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Abstract: In magnetic resonance imaging (MRI), epicardial adipose tissue (EAT) overload remains
often overlooked due to tedious manual contouring in images. Automated four-chamber EAT
area quantification was proposed, leveraging deep-learning segmentation using multi-frame fully
convolutional networks (FCN). The investigation involved 100 subjects—comprising healthy, obese,
and diabetic patients—who underwent 3T cardiac cine MRI, optimized U-Net and FCN (noted
FCNB) were trained on three consecutive cine frames for segmentation of central frame using dice
loss. Networks were trained using 4-fold cross-validation (n = 80) and evaluated on an independent
dataset (n = 20). Segmentation performances were compared to inter-intra observer bias with dice
(DSC) and relative surface error (RSE). Both systole and diastole four-chamber area were correlated
with total EAT volume (r = 0.77 and 0.74 respectively). Networks’ performances were equivalent to
inter-observers’ bias (EAT: DSCInter = 0.76, DSCU-Net = 0.77, DSCFCNB = 0.76). U-net outperformed
(p < 0.0001) FCNB on all metrics. Eventually, proposed multi-frame U-Net provided automated EAT
area quantification with a 14.2% precision for the clinically relevant upper three quarters of EAT area
range, scaling patients’ risk of EAT overload with 70% accuracy. Exploiting multi-frame U-Net in
standard cine provided automated EAT quantification over a wide range of EAT quantities. The
method is made available to the community through a FSLeyes plugin.

Keywords: epicardial adipose tissue quantification; automatic segmentation; cine four-chamber; fully
convolutional networks; machine learning

1. Introduction

Epicardial adipose tissue (EAT) is a visceral fat depot surrounding the heart between
the myocardium and the pericardium [1]. Its volume quantification holds potential as
a novel biomarker for risks of coronary heart disease [2]. Pericardial fat, merging EAT
and paracardial (PAT) fat, has been studied in the past in association with atherosclerotic
disease [3] but these results have since been heavily criticized [4]. The inclusion of two
fat depots as one single entity may not reflect the separate functions and clinical impli-
cations of each adipose tissue. Indeed, recent studies focusing on separating EAT and
PAT concluded that EAT alone was involved in the corresponding disease [5,6]. Indeed,
EAT is a metabolically active adipose tissue [1] compared to PAT. Its accumulation and
subsequent inflammation add to cardiovascular risks, potentially impacting left ventricle
(LV) diastolic dysfunction [7,8]. Even more recently, EAT overload has raised concern as a
risk factor in generalized inflammation from COVID-19 [9,10]. It is now recognized that
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the amount of EAT is prospectively and independently associated with the number of
coronary events in at-risk populations [11]. Consequently, reproducibly quantifying EAT
is a major public health objective aiming at a better identification of patients at high CV
risk. EAT can indeed be visualized from standard cardiac magnetic resonance imaging
(MRI) images, but its analysis is currently not performed in clinical routine, because the
necessary manual image segmentation is extremely time-consuming, and its measurement
is not sufficiently standardized.

Different imaging modalities have been proposed to quantify EAT burden. Transtho-
racic echocardiography, a forefront modality in cardiology, was used to measured EAT
thickness on the free wall of the right ventricle [12]. However, only a single distance mea-
surement was used to estimate EAT volume, strongly limiting the precision of this method
because EAT is irregularly distributed around the heart. Cardiac computed tomography
(CCT) imaging has become the gold standard for the quantification of EAT volume [13]. In
more recent studies, semi-automatic and deep learning methods have been implemented to
achieve the EAT segmentation [14,15]. However, the requirement of high spatial resolution
CCT led to the use of elevated ionizing radiation doses, which could be a risk for patients’
follow-up.

