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ABSTRACT: Dengue virus (DENV) infection is one of the most
widely spread flavivirus infections. Despite the fatality it could cause,
no antiviral treatment is currently available to treat the disease.
Hence, this study aimed to repurpose old drugs as novel DENV NS3
inhibitors. Ligand-based (L-B) and proteochemometric (PCM)
prediction models were built using 62,354 bioactivity data to screen
for potential NS3 inhibitors. Selected drugs were then subjected to
the foci forming unit reduction assay (FFURA) and protease
inhibition assay. Finally, molecular docking was performed to
validate these results. The in silico studies revealed that both models
performed well in the internal and external validations. However, the
L-B model showed better accuracy in the external validation in terms
of its sensitivity (0.671). In the in vitro validation, all drugs (zileuton,
trimethadione, and linalool) were able to moderately inhibit the viral activities at the highest concentration tested. Zileuton showed
comparable results with linalool when tested at 2 mM against the DENV NS3 protease, with a reduction of protease activity at 17.89
and 18.42%, respectively. Two new compounds were also proposed through the combination of the selected drugs, which are ziltri
(zilueton + trimethadione) and zilool (zileuton + linalool). The molecular docking study confirms the in vitro observations where all
drugs and proposed compounds were able to achieve binding affinity ≥ −4.1 kcal/mol, with ziltri showing the highest affinity at −7.7
kcal/mol, surpassing the control, panduratin A. The occupation of both S1 and S2 subpockets of NS2B-NS3 may be essential and a
reason for the lower binding energy shown by the proposed compounds compared to the screened drugs. Based on the results, this
study provided five potential new lead compounds (ziltri, zilool, zileuton, linalool, and trimethadione) for DENV that could be
modified further.

1. INTRODUCTION
Dengue is a mosquito-borne viral disease where the primary
mode of transmission of dengue virus (DENV) between
humans involves the Aedes aegypti mosquito as the primary
vector, with Aedes albopictus as the secondary vector. These
two vectors have caused viral endemic in more than 100
countries including Eastern Mediterranean, American, South-
East Asian, Western Pacific, and African regions. According to
the World Health Organization (WHO), the prevalence of
dengue infection has increased eightfold in the last two
decades, with reported deaths increasing from 960 to 4032,
between the years 2000 and 2015.1 As of June 2022, 849 death
has been recorded worldwide.2 In general, dengue infection
typically presents as an acute febrile illness accompanied by
headaches, retro-orbital pain, arthralgia, and myalgia. Although
the majority of dengue cases are either asymptomatic or mild, a
large number of cases develop into potentially life-threatening
severe diseases, such as dengue hemorrhagic fever (DHF) and
dengue shock syndrome (DSS).3 Moreover, life-threatening

conditions increase when infection occurs in individuals with
asthma, diabetes, and other chronic illness.
Despite the urgency to combat the disease, no effective

treatment is yet available in the market. The current treatment
only involves supportive care in the form of fluid therapy and
close clinical monitoring. One preventive treatment, the
vaccine Dengvaxia, was approved in 2019 by the U.S. Food
and Drug Administration (FDA).4 However, the vaccine
efficacy is varied by age, the DENV serotype that causes the
infection, and the serostatus of the vaccine recipient.5

Therefore, an efficient antiviral agent to treat DENV infection
is urgently needed. A DENV antiviral treatment should inhibit
all dengue serotypes6 and be administered to patients with or
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without a fever to decrease or prevent disease symptoms at the
first sign of dengue infection, thus decreasing the risk of severe
dengue diseases.
Understanding the life cycle of dengue virus reveals the

potential targets for anti-dengue, and these include proteins
involved in events such as endocytosis, viral fusion to the host
membrane, viral transcription, and the release of progeny
viruses from the host cell.7 Among these, the NS3 protein is an
interesting target for potential antiviral development. This
protein is among the best-characterized DENV nonstructural
proteins and is the most preserved in all dengue virus
serotypes.8 The NS3 protease, composed of NS2B and NS3, is
a vital component in the replication cycle of the dengue virus.
It acts as a trypsin-like serine protease, with His51, Asp75, and
Ser135 as its key components.8 The NS3 protease plays a
crucial role in cleaving the viral polyprotein at various sites,
including NS2A-NS2B, NS2B-NS3, NS3-NS4A, and NS4B-
NS5.8 Hence, the disturbance of the NS3 protease is fatal to
the virus, therefore can be considered a useful target for
antiviral drugs.9 Several studies have shown the promising
result of inhibitors targeting DENV NS3.10,11 In fact, a similar
target was successfully used for Hepatitis C virus (HCV)
treatment.12

The use of “old drugs” and compounds available in the
databases may accelerate the discovery of anti-dengue NS3
inhibitors, and in silico approaches provide systematic under-
standings of complex relationships among drugs, targets, and
diseases essential for successful repositioning.13 In addition, the
availability of well-curated compounds databases, as well as the
advancement of machine learning, offer unprecedented
opportunities to conduct drug repositioning. There are three
in silico methods that can be used for this purpose, which are
ligand-based, structure-based, and proteochemometric (PCM)
modeling. The ligand-based (L-B) method utilizes the
structural information of compounds. Using suitable descrip-
tors, the functional relationships between compounds in a data
set and one or more known actives are examined, usually
through machine learning algorithms. The structure-based
method uses the structural information of the target receptor.
Here, the method predicts the preferred pose of ligands in the
binding site through the use of scoring functions. The PCM
method, on the other hand, predicts the bioactivity by using
information from both compounds and target receptors.
Hence, this study aims to discover lead compounds of

DENV NS3 inhibitors from a collection of “old drugs” and
substances through two different in silico target predictions,
which are L-B and PCM models. Consequently, the results of
the target prediction were validated through in vitro validation,
which involves the foci forming reduction assay (FFURA) and
NS3 protease assay. In FFURA, the antiviral properties of the
drugs were evaluated on the dengue-infected Vero cells, while
the protease assay was performed to measure drug inhibition
toward the NS3 protease activity. From the in vitro
observation, two new compounds were proposed, which
were developed from the combinations of the selected drugs.
Finally, molecular docking was conducted on the selected
drugs and the proposed compounds to observe the interaction
that was involved in the formation of the drug−protein
complex.

