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Abstract

Ranking user reputation and object quality in online rating systems is of great significance

for the construction of reputation systems. In this paper we put forward an iterative algorithm

for ranking reputation and quality in terms of eigenvector, named EigenRank algorithm,

where the user reputation and object quality interact and the user reputation converges to

the eigenvector associated to the greatest eigenvalue of a certain matrix. In addition, we

prove the convergence of EigenRank algorithm, and analyse the speed of convergence.

Meanwhile, the experimental results for the synthetic networks show that the AUC values

and Kendall’s τ of the EigenRank algorithm are greater than the ones from the IBeta method

and Vote Aggregation method with different proportions of random/malicious ratings. The

results for the empirical networks show that the EigenRank algorithm performs better in

accuracy and robustness compared to the IBeta method and Vote Aggregation method in

the random and malicious rating attack cases. This work provides an expectable ranking

algorithm for the online user reputation identification.

Introduction

User reputation measures the user ability of rating accurately to various objects. In the inter-

pretation of online rating systems, one of the central problems is how to construct the personal

reputation systems [1–3], which could have an impact on e-commerce [4, 5], recommender

systems [6, 7], rumor spreading [8, 9], etc. In the past several years, online rating systems of

many platforms provide user channels to express their preferences to different objects. Never-

theless, not every user gives reasonable/accurate ratings due to his/her dishonesty or non-

familiarity [2, 10]. Inaccurate ratings affect the normal sales of online businesses, endangering

the healthy development of the social economy. Therefore, measuring the online user reputa-

tion according to their rating behaviors is crucial for the maintenance of a good market order

and construction of strong cyberpower [11–14].

In the existing works, the iteration-oriented mechanisms have been widely explored, Pager-

ank [15] and HITS algorithms [16] as representatives. In recent years, quality-based ranking

methods are introduced, in which each object is assumed to have an inherent quality and the

user reputation is characterized by the relations between his/her rating vector and the
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corresponding objects’ calculated quality vector. User reputation and object quality are inter-

dependent and are updated iteratively until they become stable. Laureti et al. [17] raised an

iterative refinement (abbr. IR) method by analyzing the difference between user rating and

object quality vectors. Similarly, there is improved IR method [18]. Zhou et al. [19] proposed a

correlation-based ranking (abbr. CR) method in terms of Pearson correlation coefficient

between vectors of user rating and object quality. Similarly, there are IARR method [20],

IRUA method [21], etc. [22]. Besides, Allahbakhsh et al. [23] proposed a Vote Aggregation

method by computing the grade of credibility, and assigning each user a degree of consistence

with the community sentiment. Along this line, there are group-based ranking method [24]

and so on [25–27]. In addition, Liu et al. [28] designed a reputation ranking algorithm via the

beta distribution (RBPD for short), in which the user reputation is determined by the probabil-

ity that the user is to rate fairly. And IBeta method [29] is proposed by introducing an iterative

reputation-allocation process based on the RBPD method.

Among the existing reputation ranking methods, the iterative algorithms could measure

the user reputation in good accuracy. However, many iterative methods do not converge, or

omit the proof of theoretical convergence [19, 20, 29]. It is expected that iterative algorithm

with definite convergence can lead to more robust reputation lists [26, 30]. Inspired by this

thought, in this paper we develop an iterative reputation and quality ranking algorithm based

on eigenvector analysis, called the EigenRank algorithm, where the user reputation and object

quality are interdependent and the user reputation vector series converges to the eigenvector

corresponding to the largest eigenvalue of a certain matrix. In addition, we give the proof of

the convergence of EigenRank algorithm, and analyse the speed of convergence. Meanwhile,

we explore the ranking performance of the EigenRank algorithm for the synthetic and empiri-

cal networks compared with the IBeta method and Vote Aggregation method. Our results for

the synthetic networks imply that the AUC values and Kendall’s τ of the EigenRank algorithm

exceed their counterparts obtained from the IBeta method and Vote Aggregation method with

different proportions of random/malicious ratings. The results for the empirical networks

show that the EigenRank algorithm has a better performance in accuracy and robustness than

the IBeta method and Vote Aggregation method in the random and malicious rating attack

cases.

