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Cancer Immune Evasion Through
Loss of MHC Class I Antigen
Presentation
Karthik Dhatchinamoorthy, Jeff D. Colbert and Kenneth L. Rock*

Department of Pathology, UMass Medical School, Worcester, MA, United States

Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell’s

expressed genes and then transport and display this antigenic information on the

cell surface. This allows CD8T cells to identify pathological cells that are synthesizing

abnormal proteins, such as cancers that are expressing mutated proteins. In order

for many cancers to arise and progress, they need to evolve mechanisms to avoid

elimination by CD8T cells. MHC I molecules are not essential for cell survival and

therefore one mechanism by which cancers can evade immune control is by losing

MHC I antigen presentation machinery (APM). Not only will this impair the ability of

natural immune responses to control cancers, but also frustrate immunotherapies that

work by re-invigorating anti-tumor CD8T cells, such as checkpoint blockade. Here we

review the evidence that loss of MHC I antigen presentation is a frequent occurrence

in many cancers. We discuss new insights into some common underlying mechanisms

through which some cancers inactivate the MHC I pathway and consider some possible

strategies to overcome this limitation in ways that could restore immune control of tumors

and improve immunotherapy.

Keywords: antigen presentation, cancer immune evasion, MHC I antigen presentation, interferon, TAP1, Tapasin,

epigenetic regulation

INTRODUCTION

Highly immunodeficient mice, which completely lack adaptive immunity, develop high rates of
spontaneous and carcinogen-induced cancers (1, 2). Similarly, immunodeficient humans suffer
from higher rates of malignancy (3–5). Therefore, the immune system is capable of recognizing
and eliminating many cancers before they become clinically evident. Moreover, cancers that are
infiltrated with activated T cells often have better prognosis, indicating that the immune system
can exert some control on cancers, even after they have become clinically evident (6–15). Further
evidence that the immune system has the potential to control and/or eliminate cancers has come
from the success of immunotherapies, such as checkpoint blockade. In checkpoint blockade
immunotherapy, patients are treated with antibodies that block negative regulatory molecules, such
as PD-1/PD-L1 or CTLA4, which normally restrain T cell responses. This kind of therapy can
reinvigorate a patient’s anti-tumor T cell responses, which then can cause tumors to shrink and
even lead to cures in some patients (16, 17). While all these observations show that the immune
system has the capacity to fight cancer, the unfortunate fact is that once the majority of cancers have
become clinically evident, untreated they almost always continue to progress and a majority fail to
respond and/or be eliminated by checkpoint blockade immunotherapy. Therefore, understanding
how cancers evade immune control is important for understanding tumor pathogenesis and for
devising ways to improve immunotherapy.
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While there are several immune effector mechanisms that
can damage tumors, the most important ones are carried out
by CD8T cells. This has been shown [e.g., in experiments
where tumor rejection was inhibited in mice that were depleted
of CD8T cells (18, 19)]. Similar principles are thought to
apply in humans as shown [e.g., by the observations that the
presence of activated CD8T cells in cancers are associated with
improved survival (20) and adoptive immunotherapy with T
cells engineered to express TCRs from tumor-reactive CD8T
cells can lead to cancer regression (21)]. Tumor-reactive CD8T
cells identify cancers by recognizing peptide-MHC I complexes
that are generated through the MHC I antigen presentation
pathway (Figure 1 and below). Upon recognizing a cancer,
CD8T cells go on to kill these cells via perforin or FAS-dependent
pathways and also can injure tumors by inciting inflammation.
Such mechanisms are important in controlling cancer as shown
[e.g., by the finding that higher frequencies of cancers develop
in perforin-null or FAS-deficient mice (22, 23) compared to their
wild type counterparts and potentially also in perforin-deficient
humans (24)].

In order to progress, cancers need to circumvent
immune control. This was nicely illustrated by a study of
carcinogen-induced cancers that arose in immunodeficient vs.
immunosufficient mice. Cancers from immunodeficient mice
grew when transplanted into other immunodeficient mice.
However, these same cancers were generally rejected in wild type
mice, showing that they were inherently immunogenic (1). In
contrast, tumors that arose in wild type mice would often grow
when transplanted into other wild type mice (1). These findings
indicated that tumors that arose in the presence of the intact
immune system in wild type mice evolved in ways that allowed
them to evade immune elimination (2). This evolution of cancers
under selection pressure from CD8T cells has been referred to as
“immunoediting” (2, 25).

Cancers are often genetically unstable and can lose expression
of non-essential molecules through gene loss or epigenetic
silencing. MHC I molecules and most of the other molecules
of the MHC I antigen presentation pathway are not essential
for cell viability or growth (see below). Consequently, cancers
can down-regulate or lose MHC I antigen presentation, and
thereby become less stimulatory or even invisible to CD8T cells,
without impairing their ability to grow and metastasize. In this
article we will review the incidence, underlying mechanism,
and therapeutic implications of loss of MHC I in cancers.
Except where noted, this review primarily focuses on human
cancers, because of their clinical importance. It should be
noted that cancers can also evade immune elimination by
expressing “non-classical” MHC class Ib molecules, HLA-E
and HLA-G (26–28). However, since this immune evasion
mechanism is not due to a loss of antigen presentation
by “classical” MHC class Ia molecules, but rather through
engagement of inhibitory receptors on T lymphocytes and
other immune cells (26–28), this subject is not covered in this
review, except as it relates to how MHC I low cancers may
evade NK cell recognition. Similarly, MHC II molecules can
play a role in cancer immunity, however, since MHC I and
MHC II antigen presentation are separate and non-intersecting

pathways, this review does not cover the MHC II pathway
in cancer.

THE MHC CLASS I PATHWAY OF ANTIGEN
PRESENTATION

To understand some of the mechanisms by which many
cancers evade immune surveillance, it is necessary to first
understand the MHC I pathway of antigen presentation
(Figure 1). This pathway is the mechanism that allows CD8T
cells to identify cells producing “foreign” proteins, such as
ones from viruses in infected cells or mutant genes in cancers.
In this pathway, MHC I-presented peptides are generated
as part of the normal catabolism of cellular proteins. All
endogenously synthesized proteins are continuously degraded
into oligopeptides by the ubiquitin-proteasome pathway
(29). This catabolic pathway is responsible for making the
initial cleavages, and particularly the proper C-terminal cut,
needed for the generation of a majority of MHC I-presented
peptides (29–32).

There are several forms of proteasomes, known as
proteasomes, immunoproteasomes and thymoproteasomes
(33). Immunoproteasomes are formed when three alternate
versions of proteasome active site subunits are expressed in
cells and preferentially incorporate into newly assembling
proteasomes in place of the standard active site subunits. Since
these alternate active sites have different catalytic properties,
immunoproteasomes generate many different (as well as some
of the same) peptides as proteasomes and it seems that the
ones produced by immunoproteasomes are often better for
presentation on MHC I molecules (34, 35). Cells and animals
that genetically lack the three immunoproteasome subunits are
viable (35).

A fraction of the peptides produced by proteasomes and
immunoproteasomes are transferred into the lumen of the
endoplasmic reticulum (ER) by a peptide transporter called TAP
(36). TAP can transport most, but not all, peptides that are
between 9 and 13 residues in length (37–39). TAP is composed
of two different subunits (TAP1 and TAP2) and both are needed
for transporting peptides (40–43). Upon transport into the lumen
of the ER, peptides are in the vicinity of newly assembling MHC
I molecules.