Cardiac MRI is a versatile tool than can measure cardiac function, morphology, perfu-
sion and characterizes myocardial tissue in a single exam [16]. Cardiac MRI is also highly
sensitive to fat, which has long been considered as an obstacle for myocardial visualization.
Cardiac fat remains under-appreciated as a diagnostic feature of cardiac MRI. To specifically
probe fat around the beating heart with MRI, one can use a dedicated acquisition technique
such as water-suppressed MRI [17] or Dixon MRI (3D) [18,19]. Alternatively, EAT volume
may also be measured from a routine stack of short-axis cine images [20]. EAT quantifica-
tion is usually performed manually, which is a time-consuming and tedious task subjected
to inter-observer variability. To help observers, first the cine temporal information could
ease distinguishing EAT from paracardial fat. Indeed, EAT is attached to the myocardium
and moves at pace with cardiac contraction and torsion, whereas PAT is only moderately
pulled by the cardiac contraction and expansion. Second, while the pericardial fascia is
not clearly visible on short axis views, which was often reduced to a thin line that may
be blurred by partial volume effects, on four-chamber (4Ch) views, the pericardium is
generally less affected by partial volume effects resulting in better visualization. As such,
the four-chamber view is recommended for evaluating pericarditis [21] and is a frequent
choice of orientation to quantify EAT, PAT, and pericardial fat [22–27]. Consequently, the
EAT analysis in this study were based on quantification of its 2D area representation in 4Ch
long-axis cine MRI views. To address specifically this kind of segmentation challenges, deep
learning approaches have recently bloomed. Indeed, fully automated methods applied on
routine images, such as cine MRI, could be rapidly translated to the clinics. Bard et al. [23]
developed a deep learning method to quantify pericardial fat in 4Ch long-axis cine MRI
and evaluated it on the UK BioBank dataset. However, the segmentation of pericardial fat
(EAT + PAT) limits the evaluation of the distinct roles and clinical implications of epicardial
fat compared to paracardial fat.

Thus, we propose here to segment the thin EAT area on 4Ch cine MRI multi-frame
images using state-of-the-art fully convolutional networks (FCNs) for cardiac image seg-
mentation, that were adapted to segment EAT, PAT, and cardiac ventricles. A specific
database of 4Ch cine MRI spanning diabetic, obese, and healthy subjects was leveraged to
train, validate, and evaluate proposed FCN networks.

2. Materials and Methods
2.1. Study Population

A retrospective mono-centric database was defined totaling 153 subjects, out of which
100 exams could be exploited. The 100 enrolled subjects including healthy controls, type-2
diabetic patients, and non-diabetic obese patients were selected based on 4Ch orientation
and the absence of severe artifacts as shown in Figure 1.
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Figure 1. Overview of the study design.

Patients were defined as having type 2 diabetes mellitus if they fulfilled any of
the WHO criteria: HbA1c ≥ 6.5%, FBG level ≥ 7.0 mmol/L, oral glucose tolerance test
result ≥ 11.1 mmol/L, or current treatment with antidiabetic agents. Obese non-diabetic
patients were defined as the absence of any WHO criteria and a BMI ≥ 30 kg/m2. All
enrolled subjects had normal left ventricular function, no history of heart failure or coronary
heart disease.

2.2. MRI Acquisition

All subjects underwent cardiac MRI including the acquisition of a full stack of short-
axis slices and a single slice four-chamber cine on a 3-T MRI system (Magnetom Verio,
Siemens Healthineers, Erlangen, Germany) with a dedicated cardiac 32-channel coil ar-
ray (Invivo, Gainesville, FL, USA). The cine series were acquired with a retrospectively
ECG-gated balanced steady-state free precession (bSSFP) sequence with in-plane image
resolution varying from 1.3× 1.3 mm2 to 1.8× 1.8 mm2 (depending on subjects), slice thick-
ness of 6 mm, TE/TR = 1.2/3.2 ms, GRAPPA 2 (24 auto-calibration signal lines), temporal
resolution of 28–35 ms, with 25 frames reconstructed. Further details of the cardiac MRI
protocols were previously described [20,28–31]. N4 bias field correction [32] was applied to
all image series before further processing.