We organize this paper as follows. The EigenRank algorithm is presented in section II. In

sections III and IV, we show the experimental results for the synthetic networks and empirical

networks, respectively. Finally, section V gives the conclusion and discussions. The analysis of

convergence for the EigenRank algorithm is put in the Supporting Information.

The EigenRank algorithm

We use a weighted bipartite network G = {U, O, E} to represent the rating system, where U is

the user set, O is the object set and E is the rating set. For the sake of clarity, Latin and Greek

letters are used to represent attributes of users and objects, respectively. We use riα to denote

the rating given by user i to object α, and list the ratings into a matrix A, called the rating

matrix. It is noted that, in the case the range of ratings varies with object, the ratings should be

linearly normalized into a fixed interval, for instance [0, 1], before constructing the matrix A.

The letters used in this paper are shown in Table 1.

Firstly, we normalize the ratings as follows. Because different users have different rating cri-

teria, part of them tend to give high ratings and others give low ones, therefore ratings do not

reflect the real opinion of the users to objects precisely. To balance this deviation, we need to
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make some normalization, the rating riα is transformed to the extent of fanciness r0ia,

r0ia ¼
2ðria � r2

i Þ=ðr
1
i � r2

i Þ � 1; r1
i 6¼ r2

i

0; r1
i ¼ r2

i

;

(

ð1Þ

where r1
i and r2

i are the maximum and minimum ratings user i gives, respectively. Thus, all the

ratings given by a specific user are normalized to [-1, 1], so that the extreme ratings are set 1

and -1, respectively. Particularly, the normalized ratings are all 0 if and only if the user gives

constant rating. Positive r0ia reflects positive opinion and negative r0ia represents negative opin-

ion. The normalized rating are arranged in a matrix B, whose (i, α)-th entry is r0ia.
Initially, the user reputation R(0) is assigned in terms of the user degree, Ri = ki/|O| (where |

O| is the number of objects). Object quality is proportional to the received average normalized

rating, weighted by user reputation.

We tempt to express the object quality as

Q ¼ c1f ðKÞB
TR; ð2Þ

where f is a continuous monotone function on [0,1), and c1 > 0 is an adjustable parameter

that does not influence the relative rank of object quality Q. To determine this function f,
imagine that if each user has a brother, whom gives the same rating as i did to each object. In

this case, the relative rank of the objects should not be disturbed, and the rating matrix

becomes
B

B

 !

instead of B, and R is replaced by
R

R

 !

. Then formula (2) becomes

Q ¼ c0
1
f ð2KÞBTR; ð3Þ

for some new constant c0
1
. Comparing (3) with (2) conclude

f ð2kaÞ ¼ cf ðkaÞ; 8a 2 O ð4Þ

for some constant c independant on α. Suppose c ¼ 2u1 , then (4) can be reformed as

ð2kaÞ
� u1 f ð2kaÞ ¼ k� u1

a
f ðkaÞ; 8a 2 O: ð5Þ

Suppose f satisfies ð2xÞ� u1 f ð2xÞ ¼ x� u1 f ðxÞ; x 2 ½0;1Þ and v ¼ limx!0þx� u1 f ðxÞ exists, then

for each x> 0 we have x� u1 f ðxÞ ¼ limn!1ð2
� lxÞ� u1 f ð2� lxÞ ¼ v, therefore x� u1 f ðxÞ � v, i.e.

Table 1. Descriptor table of letters used in this paper.

Letters Descriptor

riα the rating given by user i to object α

di degree of user i
kα degree of object α

A the rating matrix

B the normalized rating matrix

R user reputation vector

Q object quality vector

D diag{d1, d2, . . ., d|U|}

K diag{k1, k2, . . ., k|O|}

https://doi.org/10.1371/journal.pone.0274567.t001
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f ðxÞ ¼ vxu1 ; 8x. Consequently, the object quality can be expressed as

Q ¼ c1K
u1BTR: ð6Þ

User reputation is measured by the relationship between the user’s normalized rating and

object quality. When users have a positive view to the object, the larger is the object quality, the

higher is the user reputation; Conversely, when the user has a negative view of the object, the

smaller is the object quality, the higher is the user reputation. From this viewpoint, the user

reputation can be expressed by

R ¼ c2D
u2BQ; ð7Þ

where c2, u2 are adjustable parameters, and c2 > 0 does not change the relative rank of user

reputation R.

