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Minerals are required in small amounts to sustainmetabolic activity in animals,
but mineral deficiencies can also lead to metabolic bottlenecks and mineral
excesses can induce toxicity. For these reasons, we could reasonably expect
that micronutrients are actively regulated around nutritional optima. Honey-
bees have co-evolved with flowering plants such that their main sources of
nutrients are floral pollen and nectar. Like other insects, honeybees balance
their intake of multiple macronutrients during food consumption using a com-
bination of pre- and post-ingestivemechanisms. How they regulate their intake
of micronutrients using these mechanisms has rarely been studied. Using two-
choice feeding assays, we tested whether caged and broodless young workers
preferred solutions containing individual salts (NaCl, KCl, CaCl2, MgCl2) or
metals (FeCl3, CuCl2, ZnCl2, MnCl2) in a concentration-dependent manner.
We found that young adult workers could only self-select and optimize their
dietary intake around specific concentrations of sodium, iron and copper.
Bees largely avoided high concentrationmineral solutions tominimize toxicity.
These experiments demonstrate the limits of the regulation of intake of micro-
nutrients in honeybees. This is the first study to compare this form of behaviour
in one organism for eight different micronutrients.

This article is part of the theme issue ‘Natural processes influencing
pollinator health: from chemistry to landscapes’.
1. Introduction
Honeybees live in densely populated colonies with overlapping generations [1],
which means they are constantly striving to meet the colony’s demand for nutri-
tional resources. One adaptation within a honeybee colony is the division of
labour among adult workers. Adult foragers select and collect pollen and
nectar from flowers. Collected pollen is stored in the colony and consumed by
relatively young adult workers, who process food to feed developing larvae
and reproducing bees. By consuming the food and creating glandular secretions,
adult workers regulate the intake of nutrients for the entire colony [2,3].

Bee nutrition is partitioned into macronutrient sources within a colony:
honey is the primary source of carbohydrates, and bee bread (a mixture of
pollen and honey) is the primary source of protein, fats, vitamins and minerals
[4]. Pollen has a more diverse (K, P, S, Ca, Mg, Na, Cu, Fe, Mn, Zn) and a more
concentrated mineral profile (2.5–6.5% total ash) than nectar or honey [5–7]. The
mineral contents of pollen depend on soil and botanical origin, season and geo-
graphical location [8–10]. Like other herbivores, bees may be nutritionally
deficient in sodium (Na) because they consume plant tissue [11]. Thus, one
plant species’ pollen may not fully complete the mineral needs of honeybees
[8]. Collection of the pollen of many plant species may be the mechanism by
which bees overcome nutritional deficiencies. Bees also consume honey, derived
from floral nectar and other sources like aphid honeydew [12]). Honey is
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unlikely to provide all necessary micronutrients, as it has
relatively low concentrations of minerals (total ash: 0.17–
1%), with potassium (K) accounting for greater than 70% of
the total ash content, followed by phosphorus (P), sulfur
(S), chloride (Cl), sodium (Na) and sometimes magnesium
(Mg) and other trace metals [5,7,13,14].

Insect nutrition is well studied for many species, including
aphids, bees, flies and locusts [15–17]. Although micronutrient
nutrition (e.g. minerals, vitamins) has been challenging to
tackle and findings harder to generalize [18,19], we know
that minerals are important for development, growth and
fecundity in insects [15,19]. For example, dietary iron (Fe) or
zinc (Zn) deficiencies retarded aphid larval growth from the
first generation [19]. Minerals (salts and metals) are essential
micronutrients performing structural, physiological, catalytical
and regulatory functions within insect cells and tissues [20,21].
Sodium (Na) and potassium (K) (alongside chloride, Cl) are the
most active ionswithin the body, and their balance is critical for
osmoregulation [22], cold tolerance [23] and insects’ reproduc-
tive output [24,25]. Calcium (Ca) and magnesium (Mg) enable
muscle contraction–relaxation and participate in intracellular
communication andATPmetabolism, respectively [21]. InDro-
sophila, Ca is required for egg activation [26] and dietary Mg
improves memory function [27]. Iron (Fe) is a component of
several metalloenzymes involved in toxin degradation via
cytochrome P450, moulting hormone production [28], innate
immune response [29–31], magnetoreception in bees [32],
fecundity in mosquitoes [33] and neurodevelopment in mam-
mals [34]. Zinc (Zn) is a cofactor in many enzymes involved
in the antioxidant defence against oxidative stress [35,36],
metal detoxification mechanisms and cell replication [37].
Copper (Cu) and manganese (Mn) are essential cofactors in
metalloproteins with catalytic activity (e.g. superoxide dismu-
tase systems) [20,37]. However, they can occur in high
concentrations in the soil and plant tissues and disrupt insect
behaviour [38], particularly in pollinators [39,40]. These
metals can also support the sclerotization and hardening of
the insect cuticle [41,42].

