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Abstract: This study aimed to discover concurrences of adverse drug reactions (ADRs) and derive
models of the most frequent items of ADRs based on the SIDER database, which included 1430 mar-
keted drugs and 5868 ADRs. First, common ADRs of organic drugs were manually reclassified
according to side effects in the human system and followed by an association rule analysis, which
found ADRs of digestive and nervous systems often occurred at the same time with a good asso-
ciation rule. Then, three algorithms, linear discriminant analysis (LDA), support vector machine
(SVM) and deep learning, were used to derive models of ADRs of digestive and nervous systems
based on 497 organic monomer drugs and to identify key structural features in defining these ADRs.
The statistical results indicated that these kinds of QSAR models were good tools for screening ADRs
of digestive and nervous systems, which gave the ROC AUC values of 81.5%, 98.9%, 91.5%, 69.5%,
78.4% and 78.8%, respectively. Then, these models were applied to investigate ADRs of 1536 organic
compounds with four phase and zero rule-of-five (RO5) violations from the ChEMBL database. Based
on the consensus ADRs’ predictions of models, 58.1% and 42.6% of compounds were predicted to
cause these two ADRs, respectively, indicating the significance of initial assessment of ADRs in early
drug discovery.

Keywords: adverse drug reactions; drug; QSAR model; SVM; LDA; DL

1. Introduction

Adverse drug reactions (ADRs) are inherent features of drug structures that often
caused unnecessary suffering and threats to human health and became obstacles to the dis-
covery of new drugs. In general, drugs have multiple side effects even when prescribed at
the appropriate doses and used correctly, as recorded in the SIDER database, which includes
information on 1430 marketed drugs and 5868 ADRs [1]. For instance, ibuprofen is the most
commonly used and prescribed non-steroidal anti-inflammatory drug. It causes commonly
reported side effects, including hemorrhage, vomiting, anemia, decreased hemoglobin,
eosinophilia and hypertension [1,2]. Severe ADRs can induce drugs to be withdrawn from
the market. For instance, troglitazone, a drug for treatment of diabetes that decreases
blood glucose significantly without body weight changes, was withdrawn from the market
due to it causing the ADR of hepatic failure [3,4]. Valdecoxib, an anti-inflammatory drug,
was withdrawn from the market due to ADRs of nervous and cardiovascular systems [2].
Although ADRs may not be avoided, they can be predictable. Hence, fast identification of
ADRs of drugs and filtering out unqualified candidate compounds in early drug discovery
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play a significant role in the development of new drugs. There are many in vitro methods
that screen for toxicological effects, including animal and various cell studies, reactive
metabolites, human organ microsomes, etc. [4,5]. However, there are usually some gaps
in clinical practice. For instance, the hepatotoxic effects of some drugs in vivo of human
and in vitro of animals may be contradictory, such as those of furosemide [6,7]. Differences
in acidity and transit time in the gastrointestinal tract between animals and humans can
make the solubility and permeability of drugs vary greatly [8]. Additionally, ADRs that
impair specific human functions (such as digestive and nervous systems) are difficult to
evaluate by these methods. Meanwhile, drugs often have multiple side effects, which may
involve some concurrences. Compared with experimental methods, predicting ADRs by in
silico models is more time-saving, low-cost and effective.

For the above reasons, human in vivo data are preferable for the identification of asso-
ciated ADRs of drugs and discovery of their structural characteristics by QSAR modeling,
and play a crucial role in filtering out unqualified candidate compounds in early drug
discovery. QSAR models apply linear and non-linear algorithms to associate chemical
structures with specific activities or properties, which have become increasingly popu-
lar in many fields for predicting compound properties, e.g., toxicity, physical properties
and biological activity [9]. To date, the QSAR models of hepatotoxicity, cardiotoxicity
and nephrotoxicity are commonly reported in light of the relatively clear mechanisms
of these ADRs. Pan et al. and Huang et al. developed QSAR models of hepatotoxicity
to evaluate hepatotoxicity of traditional Chinese medicines based on the Liver Toxicity
Knowledge Base [10,11]. Ancuceanu et al. built computational models for predicting drug
hepatotoxicity based on the DILIrank dataset by using machine learning algorithms [12].
Cai et al. built a QSAR model of cardiotoxicity by using a deep learning algorithm for
risk assessment of hERG-mediated cardiotoxicities in drug discovery and postmarketing
surveillance [13]. Satalkar et al. developed (QSAR) models for fatal drug- induced renal
toxicity by using three algorithms, including simple K-means clustering, decision tree
and linear regression analysis [14]. Sun et al. developed QSAR classification models to
predict potential nephrotoxic ingredients in traditional Chinese medicines by using SVM
and ANN [15].

