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Abstract: This paper presents a review of the techniques found in the literature that aim to achieve a
robust heartbeat detection from fusing multi-modal physiological signals (e.g., electrocardiogram
(ECG), blood pressure (BP), artificial blood pressure (ABP), stroke volume (SV), photoplethysmogram
(PPG), electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG), among
others). Techniques typically employ ECG, BP, and ABP, of which usage has been shown to obtain
the best performance under challenging conditions. SV, PPG, EMG, EEG, and EOG signals can
help increase performance when included within the fusion. Filtering, signal normalization, and
resampling are common preprocessing steps. Delay correction between the heartbeats obtained over
some of the physiological signals must also be considered, and signal-quality assessment to retain the
best signal/s must be considered as well. Fusion is usually accomplished by exploiting regularities
in the RR intervals; by selecting the most promising signal for the detection at every moment; by
a voting process; or by performing simultaneous detection and fusion using Bayesian techniques,
hidden Markov models, or neural networks. Based on the results of the review, guidelines to facilitate
future comparison of the performance of the different proposals are given and promising future lines
of research are pointed out.
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death in the world, and they are projected
to remain so [1]. However, at least 80% of heart-disease