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Abstract: Digital technologies are shifting the paradigm of medicine in a way that will transform the
healthcare industry. Conventional medical approaches focus on treating symptoms and ailments
for large groups of people. These approaches can elicit differences in treatment responses and
adverse reactions based on population variations, and are often incapable of treating the inherent
pathophysiology of the medical conditions. Advances in genetics and engineering are improving
healthcare via individualized treatments that include gene and cell therapies, pharmacogenetics,
disease detection, and diagnostics. This paper highlights ways that artificial intelligence can help
usher in an age of personalized medicine.
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1. Introduction

The use of digital technologies to transform medicine through individualized treat-
ments can revolutionize healthcare and well-being [1]. Such a paradigm shift can support
our ability to meet the growing global demand for medical services [2]. Artificial intel-
ligence (AI) is at the heart of this transformation and has been instrumental in deriving
engineering solutions to monitor, process, and integrate large volumes of data at the popu-
lation and individual levels [3]. Tailored treatments derived from AI will assist patients,
physicians, and health systems in handling current challenges [4], as well as those of the
future as patients age and diseases evolve [5].

Current medical practices generally focus on treating symptoms and ailments for
large groups of people. Unfortunately, following these clinical practice guidelines can
elicit differences in treatment responses, therapeutic effects, and adverse reactions based on
genetic variations within various populations. Legacy delivery practices are often incapable
of treating the underlying nature of a given condition and have produced a system with
erratic quality and unsustainable costs [5]. Moreover, most clinical practice guidelines are
oriented towards a single condition; conversely, patients often exhibit multimorbidities [6].
Thus, various treatment options are applied in parallel. Recent studies have shown that the
synchronous application of independent clinical practices to manage multimorbidities is
associated with adverse drug–drug or drug–disease responses [7], which is another factor
driving the need to improve conventional medicine.

Luckily, advances in genetics, engineering, and computational analyses have improved
our understanding of the human body to redefine a path for healthcare. Specifically, this
deeper understanding supports the development of treatments that will be far more tailored
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to individual needs. Emerging medical practices are focused on individual complexities
that can manipulate disease interventions at the molecular level. DNA sequencing, high-
throughput screening, molecular diagnostics, and advanced imaging methods embody
some of the signs of progress of these emerging technologies and reveal interindividual
diversity in unitary and multimodal disorders. This new era of modern medicine also
produces ‘big data’, which requires colossal amounts of integration and analysis that are
better suited for digital technologies [8]. To this end, significant research efforts are centered
on regenerating diseased or lost tissues and organs, in-depth analyses extending beyond
the clinician’s limits, and novel trends in disease prevention. This paper explores ways
in which digital technologies will support a transition from conventional to personalized
medicine by enhancing individualized treatments through the applications of gene and cell
therapies, pharmacogenetics, and disease detection and diagnostics. Figure 1 is used to
illustrate these concepts.
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2. Gene and Cell Therapies

The completion of the Human Genome Project had a transformative effect on modern
biomedical research and is a major factor supporting an age of personalized medicine [9].
Revising the previous outlook on genetics as a specialist’s interest, limited to addressing
rare and life-threatening disorders, to a field that harnesses genetic information in all aspects
of health care had a profound impact on medical doctrine [10,11]. This revised approach
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has increased our knowledge of the fundamental mechanisms involved in tissue/organ
repair and identified promising options at the genetic and cellular levels [12].

Gene therapies are emerging to restore or counter malfunctioning genes in conditions
adversely influencing a patient’s quality of life without mainstream pharmacological
intervention, radiotherapy, or surgery [13]. This form of therapy has made significant
progress since this concept arose in the 1960s and 1970s [14–16], but tragic failures in
clinical settings [17], along with pervasive obstacles related to nucleic acid delivery [18–23],
have limited its progression. However, a recent and significant achievement in this field
has come from the CRISPR-Cas system. Using this technology, it became possible to elicit
genetic modifications with greater precision for xenotransplantation by reducing the risk
of rejection and transfer of zoonotic diseases [24]. Moreover, AI is poised to extend this
gene-editing technology’s utility by predicting repair [25,26] and post-transplantation
outcomes [27]. Other computational approaches are being developed to identify vectors
for optimized gene delivery [28]. The evolving role of automation will also advance gene
therapy by enhancing product quality and cost and time savings that can be translated to
the clinics [29]. Nevertheless, simultaneous efforts must be made to enhance therapeutic
delivery options, which invariably limit precision medicine applications [17,30].

Likewise, cell therapies rely on introducing exogenous cells to restore previously
compromised or deteriorated tissues and organs. In practice, this technique entails trans-
planting human cells to repair or replace damaged structures. The cells may originate from
the patient (autologous cells) or a donor (allogeneic cells). Compared to gene therapy, this
system can be classified by its potential to regenerate and transform tissues/organs via
different cell types such as stem or progenitor cells. In addition to using AI for production
purposes, recent studies have found additional applications for digital technologies in
this field of research. For instance, advanced computational models have collated mil-
lions of possible protein combinations into a catalog that could help target specific cell
types in vivo [31] and provide predictions of the mortality risk associated with cell trans-
plantation [32]. Digital technologies can also help determine cell viability, functionality,
bioefficacy, and appropriate patient selection for cell therapy [33]. Another cell therapy
platform is the organoid. Organoids are 3D multicellular tissue constructs that closely
resemble functional organs, and their biological complexity provides new opportunities
and challenges in data analytics [34], as well as chances to reduce the reliance on animal
models [35], with higher physiological relevance [36] and automation [37].