There has not yet been an association analysis of ADRs and QSAR models of ADRs
whose mechanisms of action are vague and not easily tested by traditional experimental
methods, such as ADRs of digestive and nervous systems. Therefore, this study aimed to
discover patterns of concurrences of ADRs among marketed organic drugs, derive models
of the most frequent items of ADRs, and mine out key structural features in defining these
ADRs based on the SIDER database, which includes 1430 marketed drugs and 5868 ADRs.
Firstly, we reclassified common ADRs into seven systematic categories according to side
effects in the human system and applied an association rule algorithm named a priori to
discover patterns of concurrences of seven ADRs, which found that ADRs of digestive and
nervous systems often occurred at the same time with good rule support. Second, three
algorithms, linear discriminant analysis (LDA), support vector machine (SVM) and deep
learning (DL), were used to derive models of ADRs of digestive and nervous systems based
on structures of marketed organic monomer drugs and mine out key structural features
in defining these ADRs. Then, these models were simultaneously applied to investigate
ADRs of digestive and nervous systems of 1536 organic compounds with four phase and
zero rule-of-five (RO5) violations from the ChEMBL database.

2. Results and Discussions
2.1. Common ADRs of Marketed Organic Drugs

According to the definition that an ADR is common if occurring at a frequency of
greater than 10%, 566 organic drugs were identified as common ADR drugs after removing
gold or ion compounds. According to side effects in the human body system, the com-
mon ADRs can be grouped into gastrointestinal toxicity, nervous system reaction, allergy,
hematopoietic system reaction, circulatory system reaction, hepatotoxicity reaction and uri-
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nary system reaction. As listed in Table 1, it was found that 418 drugs had digestive system
toxicity, 259 drugs had allergies, and 442 drugs had nervous reactions, 99 drugs caused
urinary system reactions, 108 drugs had hematopoietic system reactions, and 75 drugs
induced hepatotoxic reactions, respectively.

Table 1. Some common adverse drug reaction (ADR) information on drugs in the SIDER database.

ID ADR Categories Main Items of ADRs No. of Drugs

1 Digestive system reactions

Abdominal pain; diarrhea; abdominal bloating; constipation;
gastrointestinal disorder; nausea; anorexia; digestion impaired;

gastrointestinal hemorrhage; flatulence; abnormal feces;
abdominal pain upper; vomiting; gastroesophageal reflux

disease, etc.

418

2 Nervous reactions

Abnormal involuntary movements; convulsion; headache;
balance disorder; dizziness; arthralgia; depression; paresthesia;

ataxia; amnesia; disorder sight; feeling abnormal; deafness;
abnormal behavior; nervous symptoms; etc.

442

3 Allergy reactions

Pruritus; dermatitis; dyspnea; injection site pain; rash
maculo-papular; erythema; acne; application site irritation;
anaphylactic shock; injection site reaction; application site

erythema; allergic contact dermatitis; seborrheic dermatitis;
blisters; etc.

259

4 Hepatotoxic reactions

Alanine aminotransferase increased; liver function test
abnormal; hepatic encephalopathy; hepatic enzyme abnormal;

transaminases increased; hepatitis; hepatotoxicity; hepatic
failure; etc.

75

5 Cardiovascular reactions

Atrial fibrillation; cardiac output decreased; bradycardia;
angina pectoris; arrhythmia; acute coronary syndrome; arterial

insufficiency; cardiac disorder; angiopathy; atrial fibrillation;
cardiac murmur; cardiotoxicity; blood triglycerides increased;

ventricular arrhythmia; etc.