2.3. EAT Segmentation

For reference, EAT volume was segmented by expert readers provided with full stack
short-axis series using Argus viewer (Siemens Medical Solutions, Erlangen, Germany).
In an independent session, two expert readers were provided with full 4Ch series and
performed blinded segmentation of three labels using the FSLeyes viewer [33] (version 0.31,
Paul McCarthy, University of Oxford, UK): heart ventricles (HV) (including both ventricle
muscles and blood pools), epicardial (EAT), and paracardial (PAT) adipose tissues. EAT
was defined as hyperintense signal within the pericardium around the ventricles. Peri-atrial
fat was not included as it has been shown that peri-ventricle EAT alone had a stronger
correlation with coronary diseases than total EAT [26]. All isles of periventricular fat were
included to form EAT area. PAT was defined as fat adjacent but outside the pericardium.
Segmentations were performed on three cardiac phases determined by readers having
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the entire series at their disposal: first phase, peak systole, and late diastole. The three
segmented masks were propagated to the remaining frames using an automatic label
propagation algorithm based on non-linear registrations, as previously described [34]
resulting in 25 images segmented per subjects. Series in the test dataset were segmented by
both readers, and reader 1 repeated blinded segmentations 6 weeks later.

2.4. Network Architecture

Two different fully convolutional networks (FCNs) were investigated: U-Net [35] with
48 filters for the first layer and FCN developed by Bai et al. [36] with 48 filters for the first
layer, later referenced as FCNB. These networks are based on an encoder–decoder structure
but differ in their decoder structure. The encoder part processes an image of arbitrary size
as input and applies convolutional layers for extracting image features while the decoder
upsamples and combines low-resolution featured map to the original input resolution. The
absence of a dense layer allows these networks to process images of various sizes.

The U-Net [35] has been the most popular 2D segmentation network for biomedical
images and a fundamental component of many state-of-the-art cardiac image segmentation
approaches [37–39]. The specificity of the U-Net is to employ skip connections between
encoder and decoder to recover spatial information lost in downsampling layers as shown
in Figure 2.
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Figure 2. Networks’ optimized architecture. The two networks evaluated in this study: U-Net and
fully-convolutional network (FCNB) architectures included a first 3D convolution layer to allow
multiple cardiac frames as input. Following 2D convolution layers encoded images from 48 features
up to 768 features. Eventually, the decoder targeted three labels for segmentation in the central input
frame: epicardial adipose tissue (EAT), paracardial adipose tissue (PAT), and heart ventricles (HV).

The second network investigated is the FCN developed by Bai et al. [36], later referred
to as FCNB. FNCB has demonstrated excellent segmentation performances on the largest
available cardiac MR dataset (UK-Biobank [40] Its specificity is based on the decoder that
only consists of the concatenation of all featured maps, upsampled to the original resolution,
as shown in Figure 2.

In their original papers, the cross-entropy loss was used to train those networks.
However, this loss has shown limits to address class imbalance. In our study, regions of
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interest (ROI) were sparsely represented compared to the background and cross-entropy
loss is inadequate to handle it. Thus, the loss function was defined as the mean dice between
the probabilistic label map without background and the manually annotated label map.

2.5. Training

Specifically, optimized FCNB and U-Net were trained on three consecutive cine frames
for segmentation of the central frame, providing a crucial temporal information often
necessary for the experts to segment EAT. Input images were normalized to the range
of [0,1] with fixed size (256 × 192 × 3), mask zero-padding or cropping was applied
when needed.

For each batch (N = 30), on-the-fly data augmentation was performed using rotational
transformation and/or image scaling before feeding them to the network. Both data aug-
mentation were set using a random clipped normal distribution spanning from −30◦/0.4
up to 30◦/1.6 for rotational transformation and image scaling respectively. The Adam
optimization [41] was used for minimizing the dice loss function with a constant learning
rate of 1e-3. It took approximatively 35 min to train either the U-Net or FCNB on a Graphics
Processing Unit (GPU) (NVidia Tesla K80).