Nutritional deficiencies can lead to changes in animal regu-
latory behaviour. For example, ants deficient in Na seek salt
and prefer it over sugar baits [43]. Dietary minerals influence
food perception and feeding decisions in locusts/grasshoppers
[44,45], rats [46,47], fruit flies [48–51] and kissing bugs [52]; in
addition, NaCl can act as a gustatory reinforcer in learning
[48,49,53]. Previous work indicates that optimal ranges of
micronutrients in bee diet exist. For example, pollen ash (1%)
maximized brood rearing in bee colonies [54]. Others found
that specific concentrations of dietary Ca improved larval
growth and the antioxidant capacity of honeybees [55]. In
Osmia bicornis, supplementation of larval food with Na, Zn
and K increased female body mass, survival and male body
mass, and cocoon development, respectively [56]. Honeybees
faced with mineral limitations in pollen may forage on
alternate food sources (e.g. water) [57–60] to (possibly) comp-
lement their nutrition. Other studies suggest that bees avoid
ingesting high concentrations of minerals (e.g. high K) in
food [61], which can downregulate the estimation of nectar
profitability and foraging activity [62,63]. High metal concen-
trations in food negatively impact individual bees (e.g.
health, cognition and foraging behaviour) [12,64–67],
eventually inducing cumulative effects on the colony [39].

The extent to which bees regulate micronutrients in diet is
largely unknown but could be revealed by studying food
choice behaviour. Mineral salts are phagostimulant molecules
that influence food palatability, with animals usually accept-
ing low and rejecting high concentrations. In Drosophila, the
ability to taste low Na and high Ca in food drives the appro-
priate feeding response which contributes to the regulation of
ingestive behaviour [51,68]. Whether these behaviours gener-
alize toward other mineral nutrients, however, is unclear. The
relationship between deficiency and toxicity of micronutri-
ents was formalized in a dose–response model referred to
as the Bertrand’s rule [69]. It predicts that animals will seek
and ingest essential micronutrients in a concentration-depen-
dent way; low levels are increasingly phagostimulatory (and
beneficial for their health) until they reach an optimal pla-
teau, whereas beyond that micronutrients can become toxic
and are rejected [16,69,70]. We know micronutrients are
required in small amounts but can become toxic at high
levels. Though essential, Cu, Fe and Mn are redox-active
metals that can induce oxidative stress and disrupt biological
systems [71], and mineral nutrition can influence the antiox-
idant status of honeybees [36,55,71]. It is reasonable to
expect that these compounds would have strict animal regu-
latory mechanisms. Some insects, like the aphid [19], the
locust nymph [44] and the fruit fly larva [48–50], regulate
mineral intake around preferred ranges, and termite colonies
regulate their intake of multiple minerals in food [72]. By con-
trast, grasshoppers and field crickets do not appear to
regulate the ingestion of dietary phosphorus [45,73]. Here,
using two-choice feeding assays with caged and broodless
young workers, we tested whether honeybees could self-
select individual salts (NaCl, KCl, CaCl2, MgCl2,) and
metals (FeCl3, CuCl2, ZnCl2, MnCl2) in food in a concen-
tration-dependent manner. According to Bertrand’s rule, we
expect that honeybees show a preference for specific mineral
diets if they actively and consistently consume more of the
mineral compared with the control diet over time, and also
that bees will choose a preferred and optimal range of con-
centrations if within or above their nutrient requirements
(e.g. body contents) and below toxic concentrations, which
negatively affect feeding and survival over time. Identifying
the specific impacts of micronutrients in the feeding prefer-
ences that can lead to the optimization of intake by adult
worker honeybees is, therefore, an important but neglected
aspect of their nutritional ecology. This study is one of the
first to assess dietary self-selection and the Bertrands’ rule
assumption on the ingestion behaviour of eight minerals indi-
vidually tested in food. With this, we aimed to understand
whether adult workers use taste to perceive and select pre-
ferred ranges, and regulate their intake of minerals in food.
2. Material and methods
(a) Experimental animals and chemically defined diets
Young worker bees should best represent colony nutrient needs
because they perform tasks within the hive that are tightly
related to food processing and larval feeding [4]. Additionally,
among adult workers and even when not tending for brood,
they are the ones expected to have higher nutritional demands
and to be more sensitive to micronutrients such as mineral salts.

Honeybee colonies (Apis mellifera, var. Buckfast) were kept in
the northeast UK between May and September 2014–2016. Brood
frames with capped cells were selected and marked from up to
30 colonies in the apiary. Within two days before the estimated
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eclosion (11–13 days after brood cell is capped), these marked
frames were moved into a ventilated incubator (SANYO Electric
Co., Japan) and kept at 34°C and 56% relative humidity in the
dark [74]. To account for potential colony effects, emerging
bees (0–30 h old) were brushed off different frames and mixed
together into a large ventilated container before we assigned
them to dietary treatments. We then randomly collected n = 30
bees from the container and assigned them to experimetal
boxes in a random order. We did not feed newly emerged bees
(new) between their emergence and assignment to dietary treat-
ments (2–5 h). Therefore, we expected bees were more likely to be
motivated to feed. At the end of the experiment, bees remaining
alive were euthanized by freezing.