85

6 Urinary reactions

Urinary tract infection; dysuria; bladder pain; micturition
disorder; urinary hesitation; nephropathy toxic; renal failure;

renal tubular acidosis; blood creatinine increased; urinary
retention; albuminuria; hematuria; urethral disorder; chronic

kidney disease; protein in urine; etc.

99

7 Hematologic reactions

Thrombocytopenia; anemia; coagulopathy; agranulocytosis;
eosinophilia; hemoglobin decreased; platelet count decreased;
activated partial thromboplastin time prolonged; white blood

cell count decreased; etc.

108

2.2. Associations between ADRs of Organic Drugs

Three key measures of interest for an association rule (support, confidence and lift)
were used to select useful rules for the prediction of ADRs. As shown in Table 2, only one
association rule was generated, which met the rule of minimum support of 50% and
confidence of 80%. The derived association rule was about ADRs of digestive toxicity
and nervous reactions, which has the rule support of 59.89%, confidence of 81.1% and
lift of 1.04, respectively. This showed that ADRs of digestive and nervous systems often
occurred at the same time with the rule support of about 60% and confidence of about
81%. It can be clearly concluded that ADRs of nervous and digestive system were the most
frequent item-sets among common ADRs, and ADRs of digestive system can cause ADRs of
nervous system, indicating that these two ADRs have some correlations. Thus, it is of great
importance to develop QSAR models for understanding and predicting ADRs of nervous
and digestive systems, which may eliminate drug candidates with such ADRs in early
drug development and reduce the rate of attrition and decrease the cost of drug discovery.
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Table 2. Results of association rule analysis of ADRs of organic drugs.

Consequent Antecedent Instances Support% Confidence% Rule Support% Lift

ADRs of nervous
system

ADRs of digestive
system 418 73.85 81.1 59.89 1.04

2.3. Dataset Splitting

To investigate the chemical diversity of the modeling dataset, the Tanimoto similarity
index was calculated based on FP2 fingerprints using Openbabel 2.3.0. Figure 1 demon-
strated the Tanimoto similarity indices among drugs ranged from 0.00 to 0.99. From the
contour graph of Tanimoto similarity indices, it can be clearly noted that all structures of
compounds had low similarity. Additionally, the average index of Tanimoto similarity was
only 0.17, which together indicated the significant chemical diversity of modeling dataset.
Then, the cluster analysis of 497 drugs was performed by using descriptors and principal
component analysis, which led to discovery of 348 clusters of structural diversities. This re-
sult further indicated the great structural diversity of the drugs in the dataset. To ensure
the biggest structural diversity of the training set, the division of the training and test set
chemicals was conducted based on the chemical space distribution of drugs in the cluster
analysis. Consequently, 380 drugs were included in the training set and 117 drugs fell into
the test set. Figure 2 shows the chemical space distribution of the training set and test set,
marked by “black diamond” and “red round” symbols, respectively.
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2.4. SW-LDA Model Results of ADRs of Digestive System

After a stepwise method combined with an LDA (SW-LDA) process, 12 molecular
descriptors were identified as the QSAR model parameters from the above remaining
130 descriptors. The corresponding LDA model was simultaneously derived by these
descriptors. The linear discriminant function was as follows:

y = 0.078 × (PEOE_VSA-4) + 3.495 × PEOE_VSA_FNEG − 3.235 × vsurf_CP +
0.07 × vsurf_DD13 − 1.472 × a_nP + 0.358 × MNDO_LUMO + 0.786 × reactive + 0.768 × a_nI −
0.296 × opr_violation − 2.593 × vsurf_CW1 − 0.007 × SlogP_VSA5 − 0.105 × vsurf_IW7 + 6.105