The networks investigated were implemented using Python within the TensorFlow 2
framework. The FCNB model was adapted from the original implementation [42], whereas
U-Net was custom-designed. To adapt to the proposed multi-frame approach, both 2D
networks were modified to accept 2D+t inputs, considering the cardiac time dimension as
a third dimension with limited horizon. Thus, the first convolution layer of each network
was replaced with a 3D convolution layer with valid padding. The following layers were
kept identical, processing extracted features independently of the input dimensions.

To perform a robust evaluation, networks were trained using cross-validation and eval-
uated on an independent dataset: the database was split in five subsets (500 images/20 subjects
each reflecting our database populations distribution: 4 healthy controls, 13 type 2-diabetics,
3 nondiabetic obese patients). One subset (500 images) was used as a test set whereas
the 4 other subsets were used for stratified cross-validation training, resulting in a 4-fold
cross-validation. Thus, a single subset is retained as validation (500 images) whereas the
3 others (1500 images) are used for training, ensuring that validation and training dataset
reflects the database population distribution.

2.6. Evaluation Metrics

Segmentation performances were evaluated for accuracy, propinquity, and surface
estimation error. Dice similarity coefficient (DSC) measured segmentation accuracy from
the overlap between the manual and automatic segmented surfaces (SM and SA), defined as

DSC = 2
SM ∩ SA

SM + SA
(1)

The mean surface distance (MSD) calculated the propinquity between segmentations
as is the mean distance (in mm) between segmented contours, defined as

MSD =
1

nM + nA

((
nM

∑
k=1

d(k, SA)

)
+

(
nA

∑
k=1

d(k, SM)

))
(2)

To evaluate the clinical final purpose, which is the quantitative measurement of EAT
area, absolute relative surface error (RSE) was utilized, defined as

RSE =
|SM − SA|

SM
(3)
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To further assess accuracy, positive predicted value (PPV) which is an indicator of
over-segmentation (PPV << 1) was calculated on the entire database, defined as

PPV =
SM ∩ SA

SA
(4)

2.7. Statistical Analysis

Statistical analysis was conducted using R (version 3.6.3) [43]. Analysis of linear
regression was used to study the correlation between manually evaluated EAT volume and
4Ch area. The metrics’ distribution normality was assessed using the Shapiro–Wilk test.
Wilcoxon signed rank and Wilcoxon rank sum tests were used to investigate significant
differences for each metrics between intra-inter observers and FCNs. To account for
segmentation difficulty and clinical relevance [44] that scale with the quantity of EAT,
networks’ performances were assessed per quartile of manually segmented EAT area
(Q1 < 8.22 cm2 ≤ Q2 < 12.70 cm2 ≤ Q3 < 15.55 cm2 ≤ Q4).

3. Results

The selected 100 subjects were divided into three groups (21 healthy controls, 67 type-2
diabetic patients and 12 non-diabetic obese patients) as detailed in Table 1.

Table 1. Study population clinical characteristics.

Healthy Non-Diabetic Obese Type-2-Diabetic

Clinical characteristics
Number of participants 21 12 67

Age, years 25 ± 10 41 ± 13 53 ± 10
Gender: female, n (%) 11 (52) 10 (83) 41 (61)

BMI, kg/m2 21.9 ± 2.6 40.8 ± 5.9 35.6 ± 6.8
T2D

Duration of diabetes, years 8 ± 6
Cardiovascular risk factors, n (%)

Hypertension 6 (29) 1 (8) 32 (48)
Dyslipidemia 2 (10) 1 (8) 36 (54)

Current Smoker, n (%) 3 (14) 1 (8) 8 (12)

In studied database, EAT volumes spanned a wide range from 29 to 376 cm3, defining
quartiles by: Q1 < 77.8 cm3 ≤ Q2 < 94.6 cm3 ≤ Q3 < 114.3 cm3 ≤ Q4.