In laboratory conditions, broodless workers’ survival can be
ensured by providing ad libitum sucrose solutions at 30–50% w/
v [74]. Therefore, we used reagent grade sucrose dissolved in
deionized water (pH≈ 6.5) at 1.0 M (34.2% w/w) as the back-
ground solution to prepare mineral diets. We refer to minerals
as both salts (macroelements) and metals (microelements). We
tested the eight minerals most prevalent in pollen at five levels
of concentration each. For salts, we used NaCl (0, 5, 50, 500,
1000 ppm), KCl (0, 10, 100, 1000, 10 000 ppm), CaCl2 (0, 1, 10,
50, 500 ppm) and MgCl2 (0, 10, 30, 300, 3000 ppm), and for
metals we used FeCl3 (0, 1, 10, 100, 1000 ppm), CuCl2 (0, 0.5, 5,
50, 500 ppm), ZnCl2 (0, 0.5, 5, 50, 500 ppm) and MnCl2 (0, 1, 10,
50, 500 ppm); for reagent details refer to electronic supplementary
material, S1. The range of concentrations for each mineral was
based on recommendations on the mineral composition of syn-
thetic diets for honeybees [54,75], and tailored for each mineral
after preliminary work in our laboratory [76].

(b) Experimental boxes and feeding tubes
Experimental boxes consisted of customized acrylic ventilated
boxes (dimensions: 13 × 11 × 4 cm; 0.4 l capacity) with two slid-
ing screens (front/back) and three holes (Ø 10.9 mm) in each
side where feeding tubes were delivered (Bay Plastics, North
Shields, UK) (figure 1). Each box was taken as one unit replicate
and randomly assigned to diet treatments. Within each box,
cohorts of n = 30 newly emerged workers (new) were able to
move freely. Feeding tubes consisted of 2.0 ml microcentrifuge
Eppendorf tubes (VWR International, UK) modified by drilling
four holes (Ø 2.0 mm) in a line and 5 mm apart to allow lapping.
Each box was fitted with six feeding tubes, i.e. one pair of both
control and test diets (mineral treatments) or two pairs of control
diet only (control treatment), and one pair of deionized water; for
tube layout refer to electronic supplementary material, S2. We
replaced feeding tubes with fresh diet every day; this hampers
diet contamination by environmental dust, which could induce
a build-up in trace elements or microbial growth [74].

(c) Two-choice feeding assays and diet treatments
We used two-choice feeding assays in this study to investigate (1)
dietary self-selection and non-randomness of food intake, (2)
mineral preferences and how bees regulated the ingestion of indi-
vidual minerals varying in concentration, and (3) the effects of
mineral diets on the survival of young adult workers. The diet-
ary context was as follows: honeybees were offered a choice
between two diets: control diet (1.0 M sucrose solution) and a
test diet (mineral-laced sucrose solution). We conducted a total
of 40 diet treatments, each testing a single mineral diet at one
out of five levels of concentration over 6 days (n = 4–10 boxes
and n = 120−300 bees per treatment). Alongside each mineral
group, we ran one control treatment (sucrose only, no mineral
added) (n = 4–10 boxes). Owing to space limitations inside the
incubator at certain times, we used fewer box replicates for
some treatments (e.g. sucrose controls, iron, copper). In some
instances, treatment boxes were knocked over and had to be dis-
carded. Mock evaporation boxes were used to account for the
evaporation loss of liquid diets. Each treatment was attended
by n = 2–4 mock boxes (same tube setup without bees). All
boxes were kept inside an acclimatized incubator (34°C and
56% relative humidity, no light) except when assessed. We
shuffled the boxes inside the incubator every day to minimize
shelf bias on the evaporation rates of diets [76]. We also moni-
tored the temperature and relative humidity throughout the
experiment (OMEGA Engineering, Manchester, UK).
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(d) Diet and water consumption, body weights and
survival of young worker honeybees

For each experimental box, we weighed and replaced the feeding
tubes (control, test solutions or water) every 24 h (±4 h) over 6
days. First, we estimated the differences in weight (g) to obtain
consumption values for each diet. These values were adjusted
by subtracting the mean percentage loss by evaporation for
each diet. We measured evaporation rates for each solution in
mock boxes containing the diets but without bees; these values
were normalized for each solution—for details refer to electronic
supplementary material, S3. Then, we determined the volume of
each solution by dividing the weight of the consumed solution
by its density (measured solution densities: 1.0–1.2 g ml−1). For
each experimental box, the volumes consumed for each solution
were divided by the number of live bees. Finally, we averaged the
volumes consumed for each solution per bee over the duration of
the experiment. Total consumption was a measure of the total
volume consumed from both diet solutions and excluding
water. Water intake was measured for each treatment, deter-
mined in a similar fashion, and analysed separately.

To better illustrate consumption patterns and feeding prefer-
ences for salt- or metal-laced sucrose diets, we calculated the
preference index (PI) using the volumes consumed for each
diet: PI =((test diet consumed) – (control diet consumed))/(total
diet consumed). Preference indexes were estimated as total PI
(mean over 6 days) or daily PI to assess how diet consumption
and preferences fluctuated over time.