When u2 = 0, the opinions of inactive users will be covered up by those of active ones;

meanwhile, When u2 = −1, the opinions of active and inactive users have the same weight.

These two choices are too extreme, hence we make a compromised choice, u2 ¼ �
1

2
in our

algorithm. Similarly, u1 is also set � 1

2
.

At each step, the vectors R and Q will be updated according to formulae (6) and (7). The

reputation vector after the n-th iteration step is recorded as R(n). As n!1, R(n) converges to

the unit eigenvector associated to the greatest eigenvalue of a certain matrix, and we put its

proof in the S1 Appendix. The iteration process will not stop until the reputation vector

becomes stable, i.e. the distance jjRðnÞ � Rðn� 1Þjj
2

2
between the reputation vectors decays to

below the threshold δ = 10−10, where

jjRðnÞ � Rðn� 1Þjj
2

2
¼

1

jUj

X

i2U

ðRðnÞi � Rðn� 1Þ

i Þ
2
: ð8Þ

The numerical convergence of EigenRank algorithm is theoretically guaranteed, of which

the proof is put in the S1 Appendix. We discuss the parameters c1 and c2. Substituting formula

(6) into formula (7), we get

R ¼ c1c2D
� 1

2BK� 1
2BTR: ð9Þ

One can find that R is an eigenvector associated to the largest eigenvalue of the matrix

D� 1
2BK� 1

2BT. Let λm denote the largest eigenvalue of matrix D� 1
2BK� 1

2BT, then

D� 1
2BK� 1

2BTR ¼ lmR, we find that the parameters c1 and c2 satisfy,

c1c2 ¼
1

lm
: ð10Þ

As mentioned before, the values of c1, c2 do not influence the relative rank of reputation R. In

fact, what we need is the direction of the vector R, which determines the relative ratios of its

coordinates, rather than its length. In each step of iteration, we normalize R(n) in the 2-norm,

which do not impact on its direction, and could make the sequence R(n) converge. The proce-

dure of EigenRank Algorithm is summarized in Algorithm 1.

The convergence analysis of EigenRank algorithm can be seen in the S1 Appendix. We find

that the iteration stops when the number of steps n > log
Z

xð0Þ
1
d

16jjD�
1
4 jj�jjD

1
4 jj�jjxð0Þjj2

þ 1. In addition,

the total complexity of the EigenRank algorithm is O(|U||O|logη δ).

Algorithm 1 The iterative EigenRank Algorithm
Input: Rating matrix A;
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Output: User reputation matrix R and object quality matrix Q;
1: Make normalization of ratings;
2: Initialize R(0) in terms of user degree;
3: while jjRðnÞ � Rðn� 1Þjj

2

2
< d ¼ 10� 10 is not met do

4: Q K� 12BTR;
5: R D� 12BQ=jjD� 1

2BQjj
2
;

6: end
7: return R and Q

Results for synthetic networks

Moreover, we analyze the ranking performance of the EigenRank algorithm compared to the

IBeta method and Vote Aggregation method for the synthetic networks, in which we firstly

add the weighted links by employing the preferential attachment mechanism [31] and then

insert different number of distorted ratings.

When we generate the synthetic networks, the numbers of users and objects are set |U| =

6000 and |O| = 6000, respectively. The network sparsity η is set to 0.02, 0.03, respectively. We

add the weighted links (ratings) one after one until the total cardinality of the ratings |E| reach