Table 3 lists the selected descriptors, tolerance, Wilks’ lambda values, variance inflation
factor (VIF), F-test values and statistical significance (p-value). The statistical significance
of all selected descriptors was less than 0.001, showing that they were obvious features in
defining ADRs of the digestive system. The tolerance of descriptors was more than 0.1 and
VIF was less than 10, indicating no multicollinearity existed among these variables in the
LDA model. Table 4 gives the statistical results of the proposed model. As described in
Table 4, the obtained LDA model was successful and of good predictive ability. The training
accuracy value of 76.58% revealed that the LDA QSAR model can give 76.58% classification
accuracy in the training set. The 10-fold cross-validation value of the training set was
72.89% (more than 50%), showing that the developed QSAR LDA model had acceptable
stability and predictive ability. Additionally, the predictive accuracy of the test set also
reached 72.65%, indicating the good prediction and generalization ability of the LDA
model. The sensitivity and specificity of the derived QSAR model were 80.5% and 67.3%,
respectively, implying better ability in predicting positive compounds than negative ones.
The AUC value of the ROC curve was 81.5%, showing that the LDA model was acceptable
in prediction of ADRs of the digestive system and 12 descriptors can be used as the main
structural features in defining ADRs of the digestive system.

Table 3. Molecular descriptors and the standardized coefficient of the linear discriminant analysis (LDA) model for ADRs
of digestive system.

Descriptors Chemical Meaning Tolerance Wilks’
Lambda VIF F to

Remove

Non-
Standardized
Coefficient

p-Value

PEOE_VSA-4 Total negative van der Waals
surface area 0.771 0.853 1.297 71.489 0.078 0.00

PEOE_VSA_FNEG Fractional negative van der
Waals surface area 0.773 0.736 1.294 11.259 3.495 0.00

vsurf_CP Critical packing parameter 0.697 0.745 1.435 15.798 −3.235 0.00

vsurf_DD13 Contact distances of lowest
hydrophobic energy 0.908 0.737 1.101 11.578 0.07 0.00

a_nP Number of phosphorus atoms 0.898 0.74 1.114 13.367 −1.472 0.00

MNDO_LUMO

The energy (eV) of the lowest
unoccupied molecular orbital
calculated using the MNDO

Hamiltonian

0.757 0.75 1.321 18.153 0.358 0.00

reactive Indicator of the presence of
reactive groups 0.95 0.733 1.052 9.782 0.786 0.00

a_nI Number of iodine atoms 0.972 0.728 1.029 7.317 0.768 0.00

opr_violation The number of violations of
Oprea’s lead-like test 0.418 0.739 2.392 12.911 −0.296 0.00

vsurf_CW1 Capacity factor 0.417 0.74 2.392 13.506 −2.593 0.00
SlogP_VSA5 The subdivided surface areas 0.715 0.725 1.399 5.435 −0.007 0.00
vsurf_IW7 Hydrophilic integy moment 0.946 0.723 1.057 4.663 −0.105 0.00
Constant 6.105
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Table 4. The classification performance of the derived QSAR models for ADRs of digestive and nervous systems.

QSAR
Models

Accuracy
Training

Set

Accuracy
Test Set

Accuracy
10-Fold

CV

Total
Accuracy BACC Sensitivity Specificity ROC

AUC

Digestive
system

LDA 76.58% 72.65% 72.89% 75.65% 73.9% 80.5% 67.3% 0.815
SVM 98.42% 76.92% 75.79% 93.36% 97.61% 99.63% 95.58% 0.989
DL 87.89% 78.63% 78.42% 85.71% 83.73% 94% 73.45% 0.915

Nervous
system

LDA 69.21% 64.1% 68.68% 68% 67.4% 70.8% 64% 0.695
SVM 80.26% 83.76% 76.05% 81.09% 62.94% 95.53% 30.34% 0.784
DL 82.89% 81.2% 73.68% 82.49% 72.84% 91.75% 53.93% 0.788

2.5. SW-LDA Model Results of ADRs of Nervous System

After SW-LDA was performed, the best QSAR model for ADRs of the nervous system
was generated with six molecular descriptors based on the same training set of ADRs of
the digestive system. The obtained QSAR model was given as follows:

y = 0.03 × (PEOE_VSA+5) − 0.244 × vsurf_IW7 − 0.697 × std_dim2 + 0.024 × SMR_VSA3 −
3.498 × Q_VSA_FPPOS + 0.153 × MNDO_dipole + 1.927