The heavy and light [ß2-microglobulin (ß2M)] chains of
MHC I molecules are co-translationally transported into the ER
where they fold into the MHC I heterodimer. Before binding
these complexes are inherently unstable and are stabilized
through interactions with chaperones such as calreticulin within
a multi-protein complex, called the peptide-loading complex
(44, 45). Other components of this complex include the peptide
transporter TAP, the oxidoreductase ERP57 and the peptide
“editor” Tapasin. Tapasin helps retain peptide-empty MHC I
molecules in the ER and also promotes their loading with high
affinity peptides (46, 47). There is another peptide-editor called
TAPBPR, which is not part of the peptide-loading complex, that
also promotes peptide-loading of MHC I molecules (48). Cells
and animals that lack Tapasin, ERP57, or TAP are viable (49, 50).
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FIGURE 1 | The MHC class I antigen presentation pathway. Cellular proteins are hydrolyzed by the ubiquitin-proteosome pathway into oligopeptides, which are

subsequently transported into endoplasmic reticulum through the TAP transporter. In the ER these peptides may be further trimmed by ERAP1 and then peptides of

the right length and sequence bind to MHC I molecules with the help of Tapasin in a peptide-loading complex containing Tapasin, TAP, calreticulim, and ERP57, or the

with the help of TAPBPR. After MHCI molecules bind peptide, they are transported to the cell surface for display to CD8+ T cells.

The empty MHC I molecule contains a groove that binds
peptides (51, 52). Peptides are bound via molecular interactions
typically with two of their side chains, some of their main
chain atoms and their free N- and C-termini (47). Because the
interactions with the peptide’s two ends contributes substantially
to the affinity with which peptides are bound, most MHC I-
bound peptides are of a uniform length, which depending on
the particular MHC I molecule is typically 8, 9, or 10 residues
(53). Proteasomes and immunoproteasomes make some peptides

in this size range, but also many more that are too short or too

long for stable binding to MHC I molecules (54). However, the
long peptides can be trimmed to the proper size for presentation.

Much of the trimming of long peptides occurs in the endoplasmic
reticulum by an aminopeptidase called ERAP1 (ERAAP) (55, 56)
and in humans also a second related peptidase called ERAP2
(57). ERAP1 is specialized in trimming long peptides to the
optimal length for binding MHC I molecules, as it slows or

stops trimming most peptide substrates when they are 8–9
residues in length (55). Long peptides can also be trimmed by
aminopeptidases in the cytosol and the resulting shorter peptides
can be transported by TAP into the ER (58). Similar to TAP and
MHC I mentioned above, cells and animals that lack ERAP1 are
also viable (59–62).

The peptides produced by these various mechanisms that have
the right length and sequences can then bind to the emptyMHC I

molecules in the ER, often assisted by the peptide-editors Tapasin
and TAPBPR. Upon binding peptides MHC I complexes are both
stabilized and released from the ER, whereupon they follow the
default exocytic pathway to the plasma membrane for display to
CD8T cells. In cells that have defects in making, transporting or
MHC I-loading of peptides, most of their MHC I molecules are
retained in ER and ultimately degraded, resulting in a paucity
of MHC I molecules on the cell surface (29, 32, 63). As will be
discussed further below, such defects underlie the MHC I low
phenotype in many cancers.

REGULATION OF THE MHC I PATHWAY OF
ANTIGEN PRESENTATION

Regulation of MHC I antigen presentation is also relevant to
tumor immune evasion. The expression of most components
of the MHC I antigen presentation pathway, including MHC I
heavy chains, ß2M, immunoproteasome subunits, TAP, Tapasin
and ERAP1, are coordinately regulated. This is because these
antigen presentation components all have similar gene control
elements in their promoters/enhancers (64, 65) (Figure 2).
These elements include sequences that bind the transcription
factors NLRC5-enhanceosome, NF-κB, and IRF1/IRF2 (66).
Gene silencing or editing experiments have shown that the
NLRC5, IRF1, and IRF2 transcription factors are essential for
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basal and/or interferon (IFN)-induced MHC I expression, but
not for cell viability or growth (67–70). Since these are non-
essential genes (71, 72), their expression can be lost in cancer
cells, as will be discussed below.

Many cells of hematopoietic origin, such as dendritic cells
and lymphocytes, constitutively express relatively high amounts
of all of the MHC I antigen presentation components and
consequently without any stimulation have high levels of MHC
I molecules on their cell surface (73, 74). In contrast, under
basal conditions, most other cells have lower expression of
these components and have less MHC I on the cell surface
(74). However, in all cells, the expression of MHC I pathway
components and surface MHC I levels are increased upon
stimulation with interferons, especially type 2 IFN (IFNγ) (75).
In such responses, IFNs upregulate expression of IRF1, STAT1,
and NLRC5 (76), which then binds to the promoters of the
antigen presenting gene and drives their expression (Figure 3).
IFNs are induced in response to infections and T cell responses,
this upregulated expression is thought to enhance detection of
pathological cells. That this mechanism is important in cancers
is suggested from studies that have documented an increased
incidence of cancer in mice that have defects in the IFN pathway
(77, 78), and that in humans IFNγ-signaling signatures in cancers
correlate with response to immunotherapy (79).

CANCERS ANTIGENS AND THEIR
VISIBILITY TO THE IMMUNE SYSTEM

Through the mechanisms describe above, all cells display on their
surface peptides from a majority of the proteins that they are
making. This process allows CD8T cells to identify and eliminate
cells that are synthesizing “foreign” or other immunogenic
proteins. Foreign (non-self) sequences in cancer may come from
endogenous genes harboring mutations, which are often referred
to as neoantigens, or in some cases from viral sequences in
cancers (e.g., human papilloma viral proteins in human cervical
carcinomas) (80).

Mutational burdens vary substantially among cancers.
Tumors with higher mutational burdens are theoretically
more immunogenic, and there is some evidence to support
this concept. Melanomas and non-small cell lung carcinoma
(NSCLC) often have high mutational burdens (81) and
are considered more immunogenic tumors. There is also a
correlation between the number of mutations in cancers and
their responses to checkpoint blockade or adoptive T cell
immunotherapy (82–84). This has been interpreted to suggest
that cancers, which display many immunogenic peptides,
will be much more likely to be attacked by CD8T cells that
have been reinvigorated by immunotherapy. In addition to
mutated peptides, there are other kinds of immunogenic tumor
antigens. For example, anti-cancer CD8T cells can recognize
de-repressed oncofetal antigens, cancer germline antigens,
and even normal (non-mutated) cellular antigens, such as
tyrosinase in melanomas and melanocytes (85, 86). In this latter
case, the responding T cells are autoreactive ones that have
escaped normal tolerance mechanisms and are present in the

T cell repertoire. However, cancers that lack any immunogenic
antigens are ones that can’t be controlled by CD8 T cells.

Cancers that are initially immunogenic can lose visibility to
CD8T cells in two general ways. If the immunogenic antigens
are non-essential for cell survival, and this is probably true for
a majority of tumor antigens, then genetically unstable cancer
cells can lose expression of the cancer antigens (87–90). After this
occurs, CD8T cells will be ineffective in controlling the cancer
because despite the tumors having plenty of MHC I molecules,
the cancer cells have lost all antigenic peptides that CD8T cells
can recognize. This route of immune evasion will be less likely
in cancers that express many immunogenic cancer antigens
because it would require simultaneous loss of expression of many
independent gene products. This may be another reason as to
why tumors with high mutational burdens are more susceptible
to T cell immunotherapy. The other general way that cancers
can lose visibility to CD8T cells is by down regulating the
MHC I antigen presentation pathway. The evidence that this
occurs, and its underlying mechanisms and clinical importance
are considered in the following sections.

CANCERS OFTEN LOSE EXPRESSION OF
MHC I MOLECULES

A large number of many different types of human cancers
have been reported to lose expression of MHC I molecules to
varying degrees (Figure 4). An MHC-low phenotype has been
observed in many of the most frequent human cancers including
NSCLC, breast, prostate, colorectal, head and neck squamous cell
carcinoma (HNSC), hepatocellular carcinoma, and melanoma.
The number of cases that have lost MHC I expression varies for
different types of these cancers and between different studies,
and ranges from 0 to 93% (Figure 4). Cancers may not be
homogeneous and can have variable expression of MHC I among
its cells and/or in different regions. In addition, expression may
change over time as a cancer progresses and may differ between
the primary site and metastases (91–94).