η × |U||O| = 7.2 × 105, 1.08 × 106, respectively. The nodes (user and object) of links are selected

in terms of the node degree preferentially. The possibility of selecting user i and object α at

each time step t are formulated as

piðtÞ ¼
kiðtÞ þ 1

Sj2UðkjðtÞ þ 1Þ
; ð11Þ

paðtÞ ¼
kaðtÞ þ 1

Sb2OðkbðtÞ þ 1Þ
; ð12Þ

where ki(t) is the degree of user i at the time step t and kα(t) is the degree of object α at the time

step t.
Two ingredients contribute to the rating riα, the link weight from user i to object α: the

object inherent quality Q0
a
, and the rating error Δδiα. Here Q0

a
subjects to uniform distribution

U(1, 5) and Δδiα is drawn from the normal distribution Nð0;Dd2

i Þ, in which Δδi is the rating

error of user i, subjecting to U(1, 5). The rating riα is calculated by

ria ¼ ½Q0a þ Ddia�; ð13Þ

where [ ] represents the closest integer to Q0
a
þ Ddia. The rating riα is limited to the set {1, 2, 3,

4, 5}, and we will truncate the ratings beyond {1, 2, 3, 4, 5}.

Then, we replace part of the links by the distorted ratings. In the synthetic networks, we

assume two kinds of distorted ratings simultaneously exist in real online rating systems, those

are, random ratings and malicious ones. The former are given by users who rate objects totally

randomly in the set {1, 2, 3, 4, 5}, while the latter arise when some of users always give extreme

ratings to push up or down certain target objects. In the synthetic networks, we replace ρ pro-

portion of the original links by the distorted ratings (random/malicious case). Larger parame-

ter ρ reflects more noisy information. ρ = 0 represents there is all true information and ρ = 1

means totally chaos. In our synthetic experiments, the proportion ρ is set to 0.025, 0.05, . . .,

0.5, successively.

To characterize the ranking performance of the EigenRank algorithm, we introduce two

indices: AUC curve [32] (the area under a receiver operating characteristic curve) and Ken-

dall’s τ [33]. When calculating the AUC value, we need to divide the objects into two subsets,
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i.e. the benchmark objects and non-benchmark ones, according to their qualities. After n
times of independent comparisons, there are n1 times that the benchmark one has a higher

quality than its opponent, and n2 times they reach a draw. The AUC value is calculated by

AUCs ¼
2n1 þ n2

2n
; ð14Þ

where the parameter n = 1 × 109 in the experiments. When AUCs = 1, the selected benchmark

object has a higher rank than its opponent in all the comparisons. While AUCs = 0.5 implies all

the objects are randomly ranked. In the synthetic networks, we select 20% highest-quality

objects as benchmark objects based on their inherent qualities Q0
a
. The higher is the AUC

value, the more accurate is the ranking of object quality.

Another index Kendall’s τ computes the rank correlation between the inherent quality Q0

and the obtained object quality Q, which is formulated by

t ¼
2

jOjðjOj � 1Þ

X

m<n

sgn½ðQ0
m
� Q0

n
ÞðQm � QnÞ�; ð15Þ

where sgn(x) is the sign function. ðQ0
m
� Q0

n
ÞðQm � QnÞ > 0 means Q0 and Q is concordant and

negative indicates discordant. τ always lies in [−1, 1] and higher Kendall’s τ indicates higher

ranking accuracy.

We compare the ranking performance of the EigenRank algorithm to IBeta method and

Vote Aggregation method. Considering Vote Aggregation method has parameters, in our

experiments we set the parameters the same as in the examples from [23].

Fig 1 shows the AUC values AUCs and Kendall’s τ of the EigenRank algorithm, IBeta

method and Vote Aggregation method via different proportions of distorted ratings (random/

malicious case) for the synthetic networks. From Fig 1(a) and 1(b) one sees that both AUCs

and Kendall’s τ of the EigenRank algorithm are larger than their counterparts in the IBeta

method and Vote Aggregation method for different parameter ρ in the random rating attack

case when |E| = 7.2 × 105. For example, when ρ = 0.1, the AUCs of the EigenRank algorithm,

IBeta method and Vote Aggregation method could reach 0.906, 0.888 and 0.869, respectively,

and the corresponding τ could reach 0.662, 0.615 and 0.574, respectively. From Fig 1(c) and 1

(d) we observe that both AUCs and τ of the EigenRank algorithm are greater than the ones

from the IBeta method and Vote Aggregation method for different ρ in the malicious rating

attack case when |E| = 7.2 × 105. For instance, when ρ = 0.1, the AUCs of the EigenRank algo-

rithm, IBeta method and Vote Aggregation method reach 0.902, 0.883 and 0.862, respectively,

and the corresponding τ reach 0.651, 0.602 and 0.559, respectively. One also finds that both

AUCs and τ of the EigenRank algorithm exceed their counterparts in the IBeta method and

Vote Aggregation method with different ρ, not only in the random rating attack case Fig 1(e)

and 1(f) but also in the malicious rating attack case Fig 1(g) and 1(h) when |E| = 1.08 × 106.