Corresponding EAT areas as measured on 4Ch views correlated well with total EAT
volume measured from the stack of short-axis cine (Figure 3) with a slightly higher corre-
lation in systole (Pearson r = 0.77) than in diastole (Pearson r = 0.74). Thus, a wide range
of EAT 4Ch areas was available from 1.2 cm2 to 37.2 cm2, with a lower range for healthy
subjects from 2.5 to 13.7 cm2, from 1.2 cm2 to 23.2 cm2 for non-diabetic obese subjects and
from 5.3 cm2 to 37.2 cm2 for type 2 diabetic patients.

As shown in Table 2, intra and inter-observer DSC confirmed excellent reproducibility
for HV segmentation (DSCIntra = 0.98 and DSCInter = 0.96 resp.). EAT and PAT differed
between the two observers (DSCInter = 0.76 and 0.78 for EAT and PAT resp.), although
segmentations performed twice by the same observer proved to be more reproducible
(DSCIntra = 0.83 and 0.85 for EAT and PAT resp.). Intra-observer DSC and MSD were signi-
ficatively lower (p < 0.05) concerning EAT segmentation in the diastolic frame compared to
the segmentation in the systolic frame. For inter-observer bias, differences in DSC, MSD, or
RSE metrics were not statistically significant between diastolic and systolic frames.
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Table 2. Mean values and standard deviations (in parenthesis) of segmentation results on the test set.

DSC MSD (mm) RSE (%)

Intra Inter U-Net FCNB Intra Inter U-Net FCNB Intra Inter U-Net FCNB

Paracardial
Fat

(PAT)

0.85
(0.06)

0.78
(0.09)

0.80
(0.08)

0.78
(0.10)

1.15
(0.63)

2.08
(1.49)

2.38
(1.78)

2.29
(1.47)

11.78
(8.09)

20.43
(18.77)

14.29
(10.44)

17.43
(17.50)

Epicardial
Fat

(EAT)

0.83
(0.07)

0.76
(0.10)

0.77
(0.07)

0.76
(0.07)

1.53
(1.32)

2.65
(2.98)

1.71
(1.06)

2.06
(1.96)

13.02
(14.59)

17.67
(15.07)

20.33
(15.70)

20.97
(15.66)

Pericardial
Fat (EAT +

PAT)

0.90
(0.04)

0.88
(0.05)

0.88
(0.06)

0.88
(0.06)

1.12
(0.66)

1.55
(0.07)

1.36
(0.90)

1.60
(1.28)

6.92
(7.16)

9.20
(6.80)

7.36
(9.40)

8.92
(12.97)

Heart
ventricles

(HV)

0.98
(0.01)

0.96
(0.02)

0.97
(0.02)

0.96
(0.03)

0.96
(0.5)

1.88
(2.24)

1.33
(0.79)

1.42
(0.89)

2.33
(2.20)

3.69
(3.18)

3.88
(4.46)

4.22
(5.80)

Metrics are reported as mean values (standard deviation). Systole and diastole segmentations were not differenti-
ated in these metrics. DSC, dice similarity coefficient; MSD, mean surface distance; RSE, absolute relative surface
error. Epicardial Fat values are highlighted in bold.

FCNB and U-Net segmentations performance measured by DSC, were significantly
lower (p < 0.05) than intra-observer bias for all labels (for EAT: DSCIntra = 0.83, DSCU-Net
= 0.77, DSCFCNB = 0.76). Both networks provided equivalent DSC, MSD, and RSE perfor-
mance than inter-observer bias for all labels (for instance PAT: DSCInter = 0.78, DSCU-Net
= 0.80, DSCFCNB = 0.78).

