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Human β-defensin 3 has received great interest for possible pharmaceutical applications. To characterize the biology of this
antimicrobial peptide, the mouse β-defensin 14 has been selected as a prototypical model. This report provides definite evidence
of true orthology between these defensins and reveals molecular diversity of a mammalian specific domain responsible for their
antimicrobial activity. Specifically, this analysis demonstrates that eleven amino acid residues of the antimicrobial domain have
been mutated by positive selection to confer protein niche specialization. These data support the notion that natural selection acts
as evolutionary force driving the proliferation and diversification of defensins and introduce a novel strategy for the design of more
effective antibiotics.
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1. Introduction

A variety of antimicrobial peptides are produced by animals
and plants as elemental components of their defense system
to combat infectious microbes, including bacteria, fungi,
viruses, and protozoa [1]. Among this antimicrobial protein
repertoire, defensins are the most efficient and ancient
components of host defense [2]. Recent analyses indicated
that the cysteine-stabilized α-helical and β-sheet protein fold
characteristic of the defensin family originated before the
emergence of eukaryotes [3]. Even though defensins have an
ancient origin, the majority of microbial pathogens have not
developed highly effective mechanisms of resistance against
these antimicrobial compounds [1, 2]. Antimicrobial resis-
tance to defensins have been observed in some pathogens
[4]; however, it has been proposed that the production
of antimicrobial peptides and mechanisms of resistance
have coevolved at similar rate, generating a niche specific
transitory stage for host-pathogen balance, and this scenario
has shaped the existing defensin repertoire [2, 5, 6]. To this
end, the understanding of the evolutionary forces driving

this molecular process should facilitate the design of more
effective antibiotics.

Among all these antimicrobial peptides, human
β-defensin 3 (DEFB103A) has received the most interest for
possible pharmaceutical applications [7, 8]. This protein
exhibits not only a broad-spectrum antibacterial effect
[9] but also other important biological functions such
as chemoattraction of immune cells [7] and initiation of
remodeling processes in articular cartilage [10]. To identify
and functionally characterize the role of DEFB103A peptide
in host-microbe interactions, the putative homologous
protein, the mouse β-defensin 14 (DEFB14) has been
selected as a prototypical model [11–13]. Human DEFB103A
and mouse DEFB14 carry the highest number of cationic
charges (+11 and +12, resp.) of all β-defensins (BDEFs) [11].
The DEFB14 gene is constitutively expressed in epithelial
cells of eye, tongue, trachea, esophagus, thymus, lung, liver,
small intestine, spleen, testis, epididymis, and dendritic cells
[11, 12].

The present report reveals the precise orthologous rela-
tionship between β-defensin 3 and homologous peptides and
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provides new insights into the protein niche specialization
of these antimicrobial proteins. These findings provide
important molecular bases for the design of more effective
antibiotics.

2. Materials and Methods

2.1. Identification and Analysis of β-Defensin 3 Ortholo-
gous Groups. The widely used approach of reciprocal (bi-
directional) best hits (RBH) [14, 15] was implemented for
constructing related orthologous groups of DEFB103A and
DEFB14 across multiple eukaryotic taxa. BLASTP analysis
[16] was used to back-search amino acid sequences against
well-annotated and -curated protein sequences from the
RefSeq database (NCBI Reference Sequence Project). Protein
sequences from this orthologous group were aligned using
the M-Coffee software, a metamethod for assembling multi-
ple sequence alignments [17]. Jalview software analysis [18]
was used to estimate degree of conservation and consensus
between all protein sequences. Then, the protein alignments
were used for phylogenetic tree reconstruction using the
maximum parsimony method [19] with the PAUP∗ 4.0 b10
program [20]. The statistical significance of branch order was
estimated by the generation of 1000 replications of bootstrap
resampling of the originally-aligned amino acid sequences.

2.2. Evolution of β-Defensin 3 in the Eutheria–Metatheria
Clade. Because the identification of domains that occur
within proteins can provide insights into their function
[21, 22], the identification of conserved domains in protein
sequences of the Eutheria–Metatheria BDEF3 (hereafter
mammalian BDEF3) clade was analyzed. Pfam algorithm
[23, 24] was used for the identification of conserved domains
within the predicted mammalian BDEF3 orthologous group.
Protein sequences of the mammalian BDEF3 orthologous
group were aligned using the M-Coffee software and
phylogenetic tree reconstruction by means of maximum
parsimony was performed as described above.