2. RESULTS
2.1. In Silico Prediction of Lead Compounds for the

Anti-Dengue NS3 Inhibitor Using Ligand-Based (L-B)

and Proteochemometric (PCM) Prediction Models.
2.1.1. Internal Validation of Predictive L-B and PCM Models.
Table 1 shows the internal validation of the two models, where

sensitivity and specificity were used as performance measures.
Both models scored almost similar values in terms of sensitivity
and specificity. However, the PCM model scored a slightly
higher sensitivity than L-B (0.85 vs. 0.838) but lower specificity
than L-B (0.921 vs. 0.983). Note that the performance of PCM
plateaued and did not change with the increasing lambda value.
Hence, 0.8 was considered the best lambda value for the PCM
model. We placed higher importance on models with higher
sensitivity as the focus is more on identifying active
compounds (TP) than inactive compounds (TN). In this
case, the PCM model showed better performance in the
internal validation compared to the L-B model.

2.1.2. External Validation of Predictive L-B and PCM
Models. Table 2 summarizes the result of the external

validation for both PCM and L-B models. As mentioned, a
lambda value of 0.8 was considered the best and hence was
used in the external validation and screening exercise for PCM.
It can be seen that the L-B model showed a higher sensitivity
than PCM (0.671 vs. 0.538) but showed a lower specificity
than PCM (0.681 vs. 0.811). This indicates that the L-B model
is better at predicting active compounds, whereas PCM is
better at predicting inactive compounds. Overall, we deduced
that the L-B model performs better compared to the PCM
model, as a higher sensitivity score is preferable in the current
study, and external validation has more weightage than internal
validation as external validation measures the ability of the
model to predict instances it has never encountered before.
The applicability domain was measured using leverage and

similarity search for each compound. Here, the leverage value
and similarity search were calculated for each compound in the
external data set against each compound in the training set.
The results of both methods are presented in Figure 1. Here,
only 1.69% of compounds from the test set were predicted as

Table 1. Internal Validation of the Training Seta

model λ TP FP TN FN SEN SPE

PCM 0.8 18,948 3174 36,881 3351 0.850 0.921
0.83 18,946 3172 36,883 3353 0.850 0.921
0.86 18,945 3172 36,883 3354 0.850 0.921
0.89 18,945 3172 36,883 3354 0.850 0.921
0.92 18,945 3172 36,883 3354 0.850 0.921
0.95 18,944 3172 36,883 3354 0.850 0.921
0.98 18,944 3172 36,883 3354 0.850 0.921

L-B 18,697 672 39,364 3621 0.838 0.983
aFor the PCM model, the evaluation was conducted for the lambda
value (λ = 0.8, 0.83, 0.86, 0.89, 0.9, 0.93, 0.96, and 0.99). TP�true
positive, FP�false positive, TN�true negative, FN�false negative,
SEN�sensitivity, SPE�specificity.

Table 2. External Validation to Assess the Performance of
PCM and L-B Modelsa

model TP FP TN FN sensitivity specificity

PCM 1121 3168 13,570 961 0.538 0.811
L-B 1393 5345 11,399 683 0.671 0.681

aTP�true positive, FP�false positive, TN�true negative, FN�
false negative, SEN�sensitivity, SPE�specificity.
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unreliable from the leverage nodes and 1.87% from the
similarity search nodes. Looking at the high leverage score and
similarity search (>98%), it can be deduced that the result of
the validation is valid as the high sensitivity and specificity
values were corroborated by the result of the applicability
domain. In addition, the chemical space covered by the
predictive model was also determined using principal
component analysis (PCA) (see Supporting Information S1).
It was found that the chemical space covered by the external
set falls within the boundaries of the chemical space of the
training set and hence is deemed to be within the applicability
domain of the constructed model.

2.1.3. Screening of “Old” Drugs as the Potential DENV
NS3 Inhibitor. In the drug screening process, a total of 1263
drugs were collected from SWEETLEAD14 and DrugBank.15

Out of the whole drug set, 16 drugs from the PCM model
(score ≥0.99) and two drugs from the L-B model (score ≥0.5)
were identified. From the PCA plot, it was found that most of
the drugs predicted using the PCM model lie within the
training set boundaries, while the drugs predicted using the RF
modeling lie close to the compounds but not in the heavily
populated area (see the Supporting Information, Figure S2).
The list of the drugs is presented in Tables 3 and 4. For in vitro
validation purposes, not all drugs were used for further testing.
Only three drugs were selected from the screening, which were
zileuton, trimethadione (from the PCM model), and linalool
(L-B model). Zileuton and trimethadione were selected as they
were located at the center of the PCA graph, which indicated a
highly populated area of the active inhibitor in the training set.
Linalool was selected as it is closer to the highly populated
area, as compared to the sesamine. This signifies a high
similarity with the training set. Additionally, the availability of
the literature, specifically on in vitro studies of these drugs, was
also taken into consideration.
2.2. In Vitro Validation of the Selected Drugs as Anti-

Dengue NS3. 2.2.1. Drugs Cytotoxicity on Vero Cells. The
drugs that were selected for in vitro validation were initially
tested for cytotoxicity effect. In general, all drugs exhibited low
cellular toxicity in Vero cells, even at a millimolar
concentration, as indicated in Figure 2. The first drug, zileuton,
was tested in the range of concentrations between 0.25 to 4
mM. A concentration of 4 mM was set as the highest
concentration allowed to maintain the solvent concentration at

1% v/v. After 72 h of incubation, all tested concentrations,
0.25, 0.5, 1, 2, and 4 mM showed cell viability above 80%. The
calculated 50% cytotoxic concentration (CC50) value was
38.67 mM. Next, trimethadione was tested in the range of
1.25−20 mM. The drug showed a dose-dependent response
where, as the concentration increased, the percentage of cell
viability was also reduced. However, at the highest tested
concentration of 4 mM, the cells maintained its viability at
80%. Based on the analysis, the calculated CC50 of
trimethadione was 117 mM. The third drug, linalool, was
tested in the range of 0.125−2 mM. A concentration of 2 mM
was used as the highest concentration to maintain the solvent
concentration at 1% v/v. After 72 h of incubation, cells tested
at different concentrations of 0.125, 0.25, 0.5, 1, and 2 mM
maintained more than 80% of cell viability, with calculated
CC50 value was 17.47 mM. Lastly, the positive control,
ribavirin, maintained its cell viability above 90%, even at the
highest concentration of 1 mM. The CC50 value calculated by
GraphPad for ribavirin was 49 mM. The cytotoxicity of the
solvent of the drugs, which is ethanol, on the cells was also
studied here. Here, the highest solvent percentage tested is up
to 2% v/v, with cell viability at 86%.