The vast majority of these studies have analyzed MHC I
expression in primary patient samples by immunohistochemistry
(IHC) using antibodies specific for monomorphic determinants
on the heavy chains of classical MHC I molecules (HLA-A,
HLA-B, and HLA-C) or for ß2M. Therefore, many cancers have
downregulated MHC I antigen presentation broadly. Loss of
expression of a single MHC I molecule has also been reported
(95, 96). Many studies have reported cancers that are MHC I
negative, however because of the limits of sensitivity of IHC, it
is possible that some of these cases may still express some MHC
I molecules.

As described above, because peptide empty MHC I molecules
are unstable without chaperone-binding and retained in the ER,
defects almost anywhere in theMHC I pathway (e.g., loss ofMHC
I heavy chain, ß2-microglobulin, immunoproteasome subunits,
TAP, Tapasin, and ERAP1) results in a loss of MHC I molecules
from the cell surface. In mouse and human cells, genetic deletion
of TAP reduces MHC I levels by 30–70% for most MHC I alleles
(40, 97). Similarly, loss of Tapasin decreases MHC I expression
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FIGURE 2 | Transcriptional regulation of MHC class I genes. The transcription factors NF-κB, IRF1, and IRF2, and the NLRC5 enhanceosome bind to promoter and

enhancer elements in the 5’ upstream sequences of MHC I APM genes and drive their transcription. This process is regulated by epigenetic modifications. Methylation

of histone (H3K27me3) by histone methyltransferases (HMTs) and DNA methylation repress transcription. Histone acetyltransferases (HATs) acetylate histones, which

can open the chromatin for transcription. Histone deacetylases (HDACs) can remove histone acetylation marks and silence transcription.

by as much as 90% and deletion of immunoproteasome subunits
reducesMHC I levels by∼50% (35, 98).MHC I levels are reduced
in ERAP1 KO cells by 20–70% (59, 99, 100).

The expression of these antigen presentation pathway
components in cancers has been studied (101) but much less
extensively than for MHC I and ß2M. Of these components,
TAP has been studied most extensively. Loss of TAP expression,
ranging from 10 to 80.4%, has been documented in colorectal,
renal cell cervical cancers, and melanomas (102–110) (Figure 5).
There are more limited studies that have documented loss of
expression of Tapasin (111–114), Immunoproteasomes (113,
115), and ERAP1 (116–119) (Figure 5). Individual cancers
can lose expression of multiple of these antigen presenting
components (see section on transcriptional regulation below)
and the net effect of these multiple loses on MHC I expression
should be compounded.

CLINICAL IMPORTANCE OF LOSS OF MHC
I EXPRESSION IN CANCERS

As discussed above, the loss of MHC I antigen presentation
will make cancers less visible to the immune system and this is
predicted to impair control of such tumors by CD8T cells. There
are three lines of evidence that support this concept in human
cancer patients. First, in some cancers the presence of tumor-
infiltrating lymphocytes (TIL), which is often an indication of
a host immune response, is positively correlated with MHC I
molecule expression on tumor cells. For example, MHC I-low

cancers (e.g., breast cancer) contain fewer TIL than their MHC
I-high counterparts (10, 11, 120, 121). Since TILs are a positive
prognostic feature in many cancers (7–10, 12, 13, 15, 122), the
correlation of TIL with MHC I expression is consistent with a
role of antigen presentation in immune control of cancers.

A second line of evidence for the clinical significance of
MHC I-loss, comes from studies that have correlated MHC
I expression with prognosis. In many cancers, including
melanoma, glioblastoma, colorectal, bladder, uterine, cervical,
head/neck, breast and other cancers, loss of MHC I is associated
with worse clinical outcomes (14, 110, 111, 122–140). Since loss of
the MHC I antigen presentation pathway does not alter intrinsic
cell growth or viability, this correlation is also consistent with a
role for antigen presentation in immune control of cancers (128).

The third line of evidence for the clinical importance of
MHC I-loss comes from studies of immunotherapy. In several
studies, loss of MHC I expression has been correlated with
resistance to checkpoint blockade (124, 141–147) and adoptive
immunotherapy (148, 149). Moreover, during immunotherapy
it was observed that MHC I high metastases were the ones
that regressed while MHC low metastases progressed (150).
Similarly, defects in IFN-response pathways, which regulate
MHC I levels, as described above, are also correlated with
resistance to checkpoint immunotherapy (79, 122, 151–153).

These three lines of evidence point to the likely importance
of MHC I-loss to clinical outcomes. However, there is a “chicken
and egg issue” that should be considered. Since activated CD8T
cells and CD4 Th1 cells produce IFNγ, which can upregulate
the MHC I pathway, this raises the question of which of
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FIGURE 3 | Interferon signaling stimulates the transcription of MHC class I genes. Binding of Interferon to its receptor stimulates phosphorylation of the Janus

kinases, JAK1 and JAK2, which in turn phosphorylate STAT1. Phosphorylated STAT1 translocates into the nucleus where it binds to promoter elements of NLRC5

and IRF1 and drives their transcription. NLRC5 and IRF1 then stimulate MHC I gene transcription as described in Figure 2.

the events came first: High MHC I or the T cell immune
response. Similarly, if higher MHC I levels are a consequence
of a preexisting T cell responses, then the presence of the
responsive T cells could also be the reason that these cases
are more responsive to checkpoint blockade immunotherapy.
In other words, high MHC I could be an effect rather than a
cause of TIL infiltration and the consequent improved clinical
responses. While there is undoubtably interplay between MHC
I stimulating T cells and T cells stimulating MHC I antigen
presentation, the fact is that MHC I is needed to initiate this

process (154). Therefore, loss of MHC I antigen presentation is

likely causally related to clinical outcomes. In support of this
concept, in an experimental human xenograft model, wherein

the preexisting T cell repertoire is identical and the only
variable is whether a tumor is MHC I high vs. low, loss of
MHC I antigen presentation results in resistance to checkpoint
blockade (141).

If MHC I expression is a key factor needed for immune

control of cancers, as is expected from the underlying science

and suggested by the above clinical data, then it is important to

understand the underlying mechanisms for MHC I loss. This is

of obvious importance for understanding pathogenesis and also
for evaluating whether there are ways to potentially restore MHC
I expression to improve therapy.

LOSS OF MHC I EXPRESSION IN
CANCERS THROUGH MUTATION OR
DELETION OF STRUCTURAL GENES

Many cancers are genetically unstable and can lose gene
expression through deletions or mutation of chromosomal
sequences (Figure 7). Many of the MHC I antigen presenting
components (e.g., MHC I heavy chains, TAP, Tapasin,
immunoproteasome subunits) are encoded in the MHC on
Chromosome 6. Cells that sustain homozygous deletion of
large regions of the MHC region are viable and proliferate
(155–157) and therefore such chromosomal deletions are
permissive in cancers, as are inactivating mutations in the
antigen presenting components.

