration of isolated RNA was determined spectrophotometrically (Nanodrop 1000
Spectrophotometer, Thermo Fisher Scientific, Waltham, MA, USA). Quality of RNA has been verified by
electrophoresis in 1.5% agarose–formaldehyde gel stained with ethidium bromide. The RevertAid First
Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany) was used for the first-strand cDNA
synthesis. Fifty nanograms of the first cDNA strands was used as templates for the second-strand
synthesis by PCR at the same composition and cycling parameters as for genomic DNA. PCR primers
were designed by the SnapGene software (GSL Biotech LLC, San Diego, CA, USA) (Table 1). Completing
of EeDAcT gene sequence was performed by overlapping of cDNA fragment sequences obtained by
amplifications with primers F1–F4 (Table 1). The PCR reaction mixture (25 µL) contained 1 × PCR
buffer, 1.5 mM MgCl2, 10 pM of both primers, 0.2 mM each of dNTP and 0.5 U PlatinumTM Taq DNA
polymerase (Invitrogen Corp., Carlsbad, CA, USA), and 100 ng of template cDNA. The PCR was
performed in the same thermocycler using initial denaturation at 94 ◦C for 3 min, followed by 35 cycles,
each of denaturation at 94 ◦C for 1 min, annealing at 58 ◦C for 1 min, extension at 72 ◦C for 1 min,
and the final extension at 72 ◦C for 10 min. Products of PCR were electrophoretically analyzed in
1.5% (w/v) agarose gels pre-stained with ethidium bromide and extracted from gel using the Agarose
Gel Extraction Kit (Roche Diagnostics GmbH, Mannheim, Germany). DNA sequencing was done
by Sanger method in commercial sequencing service (Comenius University, Bratislava, Slovakia).
Complete cDNA of the 1,2-diacyl-sn-glycerol:acetyl-CoA acetyltransferase from E. europaeus (EeDAcT)
was submitted to the GenBank® nucleotide database [23] (as accession no. MK637625.1).

Table 1. Primer sequences for amplification of partial cDNA products.

Fragment Primer Sequences (5′→3′) PCR Product (bp)

1 F1 AATCAAGCGAAACCCATCAC
R1 ATCACAAACCCCATCACCAT 632

2 F2 CGACTGTCTATGCCCCAACT
R2 TCAATTTCCACACACAAA 427

3 F3 ATGATGGATGCTCATCAAGA
R3 AGTTGGGGCATAGACAGTCG 684

4 F4 TCCTCAAGACTTCCAAAAGGA
R4 CACAAACCTTGTTCCAAGCA 1007

Sequence alignments of cDNA and proteins of the gene DAcT within the family Celastraceae
Celestraceae were performed using the CLC Main Workbench 20.0 software (Qiagen N.V., Venlo,
The Netherlands). The phylogenetic tree was constructed using the Clustal W software [24,25].
Compared were DNA and protein sequences, respectively, from E. europaeus (MK637625.1, QDH76310.1),
E. maackii (MF061250.1, ASM61114.1), E. kiautschovicus (MF061251.1, ASM61115.1), E. atropurpureus
(MF061249.1, ASM61113.1), E. alatus (GU594061.1, ADF57327.1), E. fortune (MF061252.1, ASM61116.1),
and Celastrus scandens (MF061248.1, ASM61112.1).