2.3. Assessment of Protein Niche Specialization in the Mam-
malian BDEF3 Clade. To examine the likelihood of pro-
tein niche specialization in the mammalian BDEF3 clade,
homologous proteins were aligned using the M-Coffee
software and Jalview was used to identify the twenty-three
residues, FLPKTLRKFFCRIRGGRCAVLNC, responsible for
the antimicrobial activity [7, 8, 11]. This antimicrobial-
domain was retrieved from each mature peptide region of
proteins included in the mammalian BDEF3 orthologous
group, and divergence of amino acid residues was analyzed
by generating sequence logos [25]. To confirm the specificity
of this antimicrobial-domain among the mammalian BDEF3
lineage, RBH was performed to identify other peptides
containing this domain. BLASTP analysis was used to back-
search amino acid sequences against the RefSeq database.
In addition, site-specific synonymous and nonsynonymous
substitution rate was estimated by maximum likelihood-
based methods [26] for identification of residues subject to
positive selection.

3. Results

3.1. Identification and Analysis of β-Defensin 3 Orthologous
Group. Fifty-six BDEF protein sequences were obtained in
the construction of DEFB103A and DEFB14 orthologous
groups. This dataset enclosed protein sequences of BD1,
-2, -3, and -4 across different taxa (Figure 1). Phylogenetic
analysis using the maximum parsimony identified seven
major BDEF clades: (I) rat-mouse BDEF38, (II) Eutheria–
Metatheria BDEF3, (III) horse BDEF, (IV) cow BDEF, (V)
primate BDEF4, (VI) rat-mouse BDEF4 and (VII) rat-mouse
BDEF2 (Figure 1). Moreover, alignment and analysis of the
BDEF proteins confirmed the conservation of the canonical
six-cysteine motif in the BDEF orthologous group (Figure 2).

3.2. Evolution of β-Defensin 3 in the Eutheria–Metatheria
Clade. To gain some insights into protein function of the
mammalian BDEF3, the identification of conserved domains
was performed with the Pfam algorithm [23, 24]. All
proteins enclosed in the mammalian BDEF3 clade contained
the structural components of the β-defensin domain (data
not shown). Moreover, phylogenetic analysis revealed that
protein similarity is greater among closely related species and
identified primate-, ungulate-, cow-, and rodent-BDEF3 pro-
tein clusters (Figure 3). Interestingly, when cationic charges
were estimated for each amino acid sequence, it was found
that charges are similar within proteins of the primate-,
ungulate-, cow-, and rodent-BDEF3 clusters (+12.2, +12 and
+11, +10.7, +12; resp.).

3.3. Assessment of Protein Niche Specialization in the Mam-
malian BDEF3 Clade. To gain some insights into the
molecular basis for protein niche specialization of mam-
malian BDEF3, antimicrobial-domains were retrieved from
each mature peptide region of proteins included in the
mammalian BDEF3 orthologous group (Figure 4). Then,
sequence logos were generated for each antimicrobial-
domain identified (Figure 5). These analyses demonstrate
that eleven out of twenty-three residues in the antimicrobial-
domain are highly variable across the mammalian BDEF3
clade (Figures 4 and 5). Moreover, primate-, ungulate-,
cow-, and rodent-BDEF3 clusters show different amino acid
residue variation (Figure 5). To confirm the specificity of
this antimicrobial-domain among the mammalian lineage,
the amino acid residues contained in the antimicrobial
domain were subject to RBH analysis with BLASTP algo-
rithm against the RefSeq database. This analysis confirmed
that this antimicrobial domain is a particular attribute
of the mammalian BDEF3 clade. This unusual pattern is
evidence of natural selection acting on the diversification
of BDEFs and supports the idea of mammalian BDEF3
niche specialization. To confirm this notion, site-specific
synonymous and nonsynonymous substitution rates were
estimated by maximum likelihood-based methods [26] for
the identification of residues subject to positive selection.
This analysis demonstrates that eleven amino acid residues
of the antimicrobial domain have been mutated by positive
selection to confer BDEF3 niche specialization (Figure 5).
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I

II

III

IV

V

VI

VII

BD1 Cow XP 001250854
BD2 2 Cow XP 001250868
BD2d Cow XP 001256769
BD2f Cow XP 001250120
BD2c Cow XP 001250025
BD2e Cow XP 001250915
BD2a Cow XP 001249669
BD2 Cow XP 873295
BD1 Cow XP 001253813