2.2.2. Anti-Dengue Activities of Selected Drugs on
Infected Vero Cells. To test the inhibitory potential of the
drugs on the infected cell, similar drug concentration, which
was confirmed safe to be used via the cytotoxicity test, were
used. After an hour of viral incubation, the dengue virus was
expected to penetrate the host cell and begin its replication and
reproduction by using the host’s cellular metabolism, and later,
a fully formed virus will be assembled. After 72 h, the infected
cells were incubated with tested drugs, where the end-point
assay was conducted and resulted in the formation of brown-
colored localized clusters called foci. Figure 3 is the results of
infected Vero cells, which have been treated with the drugs
zileuton, trimethadione, linalool, and ribavirin (positive
control).
Based on the results, all treatments showed a dose-

dependent response trend where foci reduction increases
with increasing drug concentration. For zileuton, it showed the
highest foci reduction with an average of 47% at the highest
concentration tested, 4 mM. Although dose−response trend
can be seen from the result; however, there are slight
differences in the trend between the inhibition of foci at 1
and 2 mM, where at 2 mM, zileuton caused slightly lower foci
inhibition compared to the treatment of 1 mM. The projected
half-maximal inhibitory concentrations (IC50) value calculated
was 3.3 mM. For trimethadione, the highest foci inhibition
(36%) was recorded at 20 mM. The calculated IC50 for
trimethadione was 25.97 mM. Among the tested drugs, only
linalool demonstrated foci reduction above 50%, where the
highest foci inhibition (54%) was observed at 2 mM. The IC50
calculated for linalool was 1.12 mM. Looking at the presented
data, it should be noted that none of the selected drugs showed
a better antiviral effect than the ribavirin in terms of the
concentration used to achieve a 50% foci reduction. Based on
the assay, the calculated IC50 for ribavirin was 0.14 mM which
was the lowest among the four drugs. Ribavirin also showed
88% foci inhibition at the highest concentration tested, 1 mM.

2.2.3. DENV-2 NS2B-NS3pro Inhibition by Selected Drugs.
Figure 4 shows the protease inhibition of the drugs. In terms of
protease inhibition, the positive control, aprotinin, performed
the best against the selected drugs and ribavirin. Aprotinin, the
positive control for this assay, is a competitive serine protease

Figure 1. Applicability domain (AD) using similarity search and
leverage. Based on the score, both algorithms show that the model
reliably predicts the test set activity. Analyses were conducted using
the Knime45 Analytics Platform.
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Table 3. List of Drugs/Substances Screened and Filtered from PCM and Its Indicationa

aAll drugs scored 0.99 when tested against the dengue NS3 protein and were ranked accordingly for further selection.
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inhibitor that forms stable complexes and blocks the active
sites of enzymes. At a concentration of 5 μM, the protease
inhibitor inhibited more than 65% of the protease activity and
recorded the highest inhibition (>85%) at 10 μM concen-
tration. Another positive control, ribavirin, shows the opposite
effect. The fluorescence intensifies with the addition of the
treatment but gradually reduces the effect with the increase of
drug concentration. This is an interesting outcome, as the
effect on the NS2B-NS3 protease was inconsistent with the
observed in vitro result. Thus, this finding suggests that the
ribavirin does not work in targeting the NS2B-NS3 protease
but inhibits the viral progression via different mechanisms. To

be specific, the mechanism of action of ribavirin is via lethal
mutagenesis of RNA virus genomes mediated by the viral
RNA-dependent RNA polymerase,16 and this may result in
viral inhibition as reported in the study.
For zileuton, a positive correlation was observed between

drug concentration and the percentage of inhibition. The
highest protease inhibition (27.7%) was observed at a
concentration of 4 mM, while at 2 mM concentration, the
inhibition was reduced to 17.89%. For linalool, the drug
recorded an average protease inhibition of 18.42% at 2 mM
and 13.83% protease inhibition at 1 mM. For trimethadione,
the highest protease inhibition (17.15%) was recorded at 20

Table 4. List of Substances Screened and Filtered from the RF Model and Their Usagea

aAll substances showed a score of ≥0.5 when tested against the dengue NS3 protein.

Figure 2. Vability of Vero cells after treatments with different drugs: (A) zileuton, (B) trimethadione, (C) linalool, and (D) positive control�
ribavirin. The viability of cells was analyzed at 72 h using the MTT assay. No significant cell morphology changes were detected at the highest
concentration tested. The CC50 values are expressed as percentages of treated vs. untreated cells. Each value is the means ± SD of three
experiments, each run in triplicate.
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mM, and at 10 mM, about 13.17% of protease inhibition was
detected. Overall, among all drugs, at the highest concentration
tested, trimethadione showed the least effect on the protease
activity (20 mM, 17.15% protease inhibition).
2.3. Development of New Compounds from the

Combination of Selected Drugs. Based on the in vitro
results, two new compounds were developed�ziltri and zilool
(Figure 5). Zileuton was the main component for both ziltri
and zilool, with zitlri�zileuton + trimethadione and zilool�
zileuton + linalool. Zileuton was chosen to be the main
component in the ziltri and zilool combination as it shows
higher protease reduction.
2.4. Molecular Docking of the Selected Drugs and

Newly Derived Compounds with the Dengue NS2B-NS3
Protease. The NS2B-NS3 protease is made up of 4
subpockets, S1-4 and the important residues include
Asp129_NS3, Ser135_NS3, Tyr150_NS3, and Tyr161_NS3
(S1 pocket); Asp81_NS2B, Gly82_NS2B, Ser83_NS2B,
Asp75_NS3, and Asn152_NS3 (S2); Ser85_NS2B,
Ile86_NS2B, and Lys87_NS2B (S3); and Val154_NS3 and
Ile155_NS3 (S4).28 The docking site of the protease was
determined from the halo form of the protease, which serves as
the golden reference for the binding site. The site contains the

important catalytic triad of the protease, which are His51,
Asp75, and Ser135. A mutagenesis study revealed that the
replacement of catalytic serine with alanine caused the
inactivity of the protease, and no viable virus was recovered
from an infectious cDNA clone with abolished protease
activity.17,18 The site is well known for its shallowness, and the
prediction by the PockDrug19 server showed that this site has a
druggability score of 0.5 (score range 0−1), which may reduce
the ability of small molecules to effectively interact with the
protein.
In the docking exercise, all drugs and the two newly

developed compounds were found to bind to the binding
pocket at the right side of the active site region (S1 pocket), as
observed in Figure 6. Interestingly, this site is much broader
and more shallow than the binding pocket at the left region
(S2 pocket),20 yet, most of the interactions were observed to
be at this site. It was identified that the S1 region has much
more hydrophobic residues compared to the S2 region. The
summary of all interactions involved in the ligand−protein
complexes is indicated in Figure 7 and Table 5.
From the molecular docking study, zileuton was shown to

bind to the active site at −5.6 kcal/mol, as depicted in Figure
7A,B. From the result, zileuton formed 5 hydrogen bonds with