2.4. EeDAcT Gene Synthesis and Expression in Tobacco

The gene encoding the enzyme EeDAcT was synthesized (Eurofins Genomics Germany GmbH,
Ebersberg, Germany) in full length. The synthetic EeDAcT gene was modified by addition of restriction
endonuclease sites compatible with cloning the gene into binary transformation vector pRI 101-AN
(TaKaRa Bio Inc., Dalian, China) containing the 35S promoter of cauliflower mosaic virus (CaMV).
Sequences recognized by XbaI, NdeI were added in front of the 5′-end of the gene, and sequences
recognized by SalI, EcoRI, SacI enzymes were added behind the 3′-end of the gene. Original positions
recognizing by NdeI (position 800), XbaI (712), and EcoRI (550) inside the EeDAcT gene were eliminated,
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but the open reading frame was conserved. Chemically competent Escherichia coli cells, strain DH10B
(New England Biolabs Inc., Ipswich, MA, USA), were used for transformation. Transformed bacteria
were selected on LB medium [26] agar plates containing kanamycin and verified by molecular analysis
of plasmid. The plasmid containing pRI-101AN-natEeDAcT construct was used for transformation of
Agrobacterium tumefaciens cells by electroporation [27]. Positive transformants were selected on LB
medium agar plates containing kanamycin and rifampicin and cultivated in 10 mL liquid LB medium
containing 10 µg/mL of rifampicin and 50 µg/mL of kanamycin, under shaking (250 rpm) at 28 ◦C for
24–36 h. An optical density (OD600) of 0.8–1.0 was obtained after 24–36 h, measured with NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA).

Leaf discs of tobacco were transformed using Agrobacterium-mediated protocol [28]. Kanamycin
at concentration 50 µg/mL was used as a selection pressure during regeneration of transformed cells
and rooting of regenerated shoots. Transgenic plants were transferred from in vitro to in vivo and
cultivated in greenhouse conditions.

Presence of the EeDAcT transgene was detected in transgenic tobacco plants by PCR using primer
pair 5′-TCGCTCCCTTGAACATCTCT-3′ and 5′-GGAAAATAAGCCCAACGTGA-3′. Expected size
of the PCR product was 579 bp. The PCR reaction mixture and thermocycler type were the same as
previously. The PCR parameters were as follows: initial denaturation at 94 ◦C for 3 min, followed by
32 cycles, each consisting of a denaturation at 94 ◦C for 1 min, annealing at 60 ◦C for 25 s, extension at
72 ◦C for 1 min, and the final extension step at 72 ◦C for 10 min. PCR products were separated in 1.5%
(w/v) agarose gel in 1xTBE buffer (1.1% Tris-HCl; 0.1% Na2EDTA; 0.55% boric acid) pre-stained with
0.10 µL/mL of ethidium bromide.

3. Results

3.1. AcetylTAGs in E. europaeus

Presence of acetylTAGs was analyzed in root, stem, leaf, flower, aril, pericarp, and immature
seeds of E. europaeus. Only immature seeds contained a high level of acetylTAGs. On the opposite, the
aril tissue surrounding the seed produced the highest levels of long-chain triacylglycerols (lcTAGs).
Other evaluated tissues and organs accumulated lcTAGs, but not acetylTAGs (Figure 1).
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Figure 1. Detection of acetylTAGs (3-acetyl-1,2-diacyl-sn-glycerols) in different parts of E. europaeus
(1—leaves, 2—stem, 3—flower, 4—pericarp, 5—aril, 6—immature seed, 7—root).

The spot corresponding with acetylTAGs from immature seeds of E. europaeus was scraped from
the TLC plate, extracted, re-analysed, and compared with the standard of acetylTAGs, the synthetic
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di-18:1-acetylTAG. Analysis confirmed the presence of acetylTAGs in immature seeds of E. europaeus
(Figure 2).
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Figure 2. Comparison of acetylTAGs isolated from immature seeds of E. europaeus (left) with the
synthetic standard di-18:1-acetylTAG (right) by TLC.