Loss of both copies of MHC I heavy chain genes or of ß2M
will eliminate essentially all MHC I expression, and such loss does
occur in cancers (96, 141, 158, 159). Loss of one copy of MHC I
heavy chain or ß2M genes (loss of heterozygosity) also has been
documented in many cancers (95, 143, 158, 160–165). In a survey
of 59 cancer types, loss of MHC I heterozygosity was observed to
occur in 17% of cancers (166). That this might be a consequence
of immunoediting was suggested by the observation that this
loss occurred more frequently in cancers with higher mutational
burdens and therefore ones that were expressing potentially more
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FIGURE 4 | HLA and β2M are frequently downregulated in many different cancers. This graph illustrates the findings from a number of studies that have measured

MHC I expression in various cancers by immunohistochemistry. Cancers are annotated by their TCGA abbreviations (see abbreviation list). Each dot represents the

percent of cases with loss of MHC I expression in an individual study. The mean % reductions and standard deviations for all of the studies combined are shown by

the black bars. The data to the right of the graph shows the number of studies and number of patients samples used to quantify the MHC class I. The studies that

were included are shown in the references; this is not an exhaustive list of all such analyses. BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma;

CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma

multiforme; HNSC, Head and neck squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; LSCC, Lung squamous cell carcinoma; HPSCC,

Hypopharyngeal squamous cell carcinoma; LUSC, Lung squamous cell carcinoma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma;

PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin cutaneous melanoma; UVM, Uveal melanoma; THCA, Thyroid carcinoma; IFN, Interferon; LIHC, Liver

hepatocellular carcinoma; NSCLC, Nonsmall cell lung carcinoma.

immunogenic neoantigens (166). Because MHC I heavy chain
genes are co-dominantly expressed from both chromosomes,
loss of one copy of an MHC I heavy chain gene reduces MHC
I expression by about 50% (35). In cells with MHC I loss of
heterozygosity, a single inactivating mutation in a remaining
MHC I gene will lead to a null phenotype and such mutations
do occur in the coding regions of individual MHC I heavy chain
genes (143, 167). Over time MHC I expression can decrease
in patients, with e.g., primary lesions being MHC I positive
but metastasis losing such expression, presumably the result of
immunoediting (93, 168).

Mutations and deletions also occur in all of the other
components of the MHC I antigen presentation and IFN
pathways as shown in sequencing data of many human cancers
(Figure 6) (171). Much of this data has not been analyzed to tell
whether and how often these genetic alterations have led to a loss
of function, nor how many of the various cancers are free of any
mutation in an MHC I pathway component. However, there are
a number of reports of inactivating mutations and deletions of
several of these components (95).

LOSS OF THE MHC I ANTIGEN
PRESENTATION PATHWAY IN CANCERS
THROUGH TRANSCRIPTIONAL
REGULATION

In many cancers with MHC I pathway defects, there is an

underlying loss of transcription of MHC I pathway genes

(172, 173). In an individual cancer, this process can affect the

expression of multiple MHC I pathway genes at the same time,

including MHC I heavy chains, ß2M, TAP, Tapasin, ERAP1, and

immunoproteasome subunits (105, 173–176). The underlying
mechanisms for such loss of MHC I pathway gene expression

have been elucidated for some cancers.
One mechanism that affects transcription of MHC I pathway

genes in cancers is a loss of key transcription factors. The NLRC5

transcription factor is reduced in multiple cancers including

prostate, lung, uterine, melanoma, and thyroid cancers and this

is correlated with a reduction in the expression of its target genes,
including MHC I, ß2M, TAP, and immunoproteasome subunits
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FIGURE 5 | Tap1 and Tapasin are downregulated in many cancer types. Similar to Figure 4, except summarizing results from studies quantifying loss of Tap1 (one of

the chains of the TAP transporter) and Tapasin, instead of MHC I. There are fewer studies of the expression of these proteins in cancers relative to the studies of MHC

I expression in cancers. n/a-data is not available. Cancer abbreviation are as in Figure 4.

FIGURE 6 | Frequency of alterations in genomic sequences of MHC class I pathway genes in various cancers. Genomic alterations include any mutation, deletion

and/or amplification occurring in either intron or exon regions of the indicated genes. Results were obtained from cBioportal.org (169, 170). analyses of publicly

available TCGA data sets for the indicated genes and cancers. APM, Antigen Presentation Machinery. Cancer abbreviation are as in Figure 4.
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FIGURE 7 | The MHC I antigen presentation pathway is down-regulated by multiple mechanisms in cancers. (i) At the level of DNA, mutation and methylation of

nucleotides can reduce expression of APM genes; (ii) Transcription of APM can be reduced by changes in chromatin that impair gene accessibility or through loss of

transcription factors. Multiple mechanisms can affect these processes including altered signaling pathways, oncogene activity, and the tumor microenvironment; (iii) At

the level of transcription, binding of ncRNA or proteins to the 3′ UTR of APM mRNAs can reduce transcription; (iv) At the level of protein, Staphylococcal nuclease and

tudor domain containing 1 (SND1) can bind to MHC I in the ER and trigger endoplasmic reticulum-associated degradation (ERAD). At the cell surface, loss of SPPL3

increases glycosphingolipids (GSL) that then sterically inhibit MHC I and TCR interactions. Reactive nitrogen species can nitrosylate peptide-MHC I complexes in ways

that impair TCR interactions.

(123) The loss of NLRC5 could arise from loss or mutation of
the gene (Figure 6), or methylation of its promoter or associated
histones (123, 177, 178). Loss of nuclear IRF1 in melanomas is
associated with resistance to checkpoint blockade (179). Loss of
expression of NF-κB and IRF1 in neuroblastomas results in a loss
ofMHC I expression (180). Loss of IRF2 caused a downregulation
of many components of theMHC I antigen presentation pathway
(MHC I heavy chains, immunoproteasomes, TAP, TAPBPR, and
ERAP1) as well as an increase in CD274 (PDL-1) (69). Many
human cancers (e.g., breast, NSCLC, prostate, colorectal, and
uterine) downregulate IRF2 expression, which results in an
immune evasion phenotype with MHC I low and PD-L1 high
expression (69).

The expression of antigen presentation pathway genes can
be downregulated through epigenetic silencing (Figures 2, 7).
One such mechanism that has been observed in several cancer
types is hypermethylation of the promoters or enhancers of
these genes. This modification has been documented in the
regulatory elements of MHC I (176, 181–183), TAP (128),
Tapasin (184), IFNR pathway components (185–187). This DNA
modification silences gene expression by recruiting repressive
factors, such as methyl-CpG binding domain protein 1 (MBD1)
and methyl-CpG binding protein 2 (MeCP2) and interfering
with transcription. As cancer cells divide, these methylated
sequences are passed onto daughter cells, thereby perpetuating
the gene silencing. Treatment with agents that cause DNA
demethylation has restored MHC I expression in some cancers,
demonstrating the importance of this silencing mechanism (182,
188). Cancer neoantigen genes can also be subjected to DNA
hypermethylation (189).

Another epigenetic silencing mechanism involves histone
modifications, which are also heritable to daughter cells.
Histone acetylation can alter chromatin in ways that increase

DNA accessibility and thereby allowing entry and binding of
transcription factors. Histone deacetylase (HDAC) inhibitors,
which lead to increased acetylation levels, have restored
expression of MHC I molecules and other antigen presentation
components in some cancers, suggesting that histone
deacetylation silences expression of MHC I pathway genes
(190–194). Trimethylation of histones (e.g., H3K27me3) can also
downregulate genes by affecting the state of heterochromatin.
In some MHC I low cancers, H3K27me3 repressive marks are
associated with the promoters of NLRC5, MHC I heavy chain
genes, β2M, immunoproteasomes and TAP, and loss of this
repressive modification results in an increase in MHC I pathway
expression (177, 195).

The polycomb repressive complex 2 (PRC2) was found
to be a repressor of MHC I expression in some cancer
cells, such as neuroblastomas and small cell lung carcinomas
(177). PRC2 silences the basal expression of NLRC2, MHC I,
immunoproteasomes, and TAP and also inhibits IFNγ-induced
MHC I upregulation (177). A subunit of the PRC2 complex binds
and activates the lysine methyltransferase EZH2. Consistent
with this mode of action, the repression caused by PRC2 was
associated with increased H2K27me3 histone repressive marks
associated with MHC I pathway genes, which when reversed,
increased transcription factor binding and MHC I expression.
Consistent with these results, deletion of EZH2 in leukemia cells
increased MHC I expression (196) and activating mutations of
EZH2 caused a loss of MHC I expression in these cancers (197).