Figure 3. Inhibitory potential of drugs on infected cells with the dengue virus: (A) zileuton, (B) trimethadione, (C) linalool, and (D) positive
control�ribavirin. The drug was diluted to various concentrations (as indicated above) with overlay media and added to the cell culture. The viral
inhibition was analyzed at 72 h. The inhibitory response of each drug is expressed as the mean of absorbance ± SD of three experiments, each run
in triplicate. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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the NS2B-NS3 protease where one of the hydrogen bond
interactions involved B:Ser135 of the catalytic triad at a
distance of 3.4 Å. Other hydrogen bond interactions involved
B:Phe130 (3.4 Å), B:Lys131 (3.2 Å), B:Gly133 (2.2 Å), and
B:Tyr150 (3.5 Å), with either the amides or alcohol functional
groups of zileuton. Moreover, zileuton formed alkyl
interactions with B:Pro132 (3.8 Å) and van der Waals
interactions with B:His51, B:Gly151, B:Asn152, and B:Tyr161.
The molecular docking of trimethadione is shown in Figure

7C,D. It was found that the drug also established a hydrogen
bond with B:Ser135 at a distance of 2.5 Å. Other hydrogen

bond interactions were found between the drug−protein
complex including B:Lys131 (3.2Å), B:Thr134 (2.2 Å), and
B:Gly133 (2.5 Å). Trimethadione also formed a σ-π bond with
residue B:Tyr161 (3.7 and 3.9 Å) and an alkyl bond with
B:Pro132 (4.9 Å). The van der Waals interaction occurs
between trimethadione and residues B:Asp129, B:Lys131,
B:Phe130, and B:Tyr150. The binding affinity for the complex
above was predicted at −4.6 kcal/mol.
Linalool was found to form two polar interactions with the

protease, as observed in Figure 7E,F. In addition to the
interaction with B:Ser135, the hydroxyl group of linalool

Figure 4. NS2B-NS3 protease inhibition with the treatment of selected drugs: (A) zileuton, (B) trimethadione, (C) linalool, (D) positive control,
aprotinin. and (E) positive control�ribavirin. The statistical analysis was conducted between particular drugs against the untreated cells (NC)
using one-way ANOVA with Tukey correction. Each value is the means ± SD of two experiments, each run in triplicate. (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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established a hydrogen bond with B:His51 (3.3 Å), another
residue of the catalytic triad. Besides His51, linalool also
formed hydrogen bonding with B:Gly151 (2.3 Å). It was found
that the drug formed σ−π and π−alkyl bonds with residue
B:Tyr161. van der Waals forces were seen between linalool and
residues B:His51, B:Asp129, B:Phe130, B:Gly133, and
B:Tyr150. The predicted binding affinity for the complex
was − 4.1 kcal/mol.
In comparison to the selected drugs, the control, panduratin

A, showed the highest binding affinity (−7.0 kcal/mol). The
molecular docking study of panduratin A is shown in Figure
7K,L. It was observed that the panduratin A-protein complex
established polar interactions with four amino acid residues,
i.e., B:Lys131 (3.4 Å), B: Gly133(2.3 Å), B:Thr134 (2.3 Å),
and B:Ser135(2.4 Å). Besides, π−π T-shaped bonds were
found between the ligand and B:His51 and B:Tyr161, while a
π−alkyl bond was established with B:Pro132. Previously,

panduratin A showed competitive inhibition toward DENV-2
NS2B/NS3pro in vitro with Ki = 25 μM,21 which shows the
validity of this compound as the protease inhibitor and
reference for the study.
Since the in vitro inhibitions of the selected drugs were

found to be moderate, and the recorded binding affinities were
less than panduratin A, we included two newly proposed
compounds to be docked against the NS3 protease. These
compounds were ziltri (Figure 7G,H) and zilool (Figure 7I,J).
These combinations showed improved binding affinity as
compared to the selected drugs. Ziltri showed the highest
binding affinity (−7.7 kcal/mol), followed by zilool (−6.9
kcal/mol). Ziltri formed hydrogen bond interactions with
B:Phe130 (2.8 Å), B:Tyr150 (1.9 Å), B:Gly151 (2.3 Å),
B:Gly153 (2.2 Å), and B:Tyr161 (2.0 Å) and formed π−sulfur
interactions with B:His51. It should be noted that both ziltri
and zilool interact with at least one of the catalytic triad
residues, with zilool also occupying the S2 pocket through an
interaction with Asp75. In addition, both ziltri and zilool, as
well as panduratin A, are larger in size compared to the three
screened drugs. Hence, the larger ligand size may be another
prerequisite when docking at shallow sites, as shown by the
DENV-3 active site.

3. DISCUSSION
The aim of this study is to discover novel anti-dengue drugs
from old drugs that target the DENV NS3 protein using a
combination of in silico and in vitro studies. To achieve the
desired objectives, three phases of the study were conducted.
In the first phase, the screening of potential drugs was
conducted by building a prediction model of established
bioactivity data of the anti-dengue NS3 protein using two
prediction models�L-B and PCM. Next, the process
continued with the evaluation of the screened drugs’ anti-
dengue properties in vitro by using the FFURA assay and
protease assay. The drugs were tested using similar
concentrations throughout these three assays, and the
effectiveness of viral inhibition was analyzed. Based on the
observed in vitro results, molecular docking was conducted on
the screened drugs and newly developed compounds against
the DENV NS3 protein. The key binding interactions and the
best binding orientation were determined.
Based on the results, several key observations can be

deduced. First, the L-B model performs slightly better than
the pcm model in the prediction of anti-dengue potential. In
the external validation, the L-B model showed higher
sensitivity compared to the PCM model (L-B = 0.671, PCM
= 0.538). Meanwhile, the L-B model showed a lower sensitivity
value in the internal validation; however, the difference is
insignificant compared to the PCM model. In addition,
external validation has more weightage compared to internal
validation as it evaluates compounds or instances it has never
seen before. Moreover, as the goal of the study is to screen
active inhibitors against the dengue virus, we placed a higher
weightage on models that has high sensitivity value. This is
important as we would want to maximize the positive number
of correct classifications. Hence, the result that we obtained
from the L-B model fits the above criteria, and therefore it is
better than the PCM model.
These results highlight that the additional protein

descriptors employed in the PCM model may not be
advantageous in this study. However, this result should not
be generalized and should be observed on a case-to-case basis.

Figure 5. Newly developed compounds based on the in vitro results.
(A) Ziltri (zileuton + trimethadione) and (B) zilool (zileuton +
linalool).