The selected variables and their chemical meanings, standard coefficients, tolerance
and VIF are shown in Table 5. The values of tolerance, VIF and significance showed that
these six descriptors were significant features in defining ADRs of the nervous system and
each of them were independent. Table 5 lists the statistical results of the proposed model.
As described in Table 4, the derived QSAR model was of acceptable predictive ability.
The QSAR model can give 69.21% variance in ADRs of the nervous system in the training
set. The accuracy value of 10-fold cross-validation was 68.68% (more than 50%) and the
prediction accuracy for the external test set was 64.1% too, showing that the developed
QSAR model was of acceptable stability and predictive ability.

Table 5. Molecular descriptors and the standardized coefficient of the LDA model for ADRs of nervous system.

Descriptors Chemical
Meaning Tolerance Wilks’

Lambda VIF F to
Remove

Non-
standardized
Coefficient

p-Value

PEOE_VSA+5
Total positive
van der Waals
surface area

0.53 0.932 1.887 7.712 0.03 0.004

vsurf_IW7 Hydrophilic
integy moment 0.949 0.932 1.054 7.875 −0.244 0.001

std_dim2 Standard
dimension 2 0.311 0.939 3.215 10.599 −0.697 0.00

SMR_VSA3 Subdivided
surface areas 0.304 0.933 3.289 8.231 0.024 0.00

Q_VSA_FPPOS

Fractional
positive polar
van der Waals
surface area

0.917 0.925 1.091 4.821 −3.498 0.00

MNDO_dipole

The dipole
moment

calculated using
the MNDO

Hamiltonian

0.888 0.923 1.126 4.261 0.153 0.00

Constant 1.927

2.6. Interpretation of the Descriptors

It is possible to define some vital structural features governing ADRs of digestive or
nervous systems by interpreting the molecular descriptors in the QSAR models based on
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the same training set. In the QSAR models of ADRs of digestive and nervous systems,
12 and 6 descriptors for each model were uncovered, respectively. Additionally, vsurf_IW7
was the same descriptor for two QSAR models, which represents the hydrophilic integy
moment that belongs to descriptors of surface area, volume and shape dependent on
the structure connectivity and conformation. Here, vsurf_IW7 negatively contributed to
these two ADRs, showing that a higher vsurf_IW7 may weaken ADRs of digestive and
nervous systems. In order to investigate some correlations between descriptors in two
QSAR models, the correlation coefficients of their descriptors were calculated and listed
in Table 6. Of note is that, except for the common descriptor (vsurf_IW7), no descriptors
in two QSAR models were related to each other based on all correlation coefficient values
less than 0.75. This result indicated that vsurf_IW7 was the main factor in defining two
ADRs of digestive and nervous systems and other descriptors in two ADR models were
independent, especially for descriptors of atom counts and bond counts and physical
properties only involved in ADRs of digestive system, including a_nI, a_nP, opr_violation
and reactive, and can well distinguish ADRs of the two systems.

Table 6. Correlation coefficients of descriptors in two QSAR models of ADRs of digestive and nervous systems.

Descriptors PEOE_
VSA+5

Q_VSA_
FPPOS

MNDO_
dipole

SlogP_
VSA3

vsurf_
IW7

std_
dim2

reactive 0.127 −0.027 0.058 0.169 −0.078 0.129
a_nI 0.108 0.056 −0.073 0.075 −0.054 0.049
a_nP −0.044 0.166 -0.022 0.036 −0.021 0.038

PEOE_VSA-4 −0.047 0.173 0.143 0.014 0.002 −0.018
PEOE_VSA_FNEG −0.071 −0.714 −0.076 −0.244 0.131 −0.131

opr_violation 0.453 0.152 −0.205 0.488 −0.109 0.698
MNDO_LUMO −0.001 0.05 −0.134 0.014 −0.007 0.004