In a natural setting, bees defaecate while flying in the day-
light. Here, although free to move inside the box, bees were
mostly kept in the dark inside the incubator (except during
assessment periods). Therefore, we further recorded fresh body
weights at the end of experiment (endpoint) (n = 5
bees per box) to evaluate the impact of dietary treatments in
caged workers. For qualitative comparison, we weighed
untreated worker bees (no feeding treatment received) directly
collected from brood frames (newly emerged bees; proxy of start-
ing point) or at the entrance of the colony (fg, foragers).

Honeybee mortality was used as a proxy for health benefits/
costs associated with active mineral ingestion. Therefore, we
recorded the number of dead bees every day and removed
them from the box. Control treatment (sucrose alone) was used
as the reference treatment to compare survival curves between
feeding groups for each mineral.
(e) Statistical analyses
We performed statistical analyses using IBM SPSS Statistics for
Macintosh (v. 27, 2022) and GraphPad Prism Software (Prism
9.3.1 for macOS, 2021). Total preference indexes and total
volumes consumed were analysed using generalized linear
models (GzLM). We first constructed a factorial model to test
the effects of mineral type, concentration and the interaction
between both factors on diet consumption. Then, we applied uni-
variate GLzM models to each mineral group for post hoc
comparisons between concentrations (control/reference group
or pairwise) using sequential Bonferroni procedure. Within
each treatment, we compared the volumes of control versus
test solutions using unpaired t-tests with Holm–Šídák method
(α = 0.05) for multiple comparisons. We analysed salts and
metals separately. Diet consumption and water consumption
were also analysed separately. The differences in daily prefer-
ences (daily PI) for each mineral treatment were analysed using
generalized linear models estimating equations (logistic GEE)
for repeated measures within-subjects. We built a factorial
model to test the effects of time (days), concentration and the
interaction between days and concentration. The impact of min-
eral diets on bee survival was estimated using survival analysis
with Cox regression models and testing for the proportionality
of hazards assumption, i.e. whether the risk factors affecting
time to event (death) were constant over time. For each mineral,
differences in survival across concentrations (risk factor) were
compared using contrasts indicator with control treatment
(sucrose alone) as the reference group.
3. Results
We offered caged young worker honeybees a choice between
diets to investigatewhether bees prefer amineral-laced sucrose
diet over sucrose alone (1.0M aqueous solution). Here, we refer
tominerals as salts (macroelements) ormetals (microelements);
for the salt group, we tested NaCl (Na, 5–1000 ppm), KCl
(K, 10–10 000 ppm), CaCl2 (Ca, 1–500 ppm) and MgCl2 (Mg,
10–3000 ppm), and for the metal group we tested FeCl3 (Fe,
1–1000 ppm), CuCl2 (Cu, 0.5–500 ppm), ZnCl2 (Zn, 0.5–-
500 ppm) and MnCl2 (Mn, 1–500 ppm); control treatment
(0 ppm) consisted of a single diet (1.0 M sucrose alone) with
no mineral added to the sucrose solution. By measuring diet
consumption over a range of concentrations tailored for each
mineral, we were able to assess self-selection behaviour and
mineral feeding preferences of young workers, and evaluate
the impact of mineral feeding on their survival within the
range of concentrations tested.