Figure 6.Molecular surface representation of the NS2B-NS3 protease
with selected drugs. Selected drugs from two prediction models
(zileuton, trimethadione, linalool), newly developed compounds
(ziltri and zilool) and positive control�panduratin A, were docked
at the active site of the protease.
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For example, a study by Lapins et al.22 demonstrated that the
PCM model outperformed the QSAR model (that uses a single
descriptor) for single target models to identify Cytochrome
P450 (CYP) inhibition where the area under the curve was
higher in PCM than QSAR (AUC:PCM > 0.90, QSAR 0.79−
0.89). Further external validation of the PCM model showed
an AUC score of 0.94, which suggested the good performance
of the constructed PCM model. Nevertheless, the result
presented by Lapins et al.22 uses a smaller number of proteins
and compounds (5 CYPs and 17, 143 compounds) compared
to the current study, which uses 10 proteins of different origins
and more than 62,000 compounds, which may account for the
disparity in results. In another study using a kinase data set
spanning the whole kinome by Niijima et al.,23 ligand-based
models using SVMs performed better than PCM DC-SVMs in

external validation with an accuracy of 81.3% compared to
73.9%. Interestingly, for internal validation, the result
presented by Niijima et al.23 was comparable to the current
study, where PCM dual component (DC)-SVMs showed
higher accuracy compared to the L-B model, with 90.9% and
86.2%, respectively. The absence of the protein descriptors in
the L-B model also resulted in a faster calculation and
computational time compared to the PCM model. Despite
these matters, both models have successfully screened drugs
that were able to elicit moderate antiviral activities in vitro and
biologically safe to the cell, although treatment was used at a
high concentration. Hence, both methods can produce a
comparatively fast and promising result to assist the anti-
dengue NS3 drug development process.

Figure 7. Interactions of the selected drugs and substances against the dengue NS2B-NS3 protease both in 3D and 2D visualizations. The complex
of the NS2B-NS3 protease with zileuton (A, B), trimethadione (C, D), linalool (E, F), ziltri (G, H), zilool (I, J), and panduratin A (K, L).

Table 5. Affinity of the Different Complexes and the Residues Involved in the Interactiona

drug
affinity

(kcal/mol)

no. of
H

bonds

residue(s) involved in
hydrogen bond
interactions residue(s) involved in other interactions

zileuton −5.6 5 B:Phe130, B:Lys131,
B:Thr134, B:Ser135,
B:Tyr150

B:Pro132 (alkyl bond); B:His51, B:Gly151, B:Asn152, B:Tyr161 (van der Waals)

trimethadione −4.6 4 B:Lys131, B:Gly133,
B:Thr134, B:Ser135

B:Pro132 (alkyl bond); B:Thr161 (π−σ bond); B:Asp129, B:Lys131, B:Phe130,
B:Tyr150 (van der Waals)

linalool −4.1 3 B:His51, B:Ser135,
B:Gly151

B:Tyr161 (alkyl, π−σ, and π−alkyl bonds); B:His51, B:Asp129, B:Phe130,
B:Gly133 and B:Tyr150 (van der Waals)

ziltri
(zileuton + trimethadione)

−7.7 5 B:Phe130, B:Tyr150,
B:Gly151, B:Gly153,
B:Tyr161

B:His51 (π−sulfur bond), A:Asp81, A:Gly82, A:Thr83, B:Asp75, B:Asp129,
B:Ser135, B:Asn152, B:Gly153 (van der Waals)

zilool (zileuton + linalool) −6.9 3 B:Asp129, B:Gly153,
B:Tyr161

B:Asp75 (π−anion); B:Pro132, B:Tyr150 (alkyl and π−alkyl bonds); A:Asp81,
A:Gly82, A:Thr83, A:Met84, B:Trp50, B:His51, B:Arg54, B: Val72, B:Gly151,
B:Asn152 (van der Waals)

panduratin A −7.0 4 B:Lys131, B:Gly133,
B:Thr134, B:Ser135

B:His51, B:Tyr161 (π−π T-shaped); B:Pro132 (π−alkyl bond)

aAll of the results were predicted using AMDock49 software using Autodock Vina,51 while PyMOL48 Open GL and Biovia Discovery Studio52 were
used for visualization.
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Second, out of the three drugs that were screened,
zileuton and linalool showed promising results in vitro as
lead compounds for anti-DENV potential. This is based on
the observed FFURA and protease assays. In the FFURA assay,
linalool performed better than zileuton and trimethadione,
while zileuton showed the highest inhibition of the DENV NS3
protease at the highest concentration tested, as well as in
molecular docking. Therefore, both zileuton and linalool have
the potential for further development of DENV NS3 protease
inhibitors, as both consistently showed good efficacy in each
assay. These drugs can be direct-acting antivirals (DAA) that
specifically target the viral protein. Besides, these drugs show
low toxicity even when tested at a high concentration, which
fits the DAA criteria that includes drug efficacy at low toxicity
and a wide treatment window. However, except for the
protease assay, both drugs were unable to exhibit better results
than ribavirin. In addition, the ability of linalool to inhibit the
DENV NS3 protease and dengue-infected cells highlights
another advantage of the L-B model. To increase our
understanding of the chemical space of the active compounds
against dengue, using PCA analysis, it was found that linalool
was not located in the dense area as compared to
trimethadione and zileuton (from PCM model), and yet, the
activity from the in vitro validations showed promising antiviral
results (see Supporting Information S1). Thus, this demon-
strates the ability of the L-B model to predict compounds
outside the chemical space covered by the training set.
Although the drugs are no better than ribavirin in terms of foci
inhibition, however, all of them showed better protease
inhibition. This is true as ribavirin is not a specific inhibitor
of the NS3 protease and is not currently used as a treatment
for dengue fever. From the protease assay, we identified that
ribavirin is not a suitable positive control for protease
inhibition as it showed the opposite effect than inhibiting the
protease, and therefore other positive controls such as
aprotinin or panduratin A need to be used for this purpose.
One issue that may be raised from the study is the effective

concentration used in the treatment. Unlike several studies that
reported the success of inhibition at submicromolar concen-
tration, the current study suggested the use of marketed drugs
at a millimolar concentration to achieve a desirable antiviral
effect. In exception to trimethadione, this issue may have arisen
possibly due to the drugs’ low solubility; however, there is not
enough evidence to draw that poor bioavailability is the reason
for this event. In one study investigating standard serine
protease inhibitors against CF40.NS3pro, a recombinant NS3
protease, revealed that three out of 16 inhibitors only reduced
the protease activity up to 15% at 1 mM concentration.24