Across the four quartiles of data defined by equally populated ranges of EAT areas,
both networks provided reliable segmentation of the heart ventricles (HV, FCNB: DSCQ1-Q4
= 0.97–0.96, U-Net: DSCQ1-Q4 = 0.97) as shown in Table 3. Interestingly, the network
performances to segment EAT strongly depended on the population quartile. Indeed,
U-Net DSC was significantly higher (p < 0.001) for upper quartiles as observed using U-Net:
DSCQ4 = 0.83 > DSCQ3 = 0.80 > DSCQ2 = 0.76 > DSCQ1 = 0.69 as illustrated in Figure 4.
DSC and RSE metrics demonstrated a gap of segmentation quality between the lower two
quartiles and the upper two quartiles for both PAT and EAT segmentation (for EAT FCN:
RSEQ4 = 15.60, RSEQ3 = 15.87 < RSEQ2 = 21.91 < RSEQ1 = 27.98). Across all quartiles, both
networks had more difficulty separating PAT from EAT than identifying total pericardial fat
(EAT+ PAT) in the image (with U-Net, RSEEAT + PAT << RSEEAT or RSEPAT for all quartiles).
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Table 3. DSC, MSD, RSE metrics evaluated per quartile (Q1-Q4) of EAT area for U-Net and FCNB.

Q1 DSC MSD (mm) RSE (%)

U-Net FCNB U-Net FCNB U-Net FCNB

Paracardial Fat (PAT) 0.55 0.53 5.82 5.69 36.21 38.54

Epicardial Fat (EAT) 0.69 0.67 2.14 2.21 22.15 27.98

Pericardial Fat (EAT + PAT) 0.78 0.77 1.60 1.78 2.08 2.65

Heart ventricles (HV) 0.97 0.97 1.12 1.35 12.59 16.19

Q2 DSC MSD (mm) RSE (%)

U-Net FCNB U-Net FCNB U-Net FCNB

Paracardial Fat (PAT) 0.76 0.75 2.68 2.82 17.29 20.83

Epicardial Fat (EAT) 0.76 0.74 1.22 1.53 17.85 21.91

Pericardial Fat (EAT + PAT) 0.87 0.87 1.16 1.35 7.55 8.60

Heart ventricles (HV) 0.97 0.97 1.11 1.65 2.57 3.04

Q3 DSC MSD (mm) RSE (%)

U-Net FCNB U-Net FCNB U-Net FCNB

Paracardial Fat (PAT) 0.82 0.82 2.26 1.99 12.72 12.14

Epicardial Fat (EAT) 0.80 0.79 1.30 1.47 13.49 15.87

Pericardial Fat (EAT + PAT) 0.90 0.90 1.37 1.43 5.86 5.28

Heart ventricles (HV) 0.97 0.97 1.08 1.50 2.54 3.07

Q4 DSC MSD (mm) RSE (%)

U-Net FCNB U-Net FCNB U-Net FCNB

Paracardial Fat (PAT) 0.80 0.78 2.46 3.12 13.65 16.72

Epicardial Fat (EAT) 0.83 0.79 1.40 2.06 11.72 15.60

Pericardial Fat (EAT + PAT) 0.91 0.90 1.40 1.84 5.64 6.43

Heart ventricles (HV) 0.97 0.96 1.31 2.60 3.20 4.52
Epicardial Fat values are highlighted in bold.

Over the database and for all labels, U-net outperformed (p < 0.0001) FCNB for
segmenting accurately (DSC), nearer to the ground truth (MSD), thus providing a more
reliable (i.e., accurate) measurement (RSE).

FCNB and U-net performed significantly better (p < 0.05) for segmenting EAT area on
the systolic frame compared to the diastolic frame (DSCUNet-diastole = 0.76 DSCUNet-systole
= 0.80). These differences were not significant in PAT (see Appendix A Figure A1).

Classification of our database split by quartile of EAT burden was observed by confu-
sion matrices. From Figure 5, the confusion matrices diagonal (in green) gave a measure of
correct classification (66% for FCNB and 71% for U-Net), whereas the subdiagonal and the
superdiagonal (in yellow) allowed evaluating a misclassification by one quartile (32% for
FCNB and 27% U-Net) and the second subdiagonal and superdiagonal (in red) gave an
estimate of a misclassification by two quartiles (2% for FCNB 2% for U-Net). As shown by
subdiagonal confusion matrices and confirmed by PPV, FCNB significantly over-estimated
EAT area compared to U-Net (PPVFCNB = 0.73 < PPVU-Net = 0.75, p < 0.0001).
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between manual and automatic segmentations. As detailed in the methods, only periventricular EAT
was segmented.
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Figure 5. Quartile classification results from EAT area estimated from networks segmentation against
classification from manual EAT area. Only segmentations from preferred systolic frames were
shown here. Markers colors were defined by manual EAT quartiles. Red squares delineate manual
EAT quartiles.