BD2 Pig NP 999607
BD1 Dog XP 853973

BD9 Chicken NP 001001611
BD1 Pig NP 999003
BD102 Dog NP 001107187
BDX Horse XP 001494004

BD1 Human NP 005209
BD1 Macaque NP 001028029

97

BD1 Mouse NP 031869
BD1 Rat NP 113998

98

BD37 Mouse NP 859011
BD39 Rat NP 001032611

BD38 Mouse NP 898857
BD38 Rat NP 001032641

67
52

77

BD130 Horse XP 001493281
BD41 Rat NP 001032615

96

BD103 Opossum XP 001381623
BD103 Chimp XP 001135093
BD103 Human NP 061131

87

BD14 Mouse NP 898847
BD14 Rat NP 001032593

97

BD103 Cow NP 001108334
BD300 Cow XP 001253864

91

BD103 Horse XP 001493674
BD3 Pig NP 999609

55

51

63

BD2 Horse XP 001493721
BD1 Horse NP 001075356
BD3 Horse XP 001493695

74
74

BD10 Cow NP 001108556
BD1 Cow NP 783634
BDX t Cow NP 777201
BDX L Cow NP 982259

BD7 Cow NP 001095832
BD8 Cow NP 001095833

94

58

BD4 Macaque NP 001027999
BD4 Chimp NP 001009076
BD4 Human NP 004933

56
99

BD3 Mouse NP 038784
BD4 Rat NP 071989
BD5 Rat NP 001032638
BD3 Rat NP 001032637
BD4 Mouse NP 062702
BD8 Mouse NP 694748
BD6 Mouse NP 473415

52

BD2 Rat NP 001032596
BD10 Rat NP 001032599
BD2 Mouse NP 034160

71
72

51

55

84

Figure 1: Phylogenetic tree of β-defensin orthologous groups. Maximum parsimony tree with bootstrap confidence levels based on protein
sequences from the animal kingdom. Protein identifications correspond to β-defensin (BD) type, species, and accession number as reported
by the RefSeq database. Seven major β-defensin clades are indentified: (I) rat-mouse BDEF38, (II) Eutheria–Metatheria BDEF3, (III) horse
BDEF, (IV) cow BDEF, (V) primate BDEF4, (VI) rat-mouse BDEF4 and (VII) rat-mouse BDEF2. These results indicate that β-defensin has
undergone niche specialization.
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BDX_t_Cow_NP_777201
BDX_L_Cow_NP_982259
BDX_Horse_XP_001494004
BD9_Chicken_NP_001001611
BD8_Mouse_NP_694748
BD8_Cow_NP_001095833
BD7_Cow_NP_001095832
BD6_Mouse_NP_473415
BD5_Rat_NP_001032638
BD4_Rat_NP_071989
BD4_Mouse_NP_062702
BD4_Macaque_NP_001027999
BD4_Human_NP_004933
BD4_Chimp_NP_001009076
BD41_Rat_NP_001032615
BD3_Rat_NP_001032637
BD3_Pig_NP_999609
BD3_Mouse_NP_038784
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BD39_Rat_NP_001032611
BD38_Rat_NP_001032641
BD38_Mouse_NP_898857
BD37_Mouse_NP_859011
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BD2f_Cow_XP_001250120
BD2e_Cow_XP_001250915
BD2d_Cow_XP_001256769
BD2c_Cow_XP_001250025
BD2a_Cow_XP_001249669
BD2_Rat_NP_001032596
BD2_Pig_NP_999607
BD2_Mouse_NP_034160
BD2_Horse_XP_001493721
BD2_Cow_XP_873295
BD2_2_Cow_XP_001250868
BD1_Rat_NP_113998
BD1_Pig_NP_999003
BD1_Mouse_NP_031869
BD1_Macaque_NP_001028029
BD1_Human_NP_005209
BD1_Horse_NP_001075356
BD1_Dog_XP_853973
BD1_Cow_XP_001253813
BD1_Cow_XP_001250854
BD1_Cow_NP_783634
BD14_Rat_NP_001032593
BD14_Mouse_NP_898847
BD130_Horse_XP_001493281
BD10_Rat_NP_001032599
BD10_Cow_NP_001108556
BD103_Opossum_XP_001381623
BD103_Human_NP_061131
BD103_Horse_XP_001493674
BD103_Cow_NP_001108334
BD103_Chimp_XP_001135093
BD102_Dog_NP_001107187