Therefore, this finding supports the results obtained from the
current study, where some of the protease inhibitors may
require high concentration to exhibit the desired property. In
another study by Holbeck et al.25 on the FDA-approved
anticancer potential in the NCI60 human tumor cell lines, at
least three drugs exhibit 50% growth inhibition (GI50) at the
concentration of ≥2500 μmol/L (2.5 mM). This inferred that
some drugs do exhibit their activity at higher concentrations
when tested in vitro while still remaining safe and effective to
be used in patients for anticancer treatment.
Third, interactions with the residues of the catalytic triad,

ligand size, and binding at S1 and S2 subpockets may be
important prerequisites in establishing strong binding
against ns3 proteins at the active site. From the results, we
hypothesized that the interaction of the selected drugs and

proposed compounds with one of the catalytic triad residues,
i.e., Ser135 of the NS3 protease, might disrupt the electron
exchange between the carboxyl group of Asp75 and the
nitrogen atom of the imidazole ring of His51.26 This may
disturb the capability of His51 to trigger nucleophilic assault of
the hydroxyl group (β-OH) of Ser135, which is important for
the initiation of proteolysis.26,27 In addition, all ligands were
found to have interactions with one or more amino acid
residues (Asp129, Phe130, Tyr150, Asn152, and Gly153) of
NS3 protease pocket 1 and its vicinity. Apart from that, these
residues form a small part of the β-sheet that has an important
role in substrate binding.1,2 Hence, such interactions possibly
alter the functional attribute of the protein by changing its
conformation.
In addition to the previous point, hydrogen bonding may be

important for a stable interaction against the catalytic triad and
other important residues of NS3. When comparing the docking
results of the screened drugs, the more the hydrogen bonds
established with NS3, the lower the binding energy. Our
finding is in line with Hariono et al.,28 where hydrogen bonds
are responsible for the stability of the thioguanine scaffold
derivative-protease complex. Compound 18, the best derivative
of the scaffold with the lowest IC50 value (0.38 μM), formed
26 hydrogen bonds, which have at least 0.1% occupancy
throughout 70 ns simulation time. A hydrophobic interaction,
to a lesser extent, was also observed to maintain the stability of
the complex. Furthermore, Katz et. al.29 identified a serine
protease inhibition motif in which binding is mediated by a
cluster of very short hydrogen bonds (<2.3 Å) at the active site
between the protein residues and the inhibitor. However, when
comparing the screened drugs and newly proposed drugs,
although the latter formed lesser hydrogen bonds, its binding
energy was lower. In addition, all compounds occupy both
subpockets 1 and 2 (S1 and S2), and in shallow and broad
binding pockets such as S1, the size of the compounds plays an
important role. It has been reported that shallow pockets are
not “druggable sites” where it is difficult for small-sized
compounds to be flanked by the binding pocket. In addition,
the estimated Ki for ziltri was 2.69 μM, which is smaller than
the estimated value of panduratin A, which is 7.4 μM, which
makes it a better inhibitor than the reference drug. Based on
these observations, we anticipated that ziltri and zilool may
show better in vitro viral inhibition as the results showed higher
binding affinity than the positive control, panduratin A.

4. CONCLUSIONS
This study attempted to repurpose old drugs as novel DENV
NS3 inhibitors using in silico screening and validation of the
antiviral properties of selected drugs via in vitro assays and
molecular docking. Based on the results, three key findings can
be deduced, which are: (i) the L-B model slightly outperforms
the PCM model in DENV NS3 screening, (ii) zileuton and
linalool showed promising results, and (iii) besides the
interaction with the catalytic triad, the size of the compounds
may be another important prerequisite, given the shallowness
of the binding site. In regards to (iii), this observation was
made when two newly proposed compounds, ziltri (zileuton +
trimethadione) and zilool (zileuton + linalool), were docked to
NS2B-NS3 and showed the overall lowest binding energy
surpassing the positive control, panduratin A. These
compounds were proposed to produce compounds with better
viral inhibition. This is because the individual drugs showed
inhibition in the millimolar concentration, although some
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drugs do exhibit in vitro activity at such concentrations.30 It
should be noted that all compounds contain several stereo-
centers, which may complicate their synthesis. Future studies
should include more bioactivity data from the viral serine
protease, which, at the time of the study, was limited, and the
size of the ligands should be considered in the screening. In
addition, drug filtering parameters prior to the prediction
process may need to be reconsidered the chemical features of
the ligand, which could fit the shallow and broad active site of
the NS3 protease. Furthermore, molecular dynamics should be
performed as it provides better insights into the ligand−protein
interaction in a fixed period of time, giving a view of the
dynamic “evolution” of the system. At this juncture, the three
screened drugs (zileuton, linalool, and trimethadione) are
much more suitable to be considered as lead compounds for
DENV NS3, and hence, this study has provided five new lead
compounds for NS3 that can be further modified to improve
their activity.

5. MATERIALS AND METHODS
5.1. In Silico Target Prediction. The study was conducted

in several phases, as illustrated in Figure 8. Initially, the
screening of the anti-dengue potential was conducted using in
silico target prediction. Here, the target prediction was
employed using machine learning to predict the most probable
protein targets of small molecules. The algorithms that were
employed in machine learning use protein sequence data to
learn patterns and uncover relationships between target
proteins and the possible biological activities of the
compounds/substances using carefully prepared chemical
libraries. In short, the predictions are based on the similarity
principle through reverse screening.

5.1.1. Training Set. To build a predictive model, 62,746
active and inactive compounds related to 10 proteins
associated with, and including, the NS3 protein were retrieved
from CheMBL,31 PubChem,32 and BindingDB33 databases, as
indicated in Table 6. Three of the NS3 proteins belong to the

Flaviviridae family, which are the dengue virus (DENV), West
Nile virus (WNV), and Hepatitis C virus (HCV) (UniProt ID
P14337, P06935, P26662, respectively). Since NS3 is a serine
protease, therefore we incorporated another seven human
serine proteases into the training set as bioactivity data on viral
serine protease is limited. An active ligand−protein interaction
was considered as having a Ki/Kd/IC50/percentage inhibition
value of less than 50 μM or 50%. Any values above the
specified threshold were considered as inactive. All protein
sequences were collected from UniProt.34

5.1.2. Chemical Descriptor. To represent the compounds as
vectors for both PCM and L-B models, the Extended
Connectivity Fingerprints with a diameter of four bonds
(ECFP_4)35 and a bit size of 1,024 was used as a chemical
fingerprint as this fingerprint has proved to effectively secure

Figure 8. Workflow of the study. The study begins with building a prediction model that could screen marketed drugs for activity against the NS3
dengue protein. Here, ligand-based (LB) and proteochemometric (PCM) models were developed. Next, the in vitro validations were conducted to
analyze the antiviral properties of the drugs. Here, the cytotoxicity assay, FFURA, and protease inhibition assay were conducted. The final stage of
the evaluation was done to determine factors that possibly contribute to the interaction observed in vitro using molecular docking. Here, molecular
docking was done on the selected drugs against the NS3 protease. The binding energy and the interactions that developed between the ligand−
protein complexes were analyzed.