For example, when ρ = 0.2 in the random rating attack case, the AUCs of the EigenRank algo-

rithm, IBeta method and Vote Aggregation method reach 0.910, 0.897 and 0.879, respectively.

When ρ = 0.2 in the malicious rating attack case, the τ of the EigenRank algorithm, IBeta

method and Vote Aggregation method could reach 0.656, 0.610 and 0.561, respectively. The

results imply that the EigenRank algorithm measures the user reputation and object quality

more accurately than the IBeta method and Vote Aggregation method.

Results for empirical networks

Furthermore, we explore the ranking performance of the EigenRank algorithm compared with

the IBeta method and Vote Aggregation method via two empirical data sets which contain
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ratings given from users to movies: MovieLens and Netflix. The MovieLens data is down-

loaded from the GroupLens (http://www.grouplens.org), and the Netflix data is provided from

the Netflix Prize (http://www.netflixprize.com). Both of two empirical data sets are extracted

from the original data and have 1000209 and 824802 ratings for the MovieLens and Netflix

data set, respectively. Each user has at least 20 ratings and the ratings in the two data sets

belong to {1, 2, 3, 4, 5}, in which rating 5 represents liking best and rating 1 indicates liking

least. Table 2 characterizes some basic statistical properties of the two data sets.

In the empirical networks, distorted ratings (random/malicious case) are also assumed to

exist, similar to the synthetic networks. The artificial spammers in two empirical networks are

generated with two kinds of attacks separately: random rating attack and malicious rating

Fig 1. (Color online) AUCs and τ of the EigenRank algorithm, IBeta method and Vote Aggregation method for the synthetic networks: (a, b) in the random rating

attack case when |E| = 7.2 × 105; (c, d) in the malicious rating attack case when |E| = 7.2 × 105; (e, f) in the random rating attack case when |E| = 1.08 × 106; (g, h) in

the malicious rating attack case when |E| = 1.08 × 106. The parameter ρ denotes the ratio of random/malicious ratings. It can be seen that both the AUCs and τ of the

EigenRank algorithm exceed their counterparts in the IBeta method and Vote Aggregation method with different ρ and |E|. The results are averaged over 50 independent

realizations. The error bars are the corresponding standard deviations.

https://doi.org/10.1371/journal.pone.0274567.g001
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attack. In both cases, we randomly select some users and assign them distorted ratings: ran-

domly from {1, 2, 3, 4, 5} in the former case; half chance rating 1 and half chance rating 5 in

the latter case. The ratio of spammers is q and the activity of spammers is p. For the empirical

data sets, we randomly select q|U| users as the spammers, and then assign p|O| distorted ratings

to each spammer [24]. If the degree ki of a selected spammer i is greater than p|O|, we ran-

domly distort his/her p|O| ratings, then truncate the remaining ki − p|O| ratings. Otherwise,

we distort all the spammers’ ratings, then randomly select p|O| − ki of his/her non-rated objects

and give them distorted ratings.

The AUC curve [32] is again used to characterize the ranking performance of the Eigen-

Rank algorithm for the empirical networks. We introduce another index, recall [34]. To calcu-

late the AUC values, we set the spammers and non-spammers as benchmark and non-

benchmark, respectively. We conduct n0 times independent comparisons of pairs of users:

each pair consisting of a spammer and a non-spammer, chosen randomly. Denote n0
1

the num-

ber of chances that the spammer has lower reputation than the non-spammer, and n0
2

the num-

ber of chances that the two selected users have equal reputation. The AUC value is expressed

as

AUCe ¼
2n0

1
þ n0

2

2n0
; ð16Þ

where the parameter n0 = 1 × 109 in the experiments, as we did in the experiments for synthetic

networks. The higher is the AUC value, the more accurate is the ranking of user reputation.