100 110 120

Figure 2: Conservation of the canonical six-cysteine motif in β-defensin orthologous groups. Multiple sequence alignment of complete
β-defensin amino acid sequences was performed. Conserved cysteines in the mature peptide region are highlighted in red. Aligned residue
position is indicated above the sequence. Only a fragment of the mature peptide region is shown.
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BD103 Opossum XP 001381623

BD103 Horse XP 001493674

BD3 Pig NP 999609

BD103 Chimp XP 001135093

BD103 Human NP 061131

BD14 Mouse NP 898847

BD14 Rat NP 001032593

83

57

BD103 Cow NP 001108334

BD300 Cow XP 001253864

56

100

Figure 3: Phylogenetic tree of mammalian BDEF3 orthologous group. Maximum parsimony tree with bootstrap confidence levels based on
protein sequences of mammals. Primate-, ungulate-, cow-, and rodent-BDEF3 clusters were identified. Protein charges are similar within
sequences of each BDEF3 cluster (+12.2, +12 and +11, +10.7, +12, resp.). These results demonstrate that mammalian BDEF3 undergoes
niche specialization during protein evolution.

605040302010
KKKRCCKRRGLSCTGINEEKSTCRIFRCRGQRVKCYMNNIRELLWSEGPAPVLFLFFFFFLLYHIRM
KKRRCCKRGRTSCKGIQEEKPLCTLVACRGGRVRCYYKQLTNIIGGHGPVPVLFLFLLAFLLYHIRM
KKRRCCKRGRTSCKGIQEEKPLCSLVACRGGRVRCYYKQLTNIIGGHGPVPVLFLFLLAFLLYHIRM
KKKRCCKRGSLSCRGIQEEKPLCGILACRGSRIKCYYRQLGSIIGGNGPVPLLFLFLLAFLLYYLRM
KKKRCCKRGRLSCRGIQEEKPLCGILACQGSRIKCYYKQLGSIISGNGPVPLLFLFLLAFLLYYLRM
KKKRCCKRGSVSCSGIQEEKPLCGLLACRGKRIKCYSKQLMNIIGGNGPVPMLFLFLLAFLLFHIRM
KRKRCCKRGSVSCSGIQEEKPLCGLVACRGRRIKCYYRQLTNIIRGNGPLPMLFLFLLAFLLYHIRM
KKKRCCKRGSNSCRGIQEEKGLCNLVACRGGRIRCFFKRLTKPLFADGPAPVLFLILFVFLLYHLRM
KKKRCCKQGRNSCRGIQEEKGLCNLIACRGGRVRCFFRRLSKPIFTDGPAPVLFLILFVFLLYHLRM

BD103_Opossum_XP_001381623
BD103_Chimp_XP_001135093
BD103_Human_NP_061131
BD103_Cow_NP_001108334
BD300_Cow_XP_001253864
BD103_Horse_XP_001493674
BD3_Pig_NP_999609
BD14_Mouse_NP_898847
BD14_Rat_NP_001032593

2010

CRIFRCRGQRVKCYMNNIRELLW
CTLVACRGGRVRCYYKQLTNIIG
CSLVACRGGRVRCYYKQLTNIIG
CGILACRGSRIKCYYRQLGSIIG
CGILACQGSRIKCYYKQLGSIIS
CGLLACRGKRIKCYSKQLMNIIG
CGLVACRGRRIKCYYRQLTNIIR
CNLVACRGGRIRCFFKRLTKPLF
CNLIACRGGRVRCFFRRLSKPIF

BD103_Opossum_XP_001381623
BD103_Chimp_XP_001135093
BD103_Human_NP_061131
BD103_Cow_NP_001108334
BD300_Cow_XP_001253864
BD103_Horse_XP_001493674
BD3_Pig_NP_999609
BD14_Mouse_NP_898847
BD14_Rat_NP_001032593

Figure 4: Mammalian specific antimicrobial domain. Proteins were aligned and the twenty-three residue antimicrobial-domain was
localized (boxed sequence, top alignment) and retrieved (bottom alignment) from each mature peptide. These data reveals the divergence of
amino acid residue in β-defensin 3 and homologous peptides.
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Figure 5: Sequence logos generated for each antimicrobial-domain showing the divergence of amino acid residue in β-defensin 3 and
homologous peptides. Red arrows show amino acids subject to positive selection. Primate-, ungulate-, cow-, and rodent-BDEF3 clusters
have different amino acid residue variations. This analysis demonstrates that eleven amino acid residues of the antimicrobial domain have
been mutated by positive selection to confer BDEF3 niche specialization.