(a) Mineral feeding preferences and diet consumption
by caged young workers

(i) Salts
Feeding preferences and volumes consumed by young
workers given salt-laced sucrose diets are indicated in
figure 2. Overall, preference for salt diets depended on the
salt identity and its concentration (total PI, GzLM: salt × con-
centration, x29 ¼ 142, p < 0.001). Similarly, and within each salt
treatment, the volumes consumed from each diet (control or
test) depended on the diet and salt concentration (figure 2b,
Na: diet × concentration, x23 ¼ 42:3, p < 0.0001; figure 2d, K:
diet × concentration, x23 ¼ 231, p < 0.0001; figure 2f, Ca:
diet × concentration, x23 ¼ 92:1, p < 0.0001; figure 2h, Mg:
diet × concentration, x23 ¼ 30:8, p < 0.0001; 0 ppm treatment
excluded from the analysis); also refer to electronic sup-
plementary material, S4. Young workers offered Na diets
consistently consumed more of the Na diets as the concen-
tration increased; on average and on a daily basis, bees
ingested more of the higher range of concentrations tested
(500 and 1000 ppm) (figure 2a,b; electronic supplementary
material, S5 and S6c,d). Interestingly, bees consumed more
of Na diets at 500 ppm each day (electronic supplementary
material, S6c), but bees presented with high Na diets
(1000 ppm) showed a different pattern of feeding. We
observed an increase in consumption of high Na diets after
the first 24 h and until day 5, which was followed by an
increase in consumption of the control solution instead (elec-
tronic supplementary material, S6d). Altogether, bees fed
with the Na diets ate significantly more food (e.g. Na,
500 ppm: 58.5 µl bee−1) compared with control treatments
(Na, 0 ppm: 47.8 µl bee−1). By contrast, the bees did not
show clear preferences for the other salt-laced sucrose diets
compared with sucrose alone (PI≈ 0). For example, bees
given diets containing K (10, 100 and 1000 ppm) or Ca (1,
10, 50 ppm) neither preferred nor rejected these diets, and
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consumed on average similar volumes from both control and
test diets (figure 2c–f ). However, the bees avoided consuming
diets high in K (10 000 ppm), Ca (500 ppm) and in Mg
(3000 ppm) (figure 2c–h); high Mg induced the maximum
rejection observed for salts (PI < 0) (figure 2g,h). Analysis of
the effects of salt diets on total food consumption revealed
that the total volume ingested was also significantly affected
by salt identity and concentration (GzLM: salt ×
concentration, x212 ¼ 88:5, p < 0.001); refer to electronic sup-
plementary material, S7 and S8). For the K and Ca
treatments, the total diet consumed was not statistically
different from the control. Bees fed the low-Mg treatments
(10 and 30 ppm) consumed greater total diet volumes than
control bees (electronic supplementary material, S8d).
Though bees consumed less of high Mg diets (3000 ppm),
they consumed more of the control solution alone. Thus,
there was no significant impact on total food consumption;
total amounts of food consumed between 0 and 3000 ppm
were not statistically different (electronic supplementary
material, S8d).
(ii) Metals
Feeding preferences and volumes consumed by young
workers given metal-laced sucrose diets are shown in
figure 3. Overall, preference for metal diets depended on
the metal identity and its concentration (GzLM: metal × con-
centration, x29 ¼ 265, p < 0.001). For each metal treatment,
the volumes consumed from each diet (control or test)
depended on the diet and metal concentration (figure 3b,
Fe: diet × concentration, x23 ¼ 340, p < 0.0001; figure 3d, Cu:
diet × concentration, x23 ¼ 104, p < 0.0001; figure 3f, Zn:
diet × concentration, x23 ¼ 27:0, p < 0.0001; figure 3h, Mn:
diet × concentration, x23 ¼ 28:0, p < 0.0001; 0 ppm treatment
excluded from the analysis); also refer to electronic sup-
plementary material, S4. Young workers progressively
ingested more of Fe-laced sucrose diets compared with
sucrose control diet as the concentration increased; at low
Fe (1 ppm) bees ate randomly (PI≈ 0), i.e. similar volumes
from both solutions; at 10 and 100 ppm bees showed maxi-
mum intake and preference (PI > 0) for these Fe diets
(figure 3a,b). On a daily basis, consumption of Fe diets
depended on the day and concentration (electronic sup-
plementary material, S5, GEE: day × concentration,
x215 ¼ 123, p < 0.001); at high Fe (1000 ppm) bees remarkably
rejected Fe diets across the 6 day feeding period (PI < 0) (elec-
tronic supplementary material, S9d). Compared with control
treatment, only bees offered high Fe (1000 ppm) ate signifi-
cantly less food overall (electronic supplementary material,
S7 and S10a). In a similar fashion, bees preferred to consume
Cu diets at the medium range of concentrations tested (PI > 0
at 5 and 50 ppm); they ate more of the Cu-laced sucrose as
the concentration increased (figure 3c,d) and for most of the
days (electronic supplementary material, S5, GEE: day × con-
centration, x215 ¼ 75:3, p < 0.001; also see electronic
supplementary material, S9f,g). On high-Cu treatments
(0 ppm vs 500 ppm), bees notably preferred to consume the
control diet. Surprisingly, it took these bees over the first
24 h to perceive and avoid ingesting high Cu diets (500 ppm,
electronic supplementary material, S9h). Bees offered Cu
diets consumed the least total volume of diet compared with
total volumes ingested by bees in the control, Na, K, Ca, Mg,
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Fe, Zn and Mn treatments: 0 ppm (µl bee−1): Mn (67.0) > Ca
(61.3) > Zn (60.0) > K (58.3) > Fe (55.8) >Mg (51.8) >Na
(47.8) > Cu (43.3) (electronic supplementary material, and S8
and S10). Of note, bees in control treatments ingested between
40 and 65 µl bee−1 over the summer season (June to Septem-
ber); the total volume consumed by young workers was
statistically different between mineral treatments and
increased over time, except during the week we tested Cu
treatments (electronic supplementary material, S11). Honey-
bees offered Zn or Mn treatments showed no preference nor
rejection for diets containing 0.5–50 ppm of metal (figure 3e,
g), and thus consumed similar volumes from both metal-
laced andsucrose control diets (figure 3f,h); at high levels,
bees rejected both Zn and Mn diets (both at 500 pm) and ate
more of the sucrose-only solutions (figure 3e–h). Also, for
both Zn and Mn, daily consumption depended on metal con-
centration only (electronic supplementary material, S5 and
S9i–p). In metal treatments, the total volume consumed by
bees from both solutions depended on the metal identity
and its concentration (electronic supplementary material, S7
and S10). The total volume ingested by bees in Zn treatments
was not linear, but oscillated across concentrations (electronic
supplementary material, S10c). On average, bees in control,
5 or 500 ppm of Zn treatments consumed similar volumes of
food (electronic supplementary material, S10c); instead, bees
offered 0.5 or 50 ppm Zn diets ate similar volumes of food in
total. By contrast, total food consumed by young workers in
Mn treatments did not differ from control treatments (sucrose
alone). Additionally, bees across Mn treatments ate, on aver-
age, larger volumes (≥ 60 µl) of food compared with all the
other mineral treatments (electronic supplementary material,
S10d and S11).
(b) Water consumption, bee body weights and survival
of young workers