The dominant fatty acid in acetylTAGs as well as in lcTAGs of E. europaeus immature seeds was
the oleic acid (Figure 3). The fraction of acetylTAGs contained 61.3% and fraction of lcTAG 53.2% of
oleic acid, respectively. Seeds accumulated also 9.0% of the essential linoleic acid in acetylTAGs and
11.8% in lcTAGs. The palmitic and stearic acids represented saturated fatty acids in acetylTAGs with a
percentage 21.5% and 6.6%, respectively. Their content in lcTAGs was 26.8% and 5.5%, respectively.
The cis-vaccenic acid was a minor component in both fractions of oil (1.4% and 2.7%, respectively), the
heptadecanoic acid was not detected in lcTAGs and in acetylTAGs represented only 0.3%.
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Figure 3. Relative fatty acids content (%) in acetylTAGs and lcTAGs (long-chain triacylglycerols) in oil
of immature seeds of E. europaeus (C16:0—palmitic acid, C17:0—heptadecanoic acid, C18:2—linoleic
acid, C18:1–9c—oleic acid, C18:1–11c—cis-vaccenic acid, C18:0—stearic acid).

3.2. Diacylglycerol Acetyltransferase Gene from E. europaeus

Initial metabolomic analysis of lipids in seeds of E. europaeus confirmed the presence of
3-acetyl-1,2-diacylglycerols (acetylTAGs). Based on this prerequisite, the responsible diacylglycerol
acetyltransferase-encoding gene was identified using high homology of this gene within the family



Life 2020, 10, 205 7 of 16

Celastraceae Celestraceae. Primers for detection of DAcT in E. europaeus (EeDAcT) were designed
according to available sequence of the EaDAcT gene from E. alatus (GenBank accession no. GU594061.1).
Amplicons obtained by PCR analysis declared an expected length of gene of about 1092 bp (Figure 4,
lanes 10, 11). Subsequently, a total RNA from individual organs and tissues (root, stem, leaf, aril,
pericarp, immature seed) of E. europaeus was isolated and transcribed to cDNA. Primers derived from
the EaDAcT gene of E. alatus provided positive amplifications and fragments of expected size only in
immature seeds (Figure 4, lanes 6, 7).
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Determination of cDNA sequence of EeDAcT gene was performed using a series of amplifications
of cDNA and followed overlapping of amplified fragments (Figure 5). All fragments obtained from
cDNA were sequenced, and the resulted nucleotide sequence of the natural EeDAcT gene has been
submitted into the GenBank database (accession number MK637625.1).
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Comparison of complete cDNA sequences of the DAcT genes with other species of the Celastraceae
family declared the originality of the natural EeDAcT gene at six nucleotide positions (555, 558, 717,
718, 720, 804) (Figure 6). The highest degree of identity (98.53%) of cDNA sequence was of the natural
EeDAcT gene with the homologous gene from E. atropurpureus (MF061249.1). High identity match was
also observed with the homologous gene from E. alatus (GU594061.1). The lowest degree of similarity
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of EeDAcT was with the relevant cDNA sequence from Celastrus scandens L. (MF061248.1). This was
also supported by the phylogenetic analysis (Figure 7). The phylogenetic tree created according to
cDNA sequences of DAcT genes (Figure 7) resembled clustering of species of the genus Euonymus L.
established by chemical composition of 3-acetyl-1,2-diacyl-sn-glycerols from seeds of mature fruits [10].
E. europaeus and E. alatus were separated into different clusters confirming their classification into
different Euonymus subgenus. E. alatus belongs to the subgenus Euonymus, section Melanocarya, while
E. europaeus belongs to subgenus Kalonymus, section Kalonymus [10]. However, it should be noted that
neither our study nor the mentioned one may correlate with the current classic taxonomy of the genus
Euonymus L.
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The in silico analysis of amino acid composition confirmed the presence of a conserved domain of
the O-acyl transferase family (MBOAT2) membrane-bound proteins at positions 193–274 (frame in the
Figure 8). This was an important prerequisite for cloning the gene and its expression in transgenic
plant tissues.
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another six species of the family Celastraceae Celestraceae (red letters—differences against EeDAcT
gene, black letters—identical amino acids).