Diagnostics 2022, 12, 126 10 of 15

4. Discussion

This study aimed at providing a rapid and fully integrable evaluation of epicardial
fat burden. To achieve this evaluation, automated segmentation of the EAT layer was
performed on four-chamber cine MRI series using Deep Learning approaches.

4.1. Four-Chamber-View Intrapericardial Fat Area Is a Relevant Measure of EAT

Confirming previous literature [24,25], the correlation found in this work between
EAT area and volume across a wide range of EAT volumes (from 29 to 376 cm3) comforted
the relevant use of four-chamber EAT area as a rapid but realistic measure of EAT burden.
Already in past studies, the 2D EAT area has been linked to left ventricular diastolic dys-
function [22,26], hypertension and severity of insulin resistance [25], and non-alcoholic
fatty liver disease patients [27]. Thus, four-chamber view holds potential as a surrogate to
quantify EAT in routine clinical practice. Moreover, in four-chamber view, the pericardium
beyond the apex of the heart could be visualized with more reliability. However, our
database gathered retrospective studies in which EAT volume segmentation had been
measured in short-axis views by different investigators over the years, which could lead
to unaccounted volume imprecision. Ideally, the gold standard CCT EAT volume quan-
tification would have been preferred but this examination is not commonly indicated for
metabolic patients.

4.2. A Specific Database with Possible Extensions

This work leverages a unique database that combines a population spanning a large
range of EAT quantity and manual segmentation of EAT on cine series. The strength of our
dedicated database stands in its diversity in BMI, sex, age, health condition across many
subjects (n = 100) (Table 1). Despite a large diversity of subjects, a disparity of age remains
between younger healthy subjects and diabetic and/or obese patients. The addition of data
from older healthy subjects, as well as elderly subjects (>65 years) would benefit the current
database to reinforce our network training as elderly have been shown to be significantly
more EAT burdened than younger individuals [45]. Our database could also be extended
by including image sets from different MRI scanner types. Currently, this is a monocentric
study and database. As a result, the trained models might not adapt well on datasets from
scanners of different vendors and field strengths. Nevertheless, the database was made up
of multiple protocols acquired over a decade, which already featured a variety of acquisition
parameters and image quality levels. To further leverage the number of annotated data
(2500 ground-truth, 25 images segmented per subject), generative adversarial network
could be explored to extend beyond proposed data augmentation [46]. Another challenge
are recurrent artifacts (aliasing, dark bands, flux artifacts) commonly observed in 3T bSSFP
cine-MRI images, particularly pronounced in obese patients. This might preclude EAT
segmentation and disturb networks accuracy. Training networks on artifacted images is
another important addition to strengthen models for them to be ready for the clinic.

4.3. Challenge of EAT Segmentation

Experts and networks provided excellent results on large structures such as heart
ventricles (DSC ≥ 0.96) and pericardial fat (DSC ≥ 0.88). However, one major challenge for
the segmentation of EAT on cine MRI is to distinguish between burdening EAT and its extra-
pericardial neighbor PAT. The pericardial fascia that separates those two fat compartments
is about 2 mm thick [47,48] which is of the same order of magnitude as the image resolution
(1.3–1.8 mm). This explains why both networks were able to segment combined EAT
+ PAT pericardial fat with appreciable precision, but the identification of individual fat
was less satisfying. Nevertheless, FCN networks provided segmentation results on par
with experts’ precision. Additionally, since cardiac contraction pulls onto the pericardium,
its visualization improves in peak-systole [22], making this frame more suitable for the
measurement of EAT when compared to diastole (pintra(DSCdia/DSCsys) = 0.0282).
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One novelty has been to input multiple cardiac frames from the cardiac cycle to
networks using a 3D first convolutional layer. It could be interesting in future work to
enhance temporal information which is essential to detect the pericardial fascia. A map of
cardiac deformations could enhance input images to be supplied to the network. It would
be also interesting to investigate other network architectures, such as recurrent neural
network, that could memorize information from adjacent slices to improve inter-slices
coherence [49], but these extensions fall outside the scope of this work.