(i) Salts
In figure 4a, we show the pooled data for water consumption
from each salt group compared with the water consumed by
control bees (data shows eight pooled treatments, Suc:
22.0 ± 1.58 µl bee−1 day−1), which were fed sucrose diets
only. Overall, water intake was dependent on the salt treat-
ment (GzLM: salt, x24 ¼ 29:4, p < 0.001). Within each salt
group, the volume of water consumed by bees depended
on both salt and concentration (GzLM: salt × concentration,
x212 ¼ 33:2, p < 0.001; mean µl bee−1 day−1, Na: 20.6 ± 0.66;
K: 25.6 ± 0.70; Ca: 25.3 ± 0.86; Mg: 23.1 ± 1.12); see electronic
supplementary material, S12. Specifically, in the Mg group,
control bees consumed on average more water than bees on
Mg diets (GzLM: x24 ¼ 24:0, p < 0.001, electronic supplemen-
tary material, S12j).

At the end of each experiment, we weighed a subset of
bees (n = 20–50 bees per treatment) to test the effect of mineral
feeding on their total body weight. In figure 4b, we show the
pooled data for bee body weights for all control treatments
and for each salt group. Overall, dietary treatment had a sig-
nificant effect on bee body weights at day 6 (GzLM: x24 ¼ 124,
p < 0.001). The body weights of bees given Na (114 ±
0.89 mg bee−1), K (117 ± 0.87 mg bee−1) or Mg (105 ±
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0.81 mg bee−1) diets were significantly differtent from control
bees (110 ± 1.02 mg bee−1) (figure 4b). Within each salt group,
there was a significant effect of salt type and concentration on
the body weight of caged young workers (GzLM: salt ×
concentration, x212 ¼ 52:4, p < 0.0001). Within the K group,
bees offered high-K diets had statistically higher body
weights at day 6 compared with control bees (electronic sup-
plementary material, S12e).
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We then tested whether mineral feeding affected the mor-
tality rates of caged young workers kept in a choice feeding
context during 6 days. We used regression models to test
the risk effect of concentration on bee survival for each salt
group (electronic supplementary material, S12); we checked
the proportionality of hazards assumption, i.e. the risk factors
affecting time to event (death), which were constant over time
for salt treatments. Overall, the lower range of mineral con-
centrations did not impact the survival of bees (electronic
supplementary material, S12) compared with the control
treatment. Therefore, we show the survival curves for high-
salt feeding in figure 4c. The risk of mortality to bees
depended on time and salt identity (Cox regression (reg.):
salt, time × salt, Wald x24 ¼ 44:7, p < 0.001). Only high-Mg
diets were statistically different from the control group, indu-
cing around 10% of bee deaths by day 6 (figure 4c, Cox reg.:
time × high Mg, Wald x21 ¼ 32:3, p < 0.0001, exp(β) = 1.38, 95%
CI [1.23, 1.54]; electronic supplementary material, S12 and
S13, Cox reg.: high Mg, Wald x21 ¼ 8:59, p = 0.01, exp(β) =
5.17, 95% CI [1.58, 16.9]). In decreasing order, the mean sur-
vival rates for high-salt diets were Ca = K (99.7%) >Na
(99.3%) >Mg (86.8%) (figure 4c, electronic supplementary
material, S14). At this range of concentrations (1–10
000 ppm), the salt diets did not have a negative impact on
the survival of bees over 6 days of feeding. At this range of
concentrations (1–10 000 ppm), the salt diets did not have a
negative impact on the survival of bees. At the highest level
tested, three (Na, K and Ca) out of four salt treatments still
supported a high rate of survival by day 6 (electronic sup-
plementary material, S12 and S14). Interestingly, K diets as
high as 10 000 ppm (1% w/v) did not increase the risk of
death compared with control treatments. More than 98.0%
of bees were still alive in the K treatments by day 6 (electronic
supplementary material, S12 and S14).
(ii) Metals
We show the pooled data for water consumption from each
metal group in figure 4d. Water intake in metal
treatments was dependent on the metal identity compared
with the control treatment (GzLM: metal, x24 ¼ 672, p <
0.0001). Specifically, bees fed Fe (10.7 ± 0.41 µl bee−1 day−1) or
Cu (5.36 ± 0.24 µl bee−1 day−1) diets consumed on average
less water than all control bees (22.0 ± 1.59 µl bee−1 day−1).
Within each metal group, water intake varied as a function
of metal type and concentration (electronic supplementary
material, S15; GzLM: metal × concentration, x212 ¼ 104, p <
0.0001). In fact, water ingestion significantly increased with
concentration in Fe and Cu treatments, with high metals pro-
moting the highest water consumption (1000 ppm of Fe: 13.4
± 0.49; 500 ppm of Cu: 6.31 ± 0.65 µl bee−1 day−1) (electronic
supplementary material, S15). By contrast, bees on Zn (28.4
± 1.29 µl bee−1 day−1) or Mn (27.1 ± 1.17 µl bee−1 day−1) diets
consumed more water, on average, compared with all control
bees (figure 4d).