3.3. Expression of EeDAcT Gene in Tobacco

Natural EeDAcT gene isolated from E. europaeus contained sequences recognized with the same
restriction endonucleases that were used to clone this gene into a plasmid vector. Therefore, these
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sites were eliminated during the design process of synthetic EeDAcT gene. The open reading frame
has not been changed, and changes in codon usage were minimized. Transformation vector pRI
101-AN contains constitutive promoter CaMV 35S and the 5′-untranslated region that should provide a
higher expression of the gene of interest [29]. Resulted plasmid pRI 101-AN-EeDAcT was transformed
into competent Escherichia coli cells DH10B and its sequence was verified by the Sanger sequencing.
Agrobacterium tumefaciens, strain EHA105, was transformed with plasmid vector pRI 101-AN-EeDAcT,
and transformed cells were selected using kanamycin (50 µg/mL) and rifampicin (10 µg/mL) and again
verified by PCR analysis.

Presence of the EeDAcT transgene in transformed tobacco was confirmed by PCR analysis. Five
regenerated and analyzed plants generated amplicons relevant to the presence of EeDAcT transgene
(Figure 9, lanes 6–10).
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Figure 9. Presence of EeDAcT transgene in transformed tobacco plants (lane 1—100 bp DNA ladder,
lanes 2, 3—negative control, lane 4—positive control (natural EeDAcT gene), lane 5—nontransgenic
tobacco plant, lanes 6–10—transgenic tobacco plants T1–T5).

Expression of the EeDAcT transgene was monitored using cDNA from individual parts of
transgenic tobacco plants (root, stem, leaf, seed), and differences were detected (Figure 10). Transgenic
plants T3, T4, and T5 expressed EeDAcT transgene in leaves, stems, and immature seeds, not in roots.
The T1 transgenic plant expressed transgene in immature seeds, stems, and roots, not in leaves, and
the T2 plant di not express the transgene in any organ.
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Figure 10. Analysis of EeDAcT gene expression in four different parts ((a) immature seeds, (b) stems,
(c) leaves, (d) roots) of transgenic tobacco plants (lane 1–100 bp DNA ladder, lanes 2, 3—negative
controls, lane 4—positive control, lane 5—nontransgenic tobacco plant, lanes 6–10—transgenic tobacco
plants T1–T5).
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Analysis of EeDAcT transgene at the level of DNA as well as cDNA exhibited presence of
PCR products with length 579 bp, corresponding with the expected length using designed primers
(Figures 9 and 10).

3.4. AcetylTAGs in Transgenic Tobacco

The content of oil in immature seeds (approximately 12 days after pollination) of nontrangenic
tobacco plant was 15.8% of fresh weight. Lipids (lcTAGs, acetylTAGs, free fatty acids (FFAs), free and
esterified sterols, and polar lipids) were isolated and separated from immature seeds of transgenic
and control tobacco plants by TLC coupled with densitometry. Nontransgenic control plants did
not produce any acetylated TAGs, as they do not have the necessary genetic and thus no enzymatic
background. New lipid structures were identified only in the three transgenic lines (T3, T4, T5). They
were identified as a fraction of acetylTAGs, using the di-18:1-acetylTAG synthetic standard (Figure 11a).
AcetylTAGs were the dominant lipids in immature seeds with content in the range of 29.5–54.8% and
content of fatty acids in acetylTAGs was different in individual transgenic tobacco lines (Figure 11c).
Lines were different also in the amount of accumulated lcTAGs as well as in content of fatty acids in
lcTAGs (Figure 11b). T3 and T5 plants contained similar values (4.73% and 7.05%), but the T4 plant
accumulated a very high content (53.9%) of lcTAGs.
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Figure 11. Accumulation of acetylTAGs in seeds of transgenic (T1–T5) and nontransgenic (NT) tobacco
plants: (a) thin-layer chromatography (TLC) of lipid structures (FS—free sterols, FFA—free fatty acids,
lcTAG—long chain triacylglycerols, SE—sterol esters); relative fatty acids content (%) in lcTAGs (b) and
acetylTAGs (c) of transgenic tobacco plants T3, T4, T5 (C16:0—palmitic acid, C17:0—heptadecanoic
acid, C18:2—linoleic acid, C18:1–9c—oleic acid, C18:1–11c—cis-vaccenic acid, C18:0—stearic acid).