4.4. Comparing FCNs Performances

Specific complementary metrics (DSC, MSD, and RSE) have been chosen to evaluate
EAT area segmentation and quantification. Alternatively, the Hausdorff distance metric is
a common choice to evaluate segmentation performance [50], measuring the maximal pixel
distance error between segmentations. However, EAT region is sparsely distributed around
the heart, thus the Hausdorff distance was not considered in this work since it might range
rapidly high, even when comparing two segmentations with similar areas.

From chosen metrics, U-Net outperformed FCNB for all labels, thus appearing pre-
ferrable to quantify EAT 4Ch area. Alternative semi- and fully automatic methods have
been proposed for the EAT quantification on MRI-cine. Cristobal-Huerta et al. [51] devel-
oped an automatic pipeline composed of Law texture filters, snakes and K-cosine curvature
analysis to partially quantify EAT volume, albeit on 10 subjects only. In a semi-automatic
processing, Fulton et al. [52] applied landmarks on short-axis images from 12 subjects to
unroll images into polar coordinates before employing a neural network for detection of
epicardial fat contours. We were unable to compare our results with those previous works
as segmentation metrics (e.g., DSC metric or Jaccard similarity index) were not provided.
Recently, automatic total pericardial fat quantification has been developed in 4Ch cine MRI.
Bard, Raisi-Estabragh et al. [23] obtained segmentation performances (DSC EAT+PAT = 0.8)
very similar to ours (DSC EAT+PAT = 0.88) on their respective test-set. In their study, only
the end-diastolic frame had been segmented while we segmented the full 4Ch cine MRI
and trained on three consecutive cine frames to leverage cine temporal information. Finally,
the optimized multi-frame U-Net was integrated in a FSLeyes plugin made available to the
community [53] allowing comparison with further work and providing clinicians with a
rapid EAT area segmentation (see Appendix A Figure A2).

4.5. Performances across Quartiles

Splitting the database in quartiles of EAT enabled to differentiate segmentation perfor-
mances depending on EAT area. Indeed, segmentations quality from FCNs proved to be
degraded in group Q1, in which EAT (as well as PAT) was thin and sparse as illustrated
in Figure 4. However, EAT segmentations were on a par with inter-observers’ manual
segmentation for the three upper quartiles and remained relevant for identifying patient at
risk (Q2, Q3, Q4 ≥ 8.22 cm2) by measuring their EAT burden within 14% and 18% precision
for U-Net and FCNB respectively.

5. Conclusions

This study provides a methodology for fully automated segmentation of epicardial fat
on multi-frame cardiac cine MRI, demonstrated across 100 subjects exhibiting low to high
EAT quantities. EAT is often overseen in diagnosis but has received increasing attention
as a relevant biomarker of cardiac risk. Automatic EAT evaluation could help to identify
patients at risk, especially for diabetic patients. The comparison with EAT volume supports
the potential of four-chamber cine EAT area as a surrogate for clinical evaluation, with
higher segmentation robustness in systolic frame. Between the two FCNs investigated, the
optimized U-Net was better suited to provide EAT area estimation with a 14.2% precision
for the clinically relevant upper three quarters of targeted EAT range. EAT evaluation
on cine, leveraging multi-frame information, could be further integrated to explore both
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retrospective and prospective cardiac studies without the need for a specific acquisition
thanks to publicly provided automatic EAT area segmentation.
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