The recall measures to what extent the spammers can be actually identified in the L-lowest

reputation users,

RcðLÞ ¼
d0ðLÞ
qjUj

; ð17Þ

where d0(L) is the number of identified spammers in the L-lowest reputation users and L = q|

U|. It’s noted that d0(L) < q|U| and Rc(L) 2 [0, 1]. Higher Rc(L) indicates more accurate reputa-

tion ranking list, and vice versa.

Fig 2(a) and 2(d) shows the AUC values AUCe and recall Rc(L) of the EigenRank algorithm

with different (p, q) in the random rating attack case for the MovieLens data set, and Fig 2(b),

2(c), 2(e) and 2(f) shows ΔAUCe and ΔRc(L), the comparison of AUC values and recall between

the EigenRank algorithm and IBeta method/Vote Aggregation method. From Fig 2(a) and 2

(d) one sees that AUCe of the EigenRank algorithm are mainly determined by p, the activity of

spammers, while Rc(L) depends mainly on q, the ratio of spammers. Fig 2(b), 2(c), 2(e) and 2

(f) reveals that ΔAUCe and ΔRc(L) are all positive values, implying that the AUC value of the

EigenRank algorithm is larger than that of the IBeta method and Vote Aggregation method for

each (p, q), and so it is with recall Rc(L). For instance, AUCe = 0.977673, ΔAUCe = 0.05542

(compared to IBeta method) and Rc(L) = 0.89777, ΔRc(L) = 0.127881 (compared to IBeta

method) when (p, q) = (0.1, 0.3). The effectiveness of the EigenRank algorithm with different

Table 2. Basic statistical properties of the empirical data sets used in this paper. |U|, |O| and |E| denote the cardinality of users, objects and ratings, respectively. hkUi
and hdOi are the average degree of users and objects, respectively. η records the network sparsity.

Data Sets |U| |O| |E| hkUi hdOi η

MovieLens 6040 3706 1000209 166 270 0.0447

Netflix 10000 6000 824802 82 137 0.0137

https://doi.org/10.1371/journal.pone.0274567.t002

PLOS ONE A converging reputation ranking iteration method

PLOS ONE | https://doi.org/10.1371/journal.pone.0274567 October 3, 2022 8 / 13

https://doi.org/10.1371/journal.pone.0274567.t002
https://doi.org/10.1371/journal.pone.0274567


(p, q) in the malicious rating attack case for the MovieLens data set are shown in Fig 3. The

results are similar to those in Fig 2.

For the Netflix data set, Figs 4 and 5 show the effectiveness of the EigenRank algorithm in

the random and malicious rating attack cases, respectively. One also observes that both the

Fig 2. (Color online) The effectiveness of the EigenRank algorithm under random rating attack for the MovieLens data set: (a)

the AUC values AUCe; (b-c) ΔAUCe, the comparison of AUCe between EigenRank algorithm and IBeta method (b), Vote

Aggregation method (c); (d) the recall Rc(L); (e-f) ΔRc(L), the comparison of recall between EigenRank algorithm and IBeta

method (e), Vote Aggregation method (f). The parameters q and p denote the ratio and the activity of spammers, respectively. q
ranges from 0.025 to 0.5 in increments of 0.025 and p ranges from 0.01 to 0.2 in increments of 0.01. One observes both the AUCe and

Rc(L) of the EigenRank algorithm exceed the ones obtained by the IBeta method and Vote Aggregation method for different (p, q).

https://doi.org/10.1371/journal.pone.0274567.g002

Fig 3. (Color online) The effectiveness of the EigenRank algorithm under malicious rating attack for the MovieLens data set:

(a) the AUC values AUCe; (b-c) ΔAUCe, the comparison of AUCe between EigenRank algorithm and IBeta method (b), Vote

Aggregation method (c); (d) the recall Rc(L); (e-f) ΔRc(L), the comparison of recall between EigenRank algorithm and IBeta

method (e), Vote Aggregation method (f). The parameters q and p denote the ratio and the activity of spammers, respectively. q
ranges from 0.025 to 0.5 in increments of 0.025 and p ranges from 0.01 to 0.2 in increments of 0.01. One observes that both the AUCe
and Rc(L) of the EigenRank algorithm exceed their counterparts in the IBeta method and Vote Aggregation method for different (p,

q).