SWI/SNF factors affect gene expression by regulating
chromatin accessibility. The Polybromo-associated BAF (PBAF)
SWI/SNF complexes were found to be a positive regulator
of MHC I expression (198). The expression of PBAF in
cancers is correlated with better prognosis and responsiveness
to checkpoint blockade. Interestingly for PBAF, it particularly
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affects promoter accessibility of IRF2 and interferon-stimulated
response elements (ISREs) (198).

LOSS OF THE MHC I ANTIGEN
PRESENTATION PATHWAY IN CANCERS
THROUGH
POST-TRANSCRIPTIONAL/PRE-
TRANSLATIONAL
REGULATION

The expression of proteins can be regulated through post-
transcriptional mechanisms (Figure 7) and one of these
mechanisms is mediated by non-coding RNAs (ncRNA) (199).
One class of ncRNAs are small (22 bp average length) microRNAs
(miRNA). These sequences can bind to the 3′ untranslated
regions (UTR) of mRNAs and inhibit their translation through
repression or by targeting them for degradation.

There are a number of examples of miRNAs that regulate the
expression of components of the MHC I antigen presentation
pathway and can contribute to a loss of antigen presentation in
cancers (66, 200). In some cancers, there is increased expression
miRNAs and it has been shown that overexpression of these
miRNAs leads to a reduction in MHC I pathway components.
For example, in esophageal cancer, miR-148a-3p was found to
bind to untranslated regions (UTR) of MHC I transcripts and
miR-125a-5p bound to UTRs of TAP2 transcripts. Moreover, the
overexpression of these miRNAs reduced the expression of these
antigen presentation components (201). In melanomas, miR-
26b-5p and miR-21-3P bind the UTR of TAP1 transcripts and
downregulate TAP1 expression (202). In colorectal cancers, miR-
27a expression is increased and causes reducedMHC I expression
by suppressing expression of calreticulin (203). Mir-502-5P in
gastric cancer and miR-23a in hepatocellular cancer were found
to reduce IRF1 expression (204, 205). Thus, miRNAs, which can
be highly expressed in cancers, can negatively regulate many of
the components of the MHC I antigen presentation pathway.
Investigations in this subject area have been relatively limited
and therefore it is likely that many more examples of miRNA-
mediated inhibition of MHC I antigen presentation in cancers
are yet to be discovered.

Another class of ncRNAs are long (>200 bp) non-coding
RNAs (lncRNA). These sequences can regulate gene expression
in many ways, including epigenetically, transcriptionally and
post-transcriptionally (199, 206). One interesting example of
a lncRNA that regulates MHC I antigen presentation post-
transcriptionally is LINK-A. In a breast cancer model, LINK-A
inhibited antigen presentation by indirectly stimulating an E3
ubiquitin ligase which led to the degradation of the peptide-
loading complex (207). Again, it is highly likely that additional
lncRNAs will be found to negatively regulate components of the
MHC I antigen presentation pathway.

ncRNAs can also be positive regulators of MHC I. For
example, in head and neck squamous cell carcinomas, expression
of the lncRNA, lnc02195, increases MHC I expression and is
associated with a better prognosis (208). In nasopharyngeal

carcinomas miR9 expression increases expression of MHC I
molecules and TAP1 (209). Whether down-regulation of these
ncRNAs in cancers is an important mechanism for immune
evasion remains to be determined.

The UTR regions of mRNAs can be regulated not only by
ncRNAs, but also by proteins binding to these sequences. An
RNA-binding E3 ubiquitin ligase, MEX-3C, binds to the 3′ UTR
of the transcript for MHC class I molecule HLA-A2 leading to its
degradation (210); whether this mechanism is operative in and
important to cancer immune evasion has not yet been examined.

LOSS OF THE MHC I ANTIGEN
PRESENTATION PATHWAY IN CANCERS
THROUGH POST-TRANSLATIONAL
MECHANISMS

There are post-translational mechanisms that can impair MHC
I antigen presentation in cancers (Figure 7). One such post-
translational mechanism is analogous to immune evasion
mechanisms employed by some viral pathogens. Some viruses
encode immune evasion molecules that cause MHC I complexes
to be dislocated from the ER into the cytoplasm, where they
are degraded through a process referred to as endoplasmic
reticulum-associated degradation (ERAD). It turns out that
the oncoprotein Staphylococcal nuclease and tudor domain
containing 1 (SND1), which is highly expressed in a number of
cancers (e.g., Prostate and Melanoma), binds MHC I molecules
and causes them to undergo ERAD. Deletion of SND1 in some
cancer cell lines increases MHC I expression (211).

Another interesting mechanism that inhibits MHC I antigen
presentation is a change in glycolipids on the plasma membrane
that occurs in cancer cells that lose the signal peptide peptidase-
like 3 (SPPL3) protease (212). SPPL3 cleaves and inactivates a
glycosyltransferases B3GNT5, and loss of B3GNT5 reduces levels
of negatively charged glycosphingolipids (GSL). Loss of SPPL3
results in an increase in these GSLs, which then associate with
MHC I molecules in ways that appear to sterically inhibit their
interaction with T cells. This process occurs in gliomas (and
potentially some other cancers) and impairs T cell responses to
these cells.

Yet another interesting post-translational mechanism that
interferes with MHC I antigen presentation is modification of
amino acid residues in the peptide-binding groove of MHC
I molecules that alters peptide binding; this mechanism is
described in more detail in the next section.

LOSS OF THE MHC I ANTIGEN
PRESENTATION PATHWAY IN CANCERS
DUE TO SIGNALING MECHANISMS AND
EXTRINSIC STIMULI FROM THE TUMOR
MICROENVIRONMENT

Alterations in signaling pathways can lead to MHC I
downregulation in cancers (Figure 7). MAPKs, which are
activated in some cancers, are negative regulators of MHC I
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(213, 214). Inhibiting or silencing of MAPKs increased levels of
IRF1 and STAT1 (215) as well as MHC I expression (214). MAPK
inhibitors increased mRNA expression of MHC I, TAP, and
ß2M (214). Similarly, inhibition of the ALK and RET kinases,
which are upstream activators of MAPK, also increase MHC I
expression and interestingly also results in the presentation of a
different repertoire of peptides (216). Another example is that
signaling though the EGFR oncogene HER2/neu is associated
with a loss of transcripts for immunoproteasome subunits and
TAP, resulting in a loss of MHC I surface expression and antigen
presentation (217, 218). Yet another example is that n-MYC
and c-MYC overexpression caused loss of MHC I expression,
potentially by affecting NF-κB (219–221).

IFNs that are present in the tumor microenvironment [e.g.,
IFNγ produced by activated T cells or type I interferons
produced by a variety of cells, bind to interferon receptors
(IFNR) on tumor cells]. Signaling through the IFNRs (Figure 2)
leads to an increase in expression of many components of
the MHC I antigen presentation pathway (e.g., MHC I, TAP,
Tapasin, immunoproteasomes, and ERAP1). Components of
the IFN pathway can also be lost (Figure 7) and this prevents
IFN-induced upregulation of the MHC I pathway of antigen
presentation. Such loss can also reduce basal levels of MHC I
molecule expression (222, 223). IFN receptors signal through
Janus kinases (Jak1 and Jak2) and STAT (STAT 1 and STAT2)
proteins (224) (Figure 3). LOH and/or mutations in Jaks, and
STATs are observed in cancers (143, 171). Loss of function
mutations in Jak kinases with consequent loss of responsiveness
to INFγ were found in Melanomas that became resistant to
checkpoint blockade, pointing to the likely clinical significance
of the inactivation of the IFN pathway (147, 151, 225).
Loss of function in a receptor (APLNR) that interacts with
Jak1, reduces IFNγ-stimulated Jak1 and STAT signaling and
MHC I upregulation. Mutations in this receptor are found in
melanoma patients that are resistant to checkpoint blockade
and similarly such resistance is conferred upon knock out of
this receptor from mouse melanoma cells (142). Loss of the
tyrosine protein phosphatase Ptpn2 that represses IFNγ signaling
by dephosphorylating both JAK1 and STAT1. Deletion of Ptpn2
in mouse tumors increases MHC I antigen presentation and
improve immunotherapy (226); whether increased Ptpn2 activity
in human tumors causes a loss of MHC I antigen presentation
is not known. Finally, TGF-ß, which can be present in the
tumor microenvironment, can cause a down-regulation of MHC
I molecules in some cancers (e.g., ovarian, prostate, and ocular
melanoma) (227–229).