3. Pharmacogenetics

Pharmacogenetics, also referred to as pharmacogenomics, focuses on how individuals
respond to drug therapies based on their genetic makeup. This relatively new field relies
on developing practical, safe medications and doses tailored to a person’s genetic makeup.
The study of patient responses to specific drugs at the genome level can guide drug therapy
evaluation; however, any variation to those genes can render a drug useless or cause
adverse effects. Thus, the numerous factors that influence the response to specific treatment
are worth noting. These factors may include, but are not limited to, age, body weight, sex,
nutrition, infection history, organ function, supplement intake, and comedications. From a
clinical perspective, pharmacogenetic practices can incorporate multiplexed data and help
determine whether individual differences in genetic expression will affect drug metabolism
and consequences on its therapeutic effect or toxicity [38].

Emerging digital applications can take advantage of rich multimodal data sets gen-
erated from various normal and pathological conditions to build a new generation of
cost-effective and high-throughput screening tools that accurately unravel in vivo multi-
parametric states. For example, studies in this field have uncovered several inherited DNA
variants that may cause hypersensitive states [39] or resistance to specific medications [40],
making an otherwise safe therapy hazardous or ineffectual. Such compelling issues are
driving scientists and drug developers to take a different approach. By conducting in vitro
pharmacogenomic screenings, various gene-editing tools are helping us to uncover ge-
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nomic modifications that can affect a drug’s clinical efficacy. Consequently, organ-on-a-chip
technology is creating an alternative paradigm for toxicological assessments and preclinical
drug development [41]. These multichannel 3D microfluidic-based cell culture systems
form an integrated circuit simulating the activities, tissue mechanics, and physiological
responses of an entire organ or an organ system, a type of artificial organ, and are again
geared towards reducing the dependency on animals. Simultaneously, these approaches
will dramatically accelerate the pace of these studies at a reduced cost [41]. Nevertheless,
using genetic information to guide drug therapy requires rigorous training and manpower
deployment, and, thus, automation can again be applied to help bring new drugs into
clinical practice.

4. Disease Detection and Diagnostics

Healthcare systems exist within dynamic environments in which clinicians are con-
stantly challenged. The global shortages of medical practitioners [42,43] and diagnostics
equipment [44] have put tremendous stress on already strained healthcare systems. Thus,
there is an immediate need to increase practitioner and device pools and optimize their
utilities. The COVID-19 pandemic has simultaneously exacerbated these issues and acceler-
ated the pace of digital modalities to address these global problems. Studies within digital
health have discovered new ways to use machine learning to detect and diagnose diseases,
estimate patient prognosis and epidemic trends, and explore effective and safer drugs and
vaccines [45]. More importantly, these automated practices can help existing systems better
leverage healthcare resources.

Several years ago, predictive modeling via multiple algorithms showed promise for
early disease detection [46]. In more recent times, algorithm and computing qualities
have improved, and it has been shown that the application of AI can significantly enhance
diagnostic accuracies and efficiencies [47]. To illustrate this perspective, computational
image analysis, and, thus, machine-learning-driven approaches, are especially poised to
uncover new categories of biomarkers [48]. Traditionally, biomarkers have been classified
by biological characteristics, such as a naturally occurring molecule or gene that objectively
evaluates pathological and physiological processes [49]. The digital era aims to extend this
definition with the imaging biomarker. An imaging biomarker is a biological characteristic
that is detectable in an image. This characteristic is not a tool or a method but a measurable
variable and indicator of normal or pathogenic conditions [48,50], that can rely on static
image color, texture, and shape descriptors [50,51] or functional radiographic velocities
and acceleration indices [52].

Imaging biomarkers can transform the role of conventional anatomical and functional
imaging by redefining the detection and diagnostic processes on a decision-making level
to identify the most appropriate procedure for optimizing individual care [48], thereby
promoting precision medicinal practices. It is also important to note that many big data
analytic systems have been criticized for failing to capture critical individual-level associ-
ations when combining data from large sets. It is thus critical to ensure that AI systems
adapt to account for such issues to advance personalized treatment options for patients.

5. Conclusions

Conventional medical approaches focus on treating symptoms and ailments for large
groups of people. Such approaches can generate differences in treatment responses, adverse
reactions based on population variations, and may be incapable of treating the underlying
pathophysiology of the condition. Furthermore, the dynamic healthcare environments,
evolving nature of diseases, and the global shortage of medical equipment and practitioners
highlight the substantial strain exerted on existing healthcare systems. New approaches
are, thus, needed to address these needs, and we contend that digital technologies can
individualize medical practice. This paradigm shift from conventional medicine to digital
technologies can revolutionize healthcare by advancing individualized treatments via gene
and cell therapies, pharmacogenetics, and disease detection and diagnostics.
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