Polar lipids, free fatty acids, and free sterols were minor lipids in transgenic tobacco seeds
(Figure 12).
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Figure 12. Accumulation (relative percentage) of acetylTAGs, lcTAGs, and other lipid structures in
immature seeds of transgenic tobacco plants T3, T4, T5.

Proportion of acetylTAGs and lcTAGs in immature seeds of tobacco transformed with modified
EeDAcT gene showed a strong effect of transgene (Figure 13). T3 and T5 plants synthesized a high
level of acetylTAGs (54.8% for T3 and 53.5% for T5). lcTAGs were a minor compound, with content of
4.7% (T3) and 7.1% (T5). The T4 plant had the opposite parameters. It contained 29.5% of acetylTAGs,
but 53.9% of lcTAGs. The proportion of acetyl TAGs to lcTAGs in two tobacco transgenic lines (T3, T5)
was similar, even higher than in immature seeds of E. europaeus (Figure 13).
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Figure 13. Relative ratios of acetylTAG and lcTAG contents in immature seeds of transgenic tobacco
plants (T3, T4, T5) and E. europaeus (EEIS).

Oleic acid was the dominant fatty acid in acetylTAGs of all transgenic plants. However, its
concentration markedly varied between transgenic samples (63.8% in T5 and 23.2% in T3 plant). The
opposite trend was observed in the case of palmitic acid. Its level was the highest in T3 (41.9%),
compared with T4 (27.5%) and T5 (20.8%) plants. Stearic acid was present in acetylTAGs with values
lowest in T5 (8.9%), followed by T4 (17.6%) and T3 (23.1%) plants. Other fatty acids were in minority.
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The fatty acid composition in lcTAGs showed similarities in contents of oleic and palmitic acids,
but differences in linoleic acid. T4 plant accumulated the lowest levels of palmitic (26.3%) and oleic
acids (31.0%), but a significant higher level of linoleic acid (27.7%) compared with T5 (only 1.3%) and
T3 (4.1%).

4. Discussion

Euonymus europaeus L., similarly to other Euonymus species, possesses the genetic background and
biochemical pathways for the synthesis of 3-acetyl-1,2-diacyl-sn-glycerols. It accumulates acetylTAGs in
mature seeds and a very limited content also in arils [9]. The studies were performed almost exclusively
on a related species, E. alatus. Immature seeds of E. europaeus used in this study also contained a high
content of acetylTAGs, but they were not detected in aril tissues surrounding seeds (Figures 1 and 3). As
was previously published in regard to E. alatus [17,20], the sn-1 and sn-2 positions of acetylglycerides of
E. europaeus are esterified with common fatty acids, predominantly with oleic acid, followed by palmitic
and linoleic acids (Figure 3). Consequently, E. europaeus could be included among the candidates from
the family of Celastraceae for isolation, cloning, and utilization of the gene encoding the responsible
enzyme, diacylglycerol acetyltransferase. Compared with EaDAcT, the EeDAcT gene is unique. The
enzyme EeDAcT itself is different in six amino acids against EaDAcT, and there are even greater
differences compared with other Euonymus DAcTs (Figure 8). This suggests that the acetylation activity
of EeDAcT could be different from that of other Euonymus DAcTs. This assumption is based on an
already revealed significant variation in activity of diacylglycerol acetyltransferases originated from
other Euonymus species expressed in transgenic yeast [18].