Other events in the tumor microenvironment can
lead to impaired MHC I antigen presentation in cancers
(Figure 7). Tumor microenvironments can be hypoxic and
hypoxia can impair MHC I antigen presentation in cancers,
in part by inhibition of STAT1 (230). Tumor-infiltrating
myeloid cells produce reactive nitrogen species in the tumor
microenvironment, and this can impair MHC I antigen
presentation in cancers. In this situation, the reactive nitrogen
species cause nitrosylation of residues in the MHC I peptide
binding site, which can inhibit the binding of peptides (231). In
tumor-bearing mice, myeloid suppressor cells cause defective

IFN responses in host cells (responses in tumors were not
examined) likely due to a STAT1 defect potentially caused by
nitrosylation (232).

GENE DISRUPTIONS THAT AFFECT MHC I
ANTIGEN PRESENTATION: EVIDENCE
FROM FORWARD GENETIC SCREENS IN
CANCERS

Recently, a number of forward genetic screens have been
performed in cancer cells subjected to selection for decreased or
increased MHC I expression and have identified a large number
of new gene candidates that are potentially involved inMHC class
I antigen presentation (69, 142, 167, 174, 177, 226, 233–235). In
fact, several of the genes described above (IRF2, PBAF, PRC2,
and SPPL3) were discovered in such screens. It is important
to note that many of the gene candidates that are initially
identified may be artifacts. Therefore, all candidates require
further validation and analyses to determine whether they are
affecting the MHC I antigen presentation pathway and involved
in cancer immune evasion.

A recent CRISPR-cas9 screen in B cell lymphoma cell lines
did repeat gene disruptions for individual candidates and were
able to reproduce a loss or increase in MHC I expression upon
disruption of ∼200 genes (196). Among these genes were ones
that are thought to be involved in endocytosis and vesicular
trafficking, ubiquitin conjugation, ER quality control, as well as
other processes. Further work is needed on these and candidates
from other screens to determine whether they are involved
in cancer immune evasion. However, interestingly, 30 of these
genes showed correlations with CD8T cell infiltration inmultiple
cancers; 10 negative-regulatory genes were correlated with less
tumor infiltrating CD8T cells and 20 positive-regulatory were
correlated with more infiltrating CD8T cells. The field can look
forward to muchmore information on the role of these genes and
other validated ones in MHC I antigen presentation and cancer
immune evasion.

POTENTIAL FOR RESTORING MHC I
EXPRESSION IN CANCERS

The fact that the loss of MHC I antigen presentation is common
in cancers and allows these cells to evade immune surveillance,
raises the question of whether the MHC I pathway defects could
be reversed so as to reestablish immune control and responses
to immunotherapy. For cancers with deletions or inactivating
mutations in structural antigen presenting genes, this would
require gene replacement or editing in most cases. In vitro, this
has been successfully accomplished by transfection of MHC I
pathway genes into cancer cell lines. Similarly, gene therapy with
a ß2M-adeno-viral vector has been successful in restoring MHC
I expression in vivo in a murine model (236–238). However, for
gene transfer or editing to be a viable therapy, it will likely require
that all cancer cells (in the primary site and metastasis) to be
transduced and “repaired,” because otherwise MHC I-low clones
would continue to grow. Achieving this level of gene expression
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or repair is probably not feasible with current gene therapy
technology. An exception for overcoming the loss of structural
genes is the situation where the function of the lost gene can be
replaced by inducing another functionally redundant gene. One
example of this is where MHC I expression in cancer cells was
lost by deletion of the IRF2 transcription factor, but then restored
by inducing IRF1 with IFN-stimulation (69). In this case IRF1
and IRF2 are both activating transcription factors that bind to
the same promotor element (239).

In situations where the MHC I pathway structural genes
are intact but their expression is downregulated, there is the
potential to restore gene expression. In someMHC I low cancers,
treatment with IFNs has increased MHC I levels (120, 240, 241).
The mechanism as to how IFN is restoring MHC I expression
has not been investigated in detail, except in one study,
IFN was shown to cause increased histone acetylation, DNA
demethylation of the promoters of TAP and immunoproteasome
genes, and increased transcription of these and other antigen
presenting genes (241). In addition, it is possible that IFN is
also increasing MHC I levels in MHC I-low cancers through
induction of IRF1, which then drives more transcription of the
MHC I pathway genes (69), but this has not generally been
examined. There are recombinant type I and II IFNs that work in
vivo and are FDA-approved for other indications. In a small phase
2 trial in which two patients had MHC I negative melanomas,
systemic IFNγ-administration induced MHC I expression (240).
IFNγ has been shown to improve outcomes of checkpoint
blockade in one clinical trial in melanoma (242), however
whether and how much this had to do with MHC I expression
is unknown.

For cancers that have lost MHC I expression due to epigenetic
silencingmechanisms, theremay be the potential to restoreMHC
I expression by reversing the repressive epigenetic marks. There
are several examples where MHC I low cancer cell lines have
been treated with drugs that inhibit DNAmethyltransferases, the
enzymes that are responsible formethylatingDNA (181, 182, 243,
244), and thereby reverse gene silencing, presumably through
demethylation of promoters. Such treatment has increased MHC
I expression in several MHC I low cancers cell lines (181, 182,
188, 245). Where examined, this class of epigenetic modifying
drugs was found to restore MHC I expression by upregulating
expression of many IFN-responsive gene (246) including MHC I
antigen presentation pathway genes in cell lines (95, 241, 245).
These findings raised the possibility that this class of agents
could augment T cell-based immunotherapy. Consistent with
this idea, this class of agents has been shown to augment or give
additive effects with checkpoint inhibitors in preclinical mouse
models (182, 247, 248). There are several DNAmethyltransferase
inhibitors that are approved by the FDA for cancer treatment,
although the exact basis for their efficacy (i.e., what are the key
pathways that are affected to give the anti-cancer effects, isn’t
known). These drugs have been shown to increase expression of
IFN and MHC I antigen presentation pathway genes in cancers
in vivo (182, 245) and in limited clinical trials have improved
responses to checkpoint blockade immunotherapy (249) and
a tumor vaccine (250). Currently there are further ongoing
trials of these agents in combination with immunotherapy (251).

Inhibitors of the EZH2 methyltransferase, which as described
above is a negative regulator of MHC I antigen presentation, can
restore MHC I levels in lymphomas (196, 197).

Similarly, a number of MHC I low cancer cell lines have
been treated with histone deacetylase (HDAC) inhibitors, which
by increasing histone acetylation can restore promoter activity.
HDAC inhibitors have also increased MHC I expression and
MHC I pathway components in cancer cell lines (182, 190,
192, 193, 243, 252, 253). There are FDA-approved HDAC and
DNA methyltransferase inhibitors that are used to treat cancers.
Where studied in vivo, methyltransferase inhibitors increased
expression of MHC I and MHC I pathway components in
multiple types of cancers in patients (182, 245) and a xenograft
model (192). In preclinical models, HDAC inhibitors and anti-
PDL1 antibody (186, 193, 254–257) or with T cell therapy (258)
gave additive effects. Combinations of HDAC inhibitors and
checkpoint blockade have and continue to be tested in clinical
trials (194, 259–261).