https://doi.org/10.1371/journal.pone.0274567.g003
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AUC values and recall of the EigenRank algorithm are larger than their counterparts in the

IBeta method and Vote Aggregation method with different pair (p, q) under the random/mali-

cious rating attack case. For example, AUCe = 0.908, ΔAUCe = 0.144 (compared to Vote Aggre-

gation method) and Rc(L) = 0.724, ΔRc(L) = 0.274 (compared to Vote Aggregation method)

Fig 4. (Color online) The effectiveness of the EigenRank algorithm under random rating attack for the Netflix data set: (a) the

AUC values AUCe; (b-c) ΔAUCe, the comparison of AUCe between EigenRank algorithm and IBeta method (b), Vote

Aggregation method (c); (d) the recall Rc(L); (e-f) ΔRc(L), the comparison of recall between EigenRank algorithm and IBeta

method (e), Vote Aggregation method (f). The parameters q and p denote the ratio and the activity of spammers, respectively and L
= q|U|. q ranges from 0.015 to 0.3 in increments of 0.015 and p ranges from 0.005 to 0.1 in increments of 0.005. One observes that

both the AUCe and Rc(L) of the EigenRank algorithm exceed those of the IBeta method and Vote Aggregation method for different

(p, q).

https://doi.org/10.1371/journal.pone.0274567.g004

Fig 5. (Color online) The effectiveness of the EigenRank algorithm under malicious rating attack for the Netflix data set: (a) the

AUC values AUCe; (b-c) ΔAUCe, the comparison of AUCe between EigenRank algorithm and IBeta method (b), Vote

Aggregation method (c); (d) the recall Rc(L); (e-f) ΔRc(L), the comparison of recall between EigenRank algorithm and IBeta

method (e), Vote Aggregation method (f). The parameters q and p denote the ratio and the activity of spammers, respectively and L
= q|U|. q ranges from 0.015 to 0.3 in increments of 0.015 and p ranges from 0.005 to 0.1 in increments of 0.005. It can be seen that

both the AUCe and Rc(L) of the EigenRank algorithm are larger than their counterparts in the IBeta method and Vote Aggregation

method for different (p, q).

https://doi.org/10.1371/journal.pone.0274567.g005
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when (p, q) = (0.005, 0.3) in Fig 4; AUCe = 0.915, ΔAUCe = 0.024 (compared to IBeta method)

and Rc(L) = 0.658, ΔRc(L) = 0.081 (compared to IBeta method) when (p, q) = (0.05, 0.21) in Fig

5; The results for empirical networks (Figs 2–5) indicate that the EigenRank algorithm is of

better accuracy and robustness than IBeta method and Vote Aggregation method in the rating

attack cases.

Conclusion and discussions

In this paper we present an iterative reputation and quality ranking algorithm via the eigenvec-

tor, called the EigenRank algorithm, where the user reputation and object quality are interde-

pendent and the user reputation converges to a unique stationary ranking (the eigenvector

corresponding to the largest eigenvalue of a certain matrix). In addition, we prove the conver-

gence of EigenRank algorithm, and analyse its speed of convergence. Moreover, we explore the

ranking performance of the EigenRank algorithm for the synthetic and empirical networks

compared with the IBeta method and Vote Aggregation method. For the synthetic networks,

the results indicate that the AUC values and Kendall’s τ of the EigenRank algorithm exceed the

ones obtained from the IBeta method and Vote Aggregation method with different propor-

tions of random/malicious ratings. The results for the empirical networks show that the Eigen-

Rank algorithm is of better accuracy and robustness than the IBeta method and Vote

Aggregation method in the random and malicious rating attack cases. This work provides a

ranking without uncertainty for the user reputation identification.

In future, we will examine the convergence of other reputation ranking algorithms. More-

over, the rating time is an important attribute of ratings, and presenting new reputation rank-

ing method considering time factor is worthy of further investigation. Consequently, we will

concentrate on searching for more accurate and robust reputation ranking algorithms which

are absured to estimate the user reputation.
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