Table 6. Breakdown of Bioactivity Data Points Collected for
Each Targeted UniProt IDa

protein
uniprot
ID active inactive total

dengue virus genome
polyprotein

P14337 6271 29,929 36,200

hepatitis C virus genome
polyprotein

P26662 2680 7643 10,323

West Nile virus genome
polyprotein

P06935 137 617 754

prothrombin P00734 3274 728 4002
coagulation factor X P00742 5204 358 5562
serine protease 1 P07477 1930 204 2134
neutrophil elastase P08246 2154 257 2411
cathepsin G P08311 231 57 288
kallikrein-7 P49862 46 26 72
coagulation factor IX P00740 593 15 608

total 22,520 39,834 62,354
aBioactivity data were collected from PubChem,32 ChEMBL,31 and
BindingDB.33
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the chemical structural information relevant to bioactivity in
several studies.35,36

5.1.3. Machine Learning Algorithms for the PCM Model.
For the PCM model, the protein vectors were represented by
their full sequence, where a protein sequence is denoted as a
string of characters, and each character represents an amino
acid that is part of the protein. The Parzen Rosenblatt
Windows (PRW)37,38 was employed as a classification
algorithm, and based on the Bayes theorem, compound x
was assigned to class ωα with the highest value. The posterior
probability, or probability of a new compound belonging to a
target class, ωα, with a given vector molecular feature, , is
calculated as such

| = | ·
p

p p
p

( )
( ) ( )

( ) (1)

= ·
posterior probability

likehood prior probability
evidence

The a priori probability of class ωα, P(ωα), can be calculated as
the class proportion in the training set. The quantity p(x|ωm)
is the class conditional probability of x belonging to class ωm
and p(x) is the normalization constant, which assures that the
sum of all of the M class conditional probabilities is equal to
one and is hence given by

=
=

p x p p( ) ( ) ( )
m

M

1 (2)

The PRW calculates the class conditional probability
p(x|ωα) as the average similarity of the unknown compound,
x, against a set of known compounds, xj, belonging to a given
class ωα. The value p(x|ωα) is given by

| =p x
N

K x x( )
1

( , ; )j
(3)

The equation above then becomes as below once we
incorporate biological similarity using the tensor product
shown before

| =p x t
N

K x x K t t( , )
1

( , ; ) ( , )
x t N

j j
( , )j j (4)

Here, (x, t) is the compound−target complex being analyzed
and Nωdα

and (xj, tj) are the number of compound−target pairs
and compound−target pairs in class ωα, respectively.

5.1.3.1. Chemical Similarity Measurement. As the
component of the PCM model, the Aitchison−Aitken (AA)
kernel39 was used to calculate chemical similarity.
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where d = (x − xj)τ(x − xj) means the number of times x and
xj differ, λ is the smoothing parameter, and n is the size of the
compound vector, which, in this case, is 1024. The smoothing
parameter in the AA kernel has a narrow range of 0.5 < λ < 1.0.
At λ = 0.5, it will produce maximum smoothing, and at λ = 1.0,

no smoothing occurs; hence, these two values are ignored.39

For this study, the AA kernel was executed at λ = (0.8, 0.83,
0.86, 0.89, 0.9, 0.93, 0.96, 0.99).

5.1.3.2. Biological Similarity Measurement. The protein
sequences were subjected to sequence alignment using
multiple sequence alignment named MUSCLE40 on the
EMBL-EBI server (https://www.ebi.ac.uk/Tools/msa/
muscle/). The protein sequence similarity is calculated as the
ratio of the number of matching amino acids over the length of
alignment using the package bio3d in R.41 Sequence
alignments are performed to identify the structural, functional,
or evolutionary relationships that may exist between protein
sequences by aligning the sequences to find regions of
similarity.

5.1.4. Machine Learning Algorithms for the L-B Model. A
random forest (RF) algorithm was used to build the L-B
prediction model. There are two stages in producing the RF
algorithm: RF creation and prediction. In RF creation, k
features are randomly selected from total m features where k ≪
m. Among the k features, node d is calculated using the best
split point, using the Gini index (S).

=S P iGini( ) 1 ( )
j

1 (9)

The node is then split into daughter nodes using the best
split. All of the steps were repeated until i number of nodes had
been reached. j is the number of class and P(i) is the
probability of an instance being classified to a specific class.
The node is then split into daughter nodes using the best split.
All the steps were repeated until i number of nodes had been
reached.
This process will repeat until the tree has reached the

specified number of branches; nodes were expanded, and a
path was established. As RF is an ensemble of decision trees,
the number of trees, n was set at 100. In the next stage, which
is the random forest prediction, test features are taken and
rules of each randomly created decision tree to predict the
outcome is used and predicted outcome is stored. The average
score from each tree is used as the final prediction from the RF
algorithm.

5.1.5. Internal and External Validations. The internal
validation was performed using 5-fold cross-validation. In brief,
the data set was split into five subsets, where four were used as
the training set, and the fifth served as the test set to assess the
predictive ability of the model. In the first iteration, the first
fold is used to test the model, and the rest are used to train the
model. This process is repeated until each fold of the 5-fold has
been used as the testing set. The external validation was
performed by testing 18,820 compounds collected from the
ZINC database (https://zinc.docking.org/), which are not in
the training set.

5.1.6. Performance Measure. The model performance was
measured using sensitivity and specificity metrics. This was
calculated by the number of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) compounds,
as indicated below

=
+

sensitivity
TP

TP FN (10)

=
+

specificity
TN

TN FP (11)
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5.1.7. Applicability Domain (AD) Using Cosine (cosα) and
Leverage. The cosine similarity is used to measure the
similarity of the datasets regardless of the magnitude of the
vectors. It measures the angle between two vectors starting at
the origin and extending to the a-th and b-th p-dimensional
objects.42 The cosine value ranges between 0 and 1, where a
value of 1 indicates perfect similarity. Leverage is the other
method that was applied to define the AD, where it uses the
approach of extent of extrapolation. Both cosine and leverage
were analyzed using similarity search nodes and leverage
nodes,43,44 respectively, from the Knime45 Analytics Platform.
For leverages, compounds with a score ≥0.5 were considered
reliable, while a score lower than the said value was considered
unreliable. For similarity search, the output was directly
determined as reliable and unreliable.