In figure 4e, we show the pooled data for bee body
weights from each metal group tested. There was a significant
effect of dietary metal on the body weight of caged worker
bees compared with all control bees (GzLM: x24 ¼ 125,
p < 0.0001). Body weights of bees given Fe (125 ±
1.82 mg bee−1), Zn (103 ± 0.98 mg bee−1) or Mn (107 ±
0.84 mg bee−1) diets were statistically different from control
bees (110 ± 1.02 mg bee−1). Within each metal group, the
body weights of bees depended on both metal and con-
centration (GzLM: metal × concentration, x212 ¼ 50:2,
p < 0.001). Specifically, only bees fed Cu 50 ppm diets
reported weights statistically different from the control bees
(electronic supplementary material, S15e). No other metal
treatments influenced bee body weight compared with con-
trol bees within each experiment (electronic supplementary
material, S15).

Bee survival depended on the type of high metal and
covaried with time (Cox reg.: time × metal, Wald x24 ¼ 14:5,
p = 0.006). The risk was greatest for bees ingesting high-Cu
diets (500 ppm) compared with all control bees (Cox reg.:
time × high Cu, x21 ¼ 10:2, p = 0.001, exp(β) = 1.52, 95% CI
[1.18, 1.97]; figure 4f ). In decreasing order, the mean survival
rates for high-metal diets were Mn (95.9%) > Fe (93.7%) > Zn
(90.3%) > Cu (58.7%) (electronic supplementary material,
S13–S15). Within each metal group, only Cu or Zn concen-
trations had a statistically significant effect on bee survival
compared with the reference group (sucrose control bees)
(Cox reg.: Cu diets, x24 ¼ 11:5, p < 0.001; Zn diets, x24 ¼ 20:8,
p < 0.001; see electronic supplementary material, S13–S15).
Individually, high-Cu or high-Zn diets induced the highest
bee mortality compared with control and lower-range metal
diets (Cox reg.: high Cu, x21 ¼ 17:6, p < 0.001, exp(β) = 68.0,
95% CI [9.47, 488]; high Zn, x21 ¼ 6:81, p = 0.01, exp(β) =
4.86, 95% CI [1.48, 15.9]). Unexpectedly, there was no signifi-
cant effect of concentration on the survival of bees fed Fe or
Mn diets (electronic supplementary material, S13 and S14).
To assess whether late season had an impact on the survival
of bees, we compared survival curves between control treat-
ments (electronic supplementary material, S11c). Overall,
experiments conducted later in the season (e.g. Mn) did not
seem to have an impact on young workers’ survival as
there was no statistical significance between survival curves
of control treatments (sucrose-only diet); more than 95% of
bees were still alive by day 6 (electronic supplementary
material, S11c). In decreasing order, the survival probabilities
for control treatments across salt/metal groups were Ca =
Cu =K (99.7%) > Fe (98.4%) >Mg (98.0%) > Zn (97.9%) >Na
(96.6%) >Mn (95.4%) (electronic supplementary material,
S13 and S14).
4. Discussion
Micronutrient intake is regulated via the coordination of pre-
and post-ingestive processes that integrate the taste system
with information about nutritional state. If bees in our
study did not regulate the ingestion of minerals, they
would have fed randomly and displayed no clear pattern of
preference (i.e. equal consumption from both diets). Our
data demonstrate that bees, like other animals: (1) are able
to self-select mineral-enriched over mineral-free diets in a
concentration-dependent fashion; (2) actively regulate their
intake of Na, Fe and Cu; and (3) adjust feeding behaviour
to avoid high and potentially toxic concentrations of seven
out of eight of these micronutrients. We based our range of
concentrations on previous recommendations for ash
inclusion in synthetic diets for bees [54,75] and preliminary
work in the laboratory [76]. It was surprising that few of
the micronutrients we tested were phagostimulatory at low
concentrations. Instead, the intake of K, Ca, Mg, Zn and
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Mn was regulated mainly by the avoidance of high
concentrations.

Active regulation was clearly seen through the dietary
selection behaviour of the bees in this study. At lower concen-
trations both the Fe and Cu diets stimulated feeding until a
threshold (and maximum intake) was reached at 10–
100 ppm (179–1790 µM Fe3+) and 5–50 ppm (78.7–787 µM
Cu2+), respectively. Beyond these concentrations, high-Fe
(1000 ppm) and high-Cu (500 ppm) diets became distastetul
and induced a decline in both consumption and survival.
In fact, high concentrations of Fe deterred feeding with an
effect size greater than all the other mineral treatments. The
nonlinear relationship between Na/Fe/Cu concentration
and food consumption aligns with the Bertrand’s rule
prediction. It suggests that the optimal range for bee perform-
ance, ingestion behaviour and survival is near the range of
concentrations most preferred. Interestingly, other insects
exhibit active regulation of Fe and Cu. For example, in
Drosophila, larvae and adults prefer to feed on diets relatively
low in Fe (less than 30 mM; 1680 ppm Fe2+) and Cu (1 mM;
64 ppm Cu2+) while avoiding those with high concentrations
(Fe2+: 40–70 mM; 2234–2910 ppm; Cu2+: 20 mM; 1271 ppm)
[50].