Based on the data just discussed, it is clear that epigenetic
modifying agents can increase the MHC I antigen presentation
pathway in some MHC I low cancers and that these drugs
can improve responses to immunotherapy, however whether
these two observations are causally related is not yet established.
This is because epigenetic modifying drugs effect the promoter
landscapes in potentially all cells. Therefore, these agents can
affect not only the tumor, but also cells within the tumor
microenvironment and immune system. Moreover, the drugs
can affect the expression of many genes within these cells.
In most studies, which of the key gene regulatory events
that are responsible for therapeutic effects of these drugs is
not known. Interestingly, in one animal study the therapeutic
effect of an HDAC inhibitor was lost in immunodeficient mice
(191), providing evidence that the drug was acting to improve
immune control a cancer; however, whether this effect is via
the restoration of the MHC I pathway or some other immune
mechanism is not known.

The broad effects of the epigenetic modifying agents lead to
multiple and sometimes opposing effects. For example, global
DNA hypomethylation may increase MHC I expression, but also
upregulate immunosuppressive mechanisms such as suppressive
cytokines and checkpoint inhibitors (262, 263). Such complexity
might be overcome, and outcomes improved if there were
ways to more selectively modify epigenetic marks of particular
genes. At present, drugs that inhibit individual HDAC enzymes
are available, and perhaps even more selective agents will
be developed. New gene editing approaches using modified
Cas9 fusion proteins (e.g., Cas9-p300 acetyltransferase, Cas9-
methyltransferases can Cas9-demethylases) have the ability to
alter epigenetic marks and/or transcriptionally activate or repress
expression of specific genes (264, 265). Whether such approaches
could somehow be used in vivo to efficiently edit all cancer cells
remains to be seen.

MicroRNAs that reduce MHC I antigen presentation are
a potential therapeutic target. MiRNAs can be blocked in
cells by treatment with complementary anti-sense RNAs
(antimirRs/antagomiRs) and overexpression of miRNAs can be
achieved using miRNA duplexes (miRNA mimetics) (199, 266).
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These approaches require chemical modifications to stabilize
RNA oligonucleotides and methods to deliver these compounds
into cells (e.g., lipid nanoparticles). Such agents have been used
successfully in preclinical models and have and/or are being
tested in phase 1 and 2 clinical trials, but not yet for affecting
MHC I antigen presentation. LncRNAs can be targeted for
degradation with anti-sense oligonucleotides.

Inhibitors of enzymes that lead to a loss of MHC I
antigen presentation also have the potential to restore antigen
presentation in some cancers. Inhibitors of ALK, RET, and
MAPK kinases can reverse the downregulation of the MHC I
antigen presentation caused by these enzymes (213, 214, 216).
There are FDA approved inhibitors of glycosyltransferases, and
these agents were shown to reverse the suppression of MHC I
stimulatory activity caused by the increase in negatively charged
glycosphingolipids from loss of SPPL3 (212). Inhibitors of
thymidylate synthetase were found to increase MHC I levels in
lymphoma cells in a targeted small molecule screen, via an as yet
unknown mechanism (196).

Finally, in cells that have lost some MHC I antigen
presentation pathway components, such as TAP (40, 267) and
ERAP1 (60, 100), novel peptides peptides [aka “T cell epitopes
associated with impaired peptide processing (TEIPP)] are
presented that are not displayed in wild type cells and can be
immunogenic. There is limited data that immunization with such
sequences can elicit anti-tumor responses (268, 269). Therefore,
an alternate approach to restoring the loss of MHC I antigen
presentation components could be to exploit the presentation
of unique antigen peptides that are displayed on such cancer
cells (269).

The elucidation of the many mechanisms that lead to a
loss of MHC I antigen presentation and the identification of
tractable therapeutic targets to reverse this loss, brings the
hope of restoring immune control and improving T cell-based
immunotherapy. Given the differences between different cancer
types, the heterogeneity within a single type of cancer, and the
many different mechanisms that can disable the MHC class
I pathway, it seems likely that such approaches will require
precision medicine, where the cause of immune evasion in an
individual patient is identified and then the appropriate therapy
selected. The advances in identifying the underlying mechanisms
that cripple MHC I antigen presentation are necessary steps in
attempting to achieve this goal.

RECOGNITION AND CONTROL OF MHC I
LOW CANCERS BY NK CELLS

Cancers that have lost MHC I expression through the
mechanisms discussed above, can avoid control and elimination
by CD8T lymphocytes. This is analogous to the situation where
some viruses encode immune evasion molecules that inhibit
MHC I antigen presentation and thereby allow virally infected
cells to avoid being killed by CD8T cells and help establish
chronic infections. In these situations, there is a second line
of defense that can kill these abnormal cells and this immune
function is provided by natural killer (NK) cells. NK cells identify

these cells in part by sensing the presence or absence of MHC
I molecules.

NK cells are a lineage of lymphocyte that is distinct from B and
T cells. These cells have similar effector functions (cytotoxicity
and cytokine production), as CD8T cells. However, NK cells
are innate lymphoid cells (ILC) and the receptors they use to
recognize their target cells are fundamentally different from the
ones used by T (and B) lymphocytes. Instead of employing a
mechanism that recombines gene segments to generate clonally
unique and diverse receptors, NK cells use non-rearranging
germ-line encoded receptors of several different types (270).
Some of these NK receptors are activating ones and others
provide inhibitory signals.

Human NK cells express several killer inhibitory receptors
(KIR) that upon engagement of their ligands, impart inhibitory
signals through ITIM motifs in the receptors’ intracytoplasmic
domains. HLA-A and HLA-B are ligands for KIR3D receptors
and HLA-C is recognized by KIR2D receptors. In addition, NK
cells express other types of inhibitory receptors that recognize
MHC I molecules, including CD94-NKG2A, which recognizes
HLA-E, and LILRB1, which recognizes all MHC I molecules.
Moreover, NK cells express other inhibitory receptors that are
not involved in MHC I recognition (270). Because of their
inhibitory receptors that recognize MHC I molecules, NK cells
ignore normal MHC I-sufficient cells but are disinhibited when
they encounter abnormal-MHC I low cells. This loss of inhibition
is a necessary but not a sufficient event to trigger the NK cell’s
effector mechanisms.

Activation of NK cells requires engagement of activating
receptors, which in humans include NKG2D, NKp20, NKp44,
and NKp46 (270). These receptors associate with and signal
through ITAM-containing proteins (270). Other stimulatory
receptors expressed by NK include 2B4 (CD244) and DNAM1
(CD226) (270).

The ligands of some of the activating receptors are ones
whose expression is induced on cancers, virally infected and
stressed cells. The best characterized examples are the MHC
class I polypeptide–related sequence A and B (MICA and MICB)
molecules, which are the ligands of the activating NKG2D
receptor. MIC A and MIC B are structurally similar to HLA
class heavy chains but are not associated with ß2M and do not
bind peptides. Because of these properties, MICA’s and MICB’s
expression is not affected by defects in the MHC I antigen
presentation pathway and therefore can be expressed in MHC I
negative cancer cells. The activation of NK cells depends on the
balance of stimulatory and inhibitor signals they receive. Cancers
or virally infected cells that both express activating ligands and
lack inhibitory ligands can be killed by NK cells.

Mice that lack functional NKs cell due to antibody treatment
or genetic knock outs develop a higher frequency of some
cancers (271, 272). Similarly, humans that have NK cell defects
have increases in some cancers, particularly ones that may be
induced by viruses (273). A caveat in many of these studies
is that the mouse models and NK deficient humans may have
defects beyond just a loss of NK cells (273). Nevertheless, the
data in aggregate suggest that NK cells play a role in immune
surveillance. Whether the protection against carcinogenesis

Frontiers in Immunology | www.frontiersin.org 13 March 2021 | Volume 12 | Article 636568

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dhatchinamoorthy et al. Loss of MHCI in Cancer Immune Evasion

afforded by NK cells is primarily against MHC I low cancers is
not clear (274).