SlogP_VSA5 0.253 0.268 −0.131 0.292 −0.012 0.412
vsurf_CP −0.263 −0.4 −0.107 −0.203 0.086 −0.211

vsurf_CW1 −0.308 0.247 0.23 −0.373 −0.038 −0.591
vsurf_DD13 0.415 0.053 −0.163 0.499 −0.008 0.47
vsurf_IW7 −0.07 −0.185 0.102 −0.08 1 −0.074

2.7. Results of SVM Models

The combination of C and γ in RBF kenel function was optimized to derive the best
SVM models for ADRs of digestive and nervous systems. The optimum values of C and
γ used in the two ADRs models were 150 and 2.5, 150 and 1, together with a maximum
10-fold cross-validation accuracy of 75.79% and 76.05%, respectively. Thereby, the final
optimal SVM models for ADRs of digestive and nervous systems were generated as
well. As shown in Table 4, the SVM model for ADRs of the digestive system gave quite
satisfactory results: accuracytrain of 98.42%, accuracycv of 75.79%, accuracytest of 76.92%,
sensitivity of 99.63%, specificity of 95.58% and AUC of 98.9%, respectively, exhibiting
significantly high prediction and generalization ability in distinguishing ADRs of digestive
system of drugs. Additionally, the final optimal SVM model for ADRs of the nervous system
produced satisfactory results: accuracytrain of 80.26%, accuracycv of 76.05%, accuracytest
of 83.76% and AUC of 78.4%, respectively. Therefore, compared with the LDA models,
SVM models can enhance the ability to predict and generalize the ADRs of digestive and
nervous systems.

2.8. Results of Deep Learning Models

Similarly, the QSAR models for ADRs of digestive and nervous systems derived by
DL were built using the same input variables as used in the above models. Here, we used
RapidMiner studio software to perform DL experiments. Table 2 also lists the prediction
ability of final DL models of ADRs of digestive and nervous systems. The final DL model
of ADRs of digestive system gave satisfactory results: accuracytrain of 87.89%, accuracycv
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of 78.42%, accuracytest of 78.63%, sensitivity of 94%, specificity of 73.45% and AUC of
91.5%, respectively. Additionally, the final DL model of ADRs of the nervous system gave
satisfactory results: accuracytrain of 82.89%, accuracycv of 73.68%, accuracytest of 81.2%,
sensitivity of 91.75%, specificity of 53.93% and AUC of 78.8%, respectively. Obviously,
DL enhanced the accuracy of descriptors in prediction of ADRs of digestive and nervous
systems compared with LDA.

2.9. Comparison of Different Approaches and Consensus Prediction

From the above discussion, three algorithms performed well in prediction of ADRs of
digestive and nervous systems based on the same descriptors. Apparently, the performance
of SVM in prediction of ADRs of the digestive system outperformed LDA and DL, but in
prediction of ADRs of the nervous system, DL was better than SVM from a comprehensive
index of ROC curve, as shown in Figure 3, suggesting different algorithms suit peculiar
aspects of some special structures. Thus, it seemed reasonable that a consensus predicted
result given by these kinds of QSAR models might be more strict and correct than individual
models. Here, a consensus prediction of ADRs of digestive and nervous systems was
derived by averaging the predictions for the dataset given by the individual models [15].
Based on the consensus ADR predictions of 1536 organic compounds with four phase and
zero RO5 violations from ChEMBL database by three models, we found that 893 and 654
compounds were computationally identified to cause the above two ADRs, respectively.
Among them, 433 compounds were predicted to cause these two ADRs. These results can
be seen in the supplementary materials, indicating the significance of initial assessment of
ADRs in early drug discovery.
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3. Methods and Materials
3.1. Association Analysis of Common Side Effects of Drugs

As defined in the SIDER database, ADRs with a frequency of more than 10% were
identified as common ADRs and then grouped in seven systematic categories according to
side effects in the human body system, including digestive, nervous, hepatotoxic, urinary,
allergy, circulatory and hemopoietic systems. Additionally, we removed non-organic
compounds that could not be further analyzed by descriptor calculation, which led to an
acquisition of 566 organic drugs with common ADRs. Then, to explore the correlations
between multiple side effects of organic drugs, an association rule analysis was applied to
discover patterns of concurrences of ADRs in the database. Support, confidence and lift
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are three key measures of interestingness of an association rule. Support is an indicator
of rule frequency. Confidence is the probability that consequent B will follow antecedent
A. Lift is an indicator of the contribution antecedent A makes to consequent B [16]. Here,
the association algorithm named a priori embedded in the clementine 12 software (SPSS,
Inc., Chicago, IL, USA) was performed to search for concurrences of ADRs. The maximum
frequent set was fixed to no more than 5, the minimum support and confidence of rules
were set to 50% and 80%, respectively.