We also found that honeybees actively regulated their
intake of NaCl. Salt intake has been demonstrated in locust
nymphs (as Wesson’s salt mixture) and rats (as NaCl),
where increasing concentrations of salt favoured consump-
tion and fitness while concentrated solutions were avoided
[44]. Trumper & Simpson found that locust nymphs
regulated the intake of micronutrients independently of
macronutrients around an optimal concentration of 1.8% of
the salt mixture (dry weight, 900 ppm Na+) in an otherwise
complete diet, but only when offered a choice [44]. At low
levels of salt, locusts were less efficient at converting ingested
food into growth; likewise, high-salt diets were avoided,
reflecting their toxicity [44].

Simpson and Raubenheimer’s models on nutrition largely
assume that Bertrand’s rule is the base model for the regu-
lation of nutrients; in other words, low concentrations are
phagostimulatory, whereas high concentrations are repellent
or avoided [70,77]. Indeed, many of their studies have
shown that macronutrients and micronutrients are
regulated in this way. What is surprising is that we find
that the majority of salts and metals we tested on honeybees
are not. We found that all of the compounds we examined
were avoided at high concentrations. This indicates that the
bees are likely to use some form of post-ingestive feedback
to regulate the intake of high concentrations. Alternatively,
it could be the case that preferences for some salts (e.g. K,
Ca, Mg) would be revealed only later in the season; we
tested the salt diets during the peak of summer. Though,
we did not test specifically for this, we observed variation
in sucrose solution consumption over the season (electronic
supplementary material, S11). Previous work showed that
honeybee preferences for minerals in water vary during the
season. [57,59,60] The fact that the bees did not prefer low
concentrations of most of these dietary minerals, however,
indicates that they probably lack the ability to taste most of
these compounds at low concentrations.

One mechanism that bees could use to overcome toxicity
is adjusting water intake. Drinking more water would allow
them to dilute down concentrated solutions and prevent
intoxication or other detrimental effects on health. Bonoan
et al. found that foraging preferences for water solutions con-
taining 1% of NaCl and MgCl2 tracked the variation in pollen
[57,59]. Lau & Nieh, using harnessed honeybees, reported
similar preferences for NaCl, KCl and MgCl2 at 0.1–1.5% in
water solutions [78]. In our study, bees rejected high mineral
concentrations in sucrose solutions (with the exception of
high Na), but only high Fe and Cu increased total volume
of water intake compared with control cohorts (electronic
supplementary material, S15).

In the table (electronic supplementary material, S16), we
compare our predictions for the preferred ranges for the
eight minerals we tested against what is found in adult
worker bees, pollen and honey in previous reports. All of
our estimated preferred ranges fall within the values that
were previously found in bees, particularly for Na (500–
1500 ppm), Fe (10–200 ppm) and Cu (5–50 ppm). For all the
remaining minerals, we only observed a rejection threshold,
which is above the levels found in adult workers. The
exception was K. Potassium levels reported in bees and
pollen exceeded our threshold for deterrance (10 000 ppm).
In fact, potassium has been reported to be up to 4× greater
in some plant species’ pollen than the concentration we
found deterrent to honeybees (electronic supplementary
material, S16). It was also surprising that bees in our study
did not prefer 1000 ppm of K diets over sucrose alone. Hon-
eybees have been reported to prefer 1500 ppm of K in sucrose
solutions compared with sucrose alone, but ultimately these
authors found that acceptance–rejection concentrations of
nectar minerals are species- and concentration-dependent
for K [63]. Similarly, bees were only deterred at high levels
(500 ppm) of Zn and Mn diets. In honeybee colonies, how-
ever, sucrose solutions containing Zn (30–75 ppm)
improved the antioxidant status, survival and brood-rearing
capabilities of these colonies [36]. As for Mn, we hypothesize
that this metal may not be as nutritionally relevant for adult
workers as all the other metals. In fact, Zn and Mn seem to
have a ‘sparing’ effect, meaning they can replace one another
in different metalloenzymes [79].

Overall, our work showed that young adult honeybees
can actively regulate only three of the inorganic micronutri-
ents we studied over the whole of their dynamic range in
food. By screening each mineral, our study is the first to
identify whether bees possess specific mechanisms particular
to individual micronutrients. Bees can use taste to detect
certain micronutrients—but not all of them. Post-ingestive
processes can adjust feeding where taste cannot detect these
micronutrients. This study along with others [11,56,80]
paves new ground of information for future research in min-
eral nutrition and feeding behaviour of insect pollinators.
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