NK cells may still exert some control after cancers have arisen.
Depletion of NK cells in mouse models promotes the growth
and metastasis of transplanted tumors (271, 275, 276). Moreover,
adoptive transfer of NK cells into tumor-bearing mice can lead
to tumor rejection. In humans, the level of cytolytic activity
of circulating NK cells correlates with the risk of cancer (277)
and infiltration of NK cells in some cancers is associated with a
better prognosis (278, 279). Similarly, adoptive transfer of NK
cells into human cancer patients has shown therapeutic effects
in some patients, demonstrating that similar principles likely
apply in humans (280). Such studies have led to considerable
interest in exploiting NK cells for tumor therapy and there are
many efforts underway to do so [e.g., developing CAR-NK cell
therapy and antibodies that recruit activated NK cells to cancers
(270, 281, 282)].

Despite NK cells being a potential second line of defense
against tumors that have lost MHC I, once such tumors become
clinically evident, they almost always progress. In fact, as noted
above, loss of MHC I is often a negative prognostic indicator.
Moreover, there is no evidence that MHC I negative cancers are
infiltrated with more NK cells than MHC I sufficient cancers
(283). Therefore, for many MHC I low cancers, either they were
never targets of NK cells or such tumors have evolved ways to
evade control by NK cells.

In fact, there are many mechanisms through which cancers
can evade NK cells. For example, HLA A, B&C low cancers
can express the non-classical MHC I molecules HLA-G and
HLA-E, which can inhibit NK cells by engaging their inhibitory
receptors (284–288). In addition, NK cells may not penetrate
into solid tumors or once within the cancer can become anergic
or exhausted, including in MHC I low tumors (289–291).
Furthermore, tumors can shed their MIC molecules, thereby
removing an activation signal and creating a soluble ligand that
can block the NK cell’s cognate receptor (292, 293). Moreover,
cancers can also create an immunosuppressive environment [e.g.,
producing TGFß, which can lead to inhibition of NK cells (294)].
A fuller consideration of these mechanisms is beyond the scope
of this article and readers are referred to recent reviews (270, 295,
296).

FUTURE DIRECTIONS

While there is abundant evidence that loss of MHC I antigen
presentation is a frequent event in cancers that results in
immune evasion, we still have much to learn. As reviewed
above, newmechanisms forMHC I downregulation have recently
been discovered and there will be more to be uncovered.
Forward genetic screens are identifying new components that
contribute to the MHC I pathway and it will be of importance
to investigate how they contribute to MHC I phenotypes in
cancers. Even among the known mechanisms for loss of antigen
presentation, a majority of the analyses have been performed in
limited cancer types and a more comprehensive understanding
across more types of cancer is needed. Moreover, many of the

underlying mechanisms for MHC I pathway loss need to be
elucidated at higher resolution (e.g., causes and specific targets
of epigenetic modifications).

Given the importance of MHC I antigen presentation for
the immune control and immunotherapy of cancers, there
is a need to develop therapeutic approaches to restore the
MHC I pathway in cancers and this should be feasible in at
least some cancers. This might itself be an immunotherapy by
allowing a restoration of immune control. It might also provide
adjunct therapy that could improve the percentage of patients
that respond to immunotherapies and potentially extend the
efficacy of immunotherapies to cancers that have been largely
resistant to such therapy. The various mechanisms that cause
MHC I pathway-loss might also serve as biomarkers to help
identify patients that have the potential to respond, or not, to
immunotherapy and/or have the potential for the loss of MHC
I to be reversed. The hope for such biomarkers is that they could
make immunotherapy more personalized (e.g., sparing those
patients who won’t respond to such therapy from the risks and
enormous expense of the treatment).

CONCLUSIONS

A sizable percentage of many different types of cancers lose
MHC I antigen presentation partially or completely. This is
almost certainly the result of immunoediting where MHC I low
variants emerge under selection pressure imposed by CD8T
cells. The result of this process is that CD8T cells can no
longer “see” these MHC I-deficient variants and are therefore
unable to control or eliminate them. This process reflects the
fact that the MHC I pathway is non-essential for viability and
growth and therefore when lost does not compromise cancer
progression. Where examined, this escape of immune control
is generally associated with worse prognoses and resistance to
immunotherapy. There are many mechanisms that underlie the
loss of MHC I antigen presentation. Some mechanisms involve
mutations and deletions of structural genes of one or more
component(s) of the antigen presentation pathway; others effect
transcription of pathway genes via loss of transcription factors or
epigenetic silencing of gene regulatory elements; and yet others
can affect the stability ofmRNAs forMHC I pathway components
or the molecules themselves, or signaling pathways that regulate
MHC I expression. Some of these alterations are unique to an
individual cancer and others are common in multiple patients
and cancer types. It will be important to further understand
the multiple mechanisms for loss of the MHC I pathway that
are operative in all cancer types and their clinical significance.
The hope is that in the future, characterizing MHC I pathway
lesions in individual patient samples would lead to actionable
information about what therapies will or will not be likely to work
and prognosis. Moreover, some of the mechanisms that cause the
loss of the MHC I pathway in cancers are reversible and may be
amenable to the development of therapeutic interventions that
could make T cell-based immunotherapies more efficacious in
more patients and in more kinds of cancer.
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GLOSSARY

APM, Antigen presentation machinery; ß2M, Beta2
microglobulin; CTLA-4, Cytotoxic T-lymphocyte-associated
protein; ER, Endoplasmic reticulum; ERAD, Endoplasmic-
reticulum-associated protein degradation; ERAP1, Endoplasmic
reticulum aminopeptidase 1; EZH2, Enhancer of zeste 2
polycomb repressive complex 2; GSL, Glycosphingolipid;

HDAC, Histone deacyetylase; HLA, Human leukocyte antigen;
ILC, Innate lymphoid cells; JAK, Janus kinase; KIR, Killer
inhibitory receptor; lnkRNA, Long noncoding RNA; NK,
Natural killer; NLRC5, NLR Family CARD domain Containing
5; MHC, Major histocompatibility complex; miRNA, microRNA;
PD1/PD-L1, Programmed cell death protein 1/ Programmed
death-ligand 1; TAP, Transporter of antigen presentation; TIL,
Tumor infiltrating lymphocytes; UTR, Untranslated region.

Frontiers in Immunology | www.frontiersin.org 27 March 2021 | Volume 12 | Article 636568

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation
	Introduction
	The MHC Class I Pathway of Antigen Presentation
	Regulation of the MHC I Pathway of Antigen Presentation
	Cancers Antigens and Their Visibility to the Immune System
	Cancers Often Lose Expression of MHC I Molecules
	Clinical Importance of Loss of MHC I Expression In Cancers
	Loss OF MHC I Expression in Cancers Through Mutation or Deletion of Structural Genes
	Loss OF the MHC I Antigen Presentation Pathway In Cancers Through Transcriptional Regulation
	loss of the MHC I Antigen Presentation Pathway In Cancers Through Post-Transcriptional/Pre-Translational Regulation
	Loss of the MHC I Antigen Presentation Pathway in Cancers Through Post-translational Mechanisms
	Loss of the MHC I Antigen Presentation Pathway In Cancers Due to Signaling Mechanisms and Extrinsic Stimuli From the Tumor Microenvironment
	Gene Disruptions That Affect MHC I Antigen Presentation: Evidence From Forward Genetic Screens In Cancers
	Potential for Restoring MHC I Expression In Cancers
	Recognition and Control OF MHC I Low Cancers by NK Cells
	Future Directions
	Conclusions
	Author Contributions
	Funding
	References
	Glossary