The nucleotide sequence of cDNA obtained by reverse transcription from RNA isolated from
immature seeds and the DNA sequence of the original EeDAcT gene isolated from E. europaeus were
identical. This suggests that the EeDAcT gene has a simple, intronless structure. Such genes occupy
approximately about one-fifth of all protein-encoding genes within plant genomes [30]. They include
housekeeping genes, for example, genes encoding key enzymes included in the primary metabolism,
storage proteins, and other proteins [31,32]. The fact that the EeDAcT gene does not contain introns
emphasizes its importance in plant metabolism and plant life. This also increases the interest to transfer
such genes into oil-producing plant species. Due to the intronless structure of the natural EeDAcT
gene, only minor in silico redesigning and synthesis of an artificial gene for transformation into the
host plant was necessary. Tobacco plants were used for heterologous expression of the EeDAcT gene.
Although tobacco with a modified metabolic pathway of lipid biosynthesis can be also considered
as a promising non-food crop for biofuel production [33], here it was used only as a model plant
species for overexpression of isolated and modified EeDAcT gene. Results of metabolomic analysis in
immature seeds of transgenic tobacco have coincided with the EeDAcT gene expression detected at the
transcriptomic level. Expression of EeDAcT transgene varied within individual transgenic plants, and
different levels of synthesized acetylTAGs in plants were associated with this. None of the transformed
plants transcribed the EeDAcT gene in all four monitored parts (immature seeds, stems, leaves, roots)
(Figure 10). There are several possible reasons, such as the positional effect of transgene, regulation
sequences and flanking sequences of host DNA in the site of transgene integration, transgene copy
number in the host genome, and epigenetic effects of gene silencing [34–37]. Therefore, the impact of
the enzymatic activity of the transgene product was evaluated. That is the best indication of changes
caused by the expression of alien gene in the metabolism of the host plant.

The natural composition of fatty acids in tobacco seed oil is very diverse and depends on the
tobacco genotype. Linoleic acid is dominant in some genotypes, the oleic acid in others, and in some
genotypes there is a relatively well-balanced ratio between linoleic, oleic, and palmitic acids [38].
These ratios are more or less constant also in different vegetation conditions. Serious shifts in oil
content and fatty acid composition tend to be associated with overexpression of alien genes related to
lipid biosynthesis. This is also a typical impact of DAcT gene transfer into the host plants [33,39,40].
However, the main aim of introduction of DAcT gene is acetylation of synthesized TAGs. Transgenic
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tobacco plants obtained by introduction of EeDAcT gene generated both changes. They synthesized
acetylated TAGs, but also variation in the content of individual fatty acids in acetylTAGs appeared. The
palmitic acid dominated in acetylTAGs in T3 transgenic line, while oleic acid dominated in T4 and T5
lines (Figure 11b). There was also variation in the content of lcTAGs. Two lines (T3, T5) produced a very
low amount of lcTAGs, whereas the line T4 produced predominantly lcTAGs (Figure 12). Differences
in content of bounded fatty acids in lcTAGs were also found. High content of linoleic acid was present
in lcTAGs in T4 transgenic line, very low in two others, but in the case of oleic acid it was vice versa.

Summarizing of these results reveals that the presence of EeDAcT transgene, along with the
impact of genetic transformation and transgene integration effect itself, causes extensive changes
in lipid metabolism of the host plants. In addition to the acetylation of TAGs, changes also occur
in the composition and relative proportions of lipid structures and fatty acids. Experiences from
transgenic yeast and Arabidopsis seeds expressing the EaDAcT from E. alatus revealed that this enzyme
can acetylate a wide range of diacylglycerol substrates [16]. This can result in significant biochemical,
physiological, and even morphological changes in the host organism that must be studied. This
enzyme can also induce changes in the plant itself, giving the plant better resistance to environmental
stresses. Overexpression of genes encoding different DGATs in a transgenic plant also changes quality
parameters of oils required for either technical or nutritional use. Therefore, this approach could be
extremely important for the development of new genotypes of plants advantageous for crop production.

From the point of view of possible applications of EeDAcT gene isolated from E. europeaus, the
most important conclusion is that the enzyme EeDAcT encoded by this transgene was able to produce
acetylate TAGs in transgenic plants. The host plants accumulated acetylTAGs not previously present,
in a ratio similar to that in E. europaeus.
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