5.1.8. Drug Selection for In Vitro Validation Studies. 4548
drugs from the ATC classification J: anti-infectives for systemic
use from the DrugBank15 and SWEETLEAD14 (structures of
well-curated extracts, existing therapies, and legally regulated
entities for accelerated discovery) databases were collected for
dengue antiviral screening. The SWEETLEAD14 database
included approved drugs, chemical isolates from traditional
medicinal herbs, and regulated chemicals. Initially, the drug
data set was screened to remove any redundancy with the data
in the training set. Next, additional screening was conducted to
the data set based on the corresponding physicochemical
properties, i.e., the hydrogen bond acceptor (≤6), hydrogen
bond donor (≤2), rotatable bond count (≤10), Lipinski rule of
five (=0), total polar surface area (≤100), and molecular
weight (<500 Da). These criteria were selected based on the
average (mean) value of each property listed above from the
pool of collected active drugs. In total, 1263 drugs were tested
against the prediction models, and the cutoff value is set at
≥0.5 for both PCM and L-B models. Due to the large number
of drugs from the PCM model that scored ≥0.5, only drugs
that scored 0.99 were considered for further in vitro analysis.
5.2. In Vitro Evaluation of Selected Drugs for the

Anti-Dengue Potential. 5.2.1. Preparation of the Com-
pounds. The stock solutions of selected anti-dengue drugs,
which are zileuton (Sigma-Aldrich, USA) and linalool (Santa
Cruz Biotechnology, USA), were dissolved in ethyl alcohol
(EtOH) (Sigma-Aldrich, USA), while trimethadione (Sigma-
Aldrich, USA) and ribavirin (Sigma-Aldrich, USA) were
dissolved in distilled water. The stock solution was filter-
sterilized (0.22 μm pore, Bioflow, Malaysia) and further
diluted with culture medium to the desired concentration for
the assays.

5.2.2. Determination of the Drug Cytotoxicity Dose. The
cytotoxicity assay was performed on the Vero cells. The
cytotoxicity assay was carried out by seeding 1.5 × 104 cells
into 96-well flat-bottom plates (Corning, USA). The plates
were incubated in a 5% CO2 humidified incubator for 24 h.
Next, the cells were treated with a serially diluted stock of the
test anti-dengue drugs at different concentrations and further
incubated at 37 °C with 5% CO2. After 72 h, 10 μL of 3-(4,5-
dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT)
(Nacalai Tesque, Japan) (5 mg/mL) solution was added and
incubated for 4 h. After incubation, the solution was carefully
removed, and 100 μL of DMSO (Sigma-Aldrich, USA) was
added, followed by continuous shaking for 10 min. The
absorbance was measured using a microplate reader (Tecan,
Austria) at 570 nm. The percentage of cell viability was
determined based on the absorbance readings. The 50%

cytotoxic concentration (CC50) value was calculated using
GraphPad Prism 8.0.1 (GraphPad Software, Inc., San Diego,
CA).

5.2.3. Determination of Viral Inhibition via the Foci
Forming Unit Reduction Assay (FFURA). The antiviral activity
of NS3 inhibitors was determined and evaluated by measuring
the reduction in the number of DENV infectious foci after
treatment. Briefly, 200 μL of DENV-2 (MOI of 1) was
introduced to Vero cells and incubated for an hour. Later, the
viral mixtures were removed, and cells were washed with
phosphate-buffered saline (PBS). Prior to this, drug treatment
at different concentrations was prepared using 2% fetal bovine
serum (FBS) and 1.5% carboxymethyl cellulose (CMC) as the
incubation medium. The cells were incubated with treatment
media for three days. Virus foci were visualized according to
the previously described method.46 One foci is recognized as a
clump of cells stained as light brown under the microscope,
whereas under the naked eye, the foci appeared as brown spots.
The number of foci was counted and recorded in duplicates,
and the average was taken into account. The experiment was
repeated three times. Half-maximal inhibitory concentrations
(IC50) were obtained through the dose−response curve
analysis using GraphPad Prism 8.0.1. (GraphPad Software,
Inc., San Diego, CA). The results were expressed as the mean
values ± standard deviation (SD) (the corresponding error
bars were displayed in the graphical plots).

5.2.4. DENV NS2B-NS3pro Inhibition Assay. The protocol
that was used for this assay was based on the study by Rothan
et al.47 In brief, reaction mixtures of 100 μL were prepared,
which consisted of a 20 μM fluorogenic peptide substrate
(Boc-Gly-Arg-Arg-AMC), 2 μM recombinant NS2B-NS3pro,
and tested drugs at different concentrations. A Tecan Infinite
M200 Pro fluorescence spectrophotometer was used to
measure the absorbance with emission at 440 nm upon
excitation at 360 nm. The intensity measurement was carried
out after 30 min of incubation, and the results were expressed
as a percentage of the negative control (noninhibitor
compound, only substrate, enzyme, and buffer), which was
always taken as 100%. All experiments were performed in
triplicate and repeated three times. The results were expressed
as the mean values ± SD (the corresponding error bars were
displayed in the graphical plots).
5.3. Molecular Docking of the NS3 Protease against

the Selected Substances. The interaction between the
selected drugs and DENV NS2B-NS3pro was identified by the
molecular docking study. Here, the template of DENV-3
NS2B-NS3pro was used (PDB: 3U1I) for all docking activities
as it showed 89% sequence similarities with DENV-2 NS2B-
NS3pro. For docking, only chains A and B from protein PDB
3U1I were used as the template, while other chains and co-
crystalized ligands were removed. In addition, water molecules
and heterogroups were deleted from the structure by using
PyMOL48 software. The protein was prepared directly in
AMDock49 software, where protonation was performed using
integrated PDB2PQR50 that utilized the Amber forcefield at
pH 7.4. Based on the in vitro result, panduratin A was included
as the reference drug for the docking study. Zileuton and
trimethadione structures were obtained from the DrugBank15

database in a PDB format, while linalool and panduratin A
were retrieved from the PubChem32 database in the SDF
format. The structures for compounds ziltri (combination of
zileuton and trimethadione) and zilool (combination of
zileuton and linalool) were drawn using Chemspace (Chem-
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space.com/home), and the SMILES code was obtained from a
similar source. All SMILES and SDF formats were converted
to PDB using the Online SMILES Translator and Structure
File Generator (https://cactus.nci.nih.gov/translate/). The
grid box size and the grid spacing were set around the catalytic
triad to a 20 × 20 × 20 dimension and 0.375 Å, respectively,
with the center set at x = 21.1, y = −16.0, and z = 8.1 using
AutoDockTools (ADT). Docking simulations were performed
using AMDock49 using AutoDock Vina.51 AutoDock Vina51

generates different ligand conformers using a Broyden−
Fletcher−Goldfarb−Shanno (BFGS) algorithm. The BFGS
algorithm is implemented with an iterated local method search.
Final docking output files were analyzed for hydrogen bonds
and other interactions using integrated PyMOL48 software in
AMDock49 and Discovery Studio Visualizer.52
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