4. Discussion

In an effort to improve our understanding of the molecular
basis regarding the mechanism of action of BDEF and
facilitate the design new therapeutic agents, the present study
examines the evolution of β-defensin 3 and its antimicrobial-
domain. Herein, the phylogenetic analysis of the BDEF pro-
tein family across multiple species provides definite evidence
of true orthology between human DEFB103A and mouse
DEFB14. Moreover, it is revealed that positive selection has
acted to diversify defensins and that mammalian BDEF3
undergoes niche specialization during protein evolution.

The nomenclature of BDEF proteins is complicated.
Defensins have been annotated sequentially on discovery,
and in some instances, orthologous proteins receive the
same number [27]. However, there are cases such as human
DEFB103A and mouse DEFB14, in which orthologous rela-
tionships are not so obvious. In the present study, the phy-
logenetic analysis of the BDEF protein family across multiple
species identified seven major BDEF clades and established
orthologous relationships among these proteins. For exam-
ple, the Eutheria–Metatheria clade is comprised by human,
chimp, and cow DEFB103A; mouse and rat DEFB14; and
cow, horse, and pig BDEF3 proteins. Moreover, the phylo-
genetic analysis confirmed the conservation of the canonical
cysteine motif (X2-10CX5-6G/AXCX3-4CX9-13CX4-7CCXn) in

the defensin family [27]. Disulphide bridges generated
between these conserved cysteines confer more resistance
to bacterial proteolysis, even though the disulphide bridges
are not essential for the antimicrobial activity [2, 7, 28, 29].
These results demonstrate that β-defensins likely evolved to
encode similar functions among eukaryotic taxa but these
protein sequences have undergone niche specialization.

In the present study, protein niche specialization of
mammalian BDEF3 is supported by at least three molec-
ular bases. First, phylogenetic analysis of proteins from
mammalian BDEF3 clade identified primate-, ungulate-,
cow-, and rodent- protein clusters within the mammalian
BDEF3 clade. It was also found that proteins of each BDEF3
cluster have similar cationic charges. Second, analysis of
amino acid residues of the antimicrobial-domain [7, 8, 11]
revealed that this protein domain is a particular attribute
of the mammalian BDEF3 clade. Third, it was found that
eleven out of twenty-three residues in the antimicrobial-
domain are highly variable across the mammalian BDEF3
clade and that these amino acids have been mutated by
positive selection to confer BDEF3 niche specialization. A
similar evolutionary scenario was determined for clusters of
mammalian α-defensins [30] and other β-defensins [31, 32].

It can be hypothesized that the selection pressures on
the evolution of defensins might have occurred to preserve
an adaptive phenotype, increase functional divergence, and



Comparative and Functional Genomics 7

enhance microbe killing efficiency [27, 31]. In fact, it was
demonstrated that amino acid substitutions at sites subject
to positive selection increase the antimicrobial activity of
BDEFs against bacterial pathogens [33]. Accordingly, it was
suggested that positive selection at particular residues is
involved in directing a new antimicrobial response against
specific pathogens [33]. The value of these observations for
biomedical research is also established by the elegant study
by Antcheva et al. [34]. These authors demonstrated that
the increase in antimicrobial activity of two homologous
β-defensin 2 (human and macaque) is caused by amino acid
residues subject to positive selection [34].

Together, these data are consistent with the notion that
natural selection acts as evolutionary force driving the
proliferation and diversification of defensins. Indeed, these
results strongly support the hypothesis that BDEFs niche
specialization is caused by host-pathogen coevolution [2, 31,
35]. Thus, this information has potential for the structure-
guide design of novel antimicrobial peptides.

In summary, this report indicates that the production of
antimicrobial peptides is a response to pathogen diversity
and their coevolution generates niche specialization for
maintaining a host-pathogen balance. These data support
the notion that natural selection acts as evolutionary force
driving the proliferation and diversification of defensins and
introduce a novel strategy for the design of more effective
antibiotics.
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