3.2. Molecular Descriptor Calculation

First, the molecular structures of 566 organic marketed drugs with common ADRs
were downloaded from the Pubchem database based on their names and checked one
by one. After removing multi-compound drugs, a total of 497 organic monomer drugs
remained. Then, they were put into the Molecular Operating Environment software
(MOE2008.10, Chemical Computing Group Inc., Montreal, Canada), to be subjected to the
energy minimization of 3D structures. Subsequently, stochastic conformation search was
performed to optimize their conformer structures. Then, a total of 327 diverse descriptors
of optimized structures were calculated by utilizing the QSAR module of MOE. These
327 descriptors consisted of 184 2D molecular properties, 86 i3D molecular properties
and 10 x3D structural information, which may be redundant and irrelevant for QSAR
development. Thus, the constant or almost constant descriptors for all molecules were
first deleted and then a pairwise correlation analysis was conducted to remove one of
inter-correlated descriptors (with a correlation coefficient value greater than 0.95) [17].
Finally, a total set of 130 descriptors remained and was used for QSAR modeling.

3.3. Data Splitting

To investigate the chemical diversity of the whole dataset, the Tanimoto similarity
index was calculated based on FP2 fingerprints using Openbabel 2.3.0 [18]. The Tanimoto
similarity coefficient is the atomic pair shared between two molecules divided by all their
atomic pairs, defined as c/(a + b + c). The variable c is the number of atomic pairs of the
two compounds, and a and b are the numbers of their unique atomic pairs. To obtain
reliable QSAR models, the data set was split into a training set and a test set by a range
ratio of 3:1~4:1. The training set was used to construct QSAR models, and the test set
was used as an external validation of derived models. To ensure the training set spanned
the whole descriptor space and kept a balance distribution of the chemicals in two data
sets [19], the cluster analysis of dataset was further investigated using the QuaSAR-Cluster
module in MOE, which calculated the descriptor average vector x0 and covariance matrix
S based on principal component analysis to assign similar molecules to one cluster.

3.4. QSAR Model Approach
3.4.1. Stepwise Linear Discriminant Analysis

LDA is one of the data dimensionality reduction and classification techniques widely
used in QSAR modeling. The basic idea of the LDA algorithm is to project the data in
low dimensions, so that the projection centers of the same type of data are as close as
possible, and the projection centers of different types of data are as far apart as possible [20].
Feature selection is one important step for development of QSAR models. In this study,
a stepwise method combined with LDA (SW-LDA) was conducted to derive the QSAR
models and mine significant features in defining ADRs of drugs, which used F-test to
eliminate redundant variables at each stage of the descriptor selection. Here, we used the
default set of F values (Fmax = 3.84 and Fmin = 2.71) in the SW-LDA algorithm embedded
in Clementine 12.

3.4.2. Support Vector Machine (SVM)

SVM is a very classic and efficient classification and regression algorithm proposed by
Vapnik et al. in 1998 [21]. Compared with the current mainstream deep neural network
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technology, the SVM algorithm has certain advantages in solving small sample, nonlinear
and high-dimensional feature data pattern recognition problems. The core idea of the
SVM algorithm is to find the optimal classification surface (also called the hyperplane)
between the two classes. SVM uses kernel functions such as the radial basis function (RBF),
spline and Bessel for nonlinear transformation of the input space. Here, the RBF kernel
in the SVM algorithm embedded in Clementine 12 was performed to derived non-linear
models [22].

3.4.3. Deep Learning (DL)

Deep learning is based on a multi-layer feed-forward artificial neural network that
is trained with stochastic gradient descent using back-propagation [23]. The network can
contain a large number of hidden layers consisting of nervous with tanh, rectifier or maxout
activation functions [24]. Advanced features such as adaptive learning rate, rate annealing,
momentum training, dropout and L1 or L2 regularization enable high predictive accuracy.
Each compute node trains a copy of the global model parameters on its local data with
multi-threading (asynchronously), and contributes periodically to the global model via
model averaging across the network. Here, the DL algorithm embedded in the RapidMiner
studio software (education version, RapidMiner, Inc., Boston, MA, USA) was conducted to
derive QSAR models by using the maxout activation function.

3.5. Performance Evaluation

Then, to evaluate the predictive ability and reliability of QSAR models, widely applied
internal and external validations, such as the 10-fold cross-validation and the test set
validation, were applied. In the 10-fold cross-validation, the training set is randomly
divided into ten equal subsets. Each time, one of the ten subsets is used as the validation set
and the other nine subsets are put together to build a model. Then the average error across
all ten trials is computed. Further, four important evaluation indicators for performance
of QSAR models, including accuracy (ACC), balanced accuracy (BACC), sensitivity (SE),
and specificity (SP), were calculated as follows [25].

ACC = (TP + TN)/(TP + TN + FP + FN),
SE = TP/(TP + FN),
SP = TN/(TN + FP),
BACC = (SE + SP)/2,

where TP, TN, FP and FN represent the number of true positive, true negative, false positive
and false negative ones, respectively. Additionally, the receiver operating characteristic
(ROC) curve was performed to evaluate QSAR models with a more global and unbiased
evaluation, which is a comprehensive index reflecting sensitivity and specificity [26].
The ROC curve is a graphical plot of the sensitivity or true positive rate against the false
positive rate (1-specificity), which can be quantitatively described by the area under the
curve (AUC). The larger the AUC, the higher the diagnostic accuracy.

3.6. Model Application

To investigate ADRs of digestive and nervous systems of other drugs, we applied
these models in prediction of 1536 organic compounds with four phase and zero RO5
violations in the ChEMBL database [27], respectively. To obtain more strict and correct
results, a consensus prediction of ADRs of digestive and nervous systems was derived by
all three models, respectively.

4. Conclusions

In this study, the association rule analysis was initially used to discover patterns
of concurrences of ADRs of 566 marketed organic drugs in the SIDER database. Then,
three QSAR modeling algorithms, LDA, SVM and DL, were successfully used to derive
models of ADRs of digestive and nervous systems and identified key structural features
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in defining these ADRs of organic drugs based on 497 marketed organic monomer drugs.
Satisfactory results were obtained as follows. First, ADRs of digestive and nervous systems
often occurred at the same time with the rule support of about 60% and confidence of
about 81%, indicating these two ADRs co-occurred very frequently in adverse drug events.
Second, QSAR models derived by LDA, SVM and DL were good tools for screening ADRs
of digestive and nervous systems, which gave the ROC AUC values of 81.5%, 98.9%,
91.5%, 69.5%, 78.4% and 78.8% in discriminating ADRs of digestive and nervous systems,
respectively. The vsurf_IW7 was the same descriptor for two QSAR models, which may
be responsible for two ADRs of digestive and nervous systems. Other descriptors in two
ADR models were independent, especially for descriptors of atom counts and bond counts
and physical properties only involved in ADRs of the digestive system, including a_nI,
a_nP, opr_violation and reactive, and can well distinguish these two ADRs. Then, these
models were applied to investigate ADRs of digestive and nervous systems of 1536 organic
compounds with four phase and zero RO5 violations from the ChEMBL database. Based
on the consensus ADR predictions of models, among 1536 organic compounds 58.1% and
42.6% of compounds were computationally identified to cause such two ADRs, respectively,
indicating the significance of initial assessment of ADRs in early drug discovery.

Supplementary Materials: The following are available online: ADRs predictions of 1536 organic
compounds with four phase and zero rule-of-five (RO5) violations from the ChEMBL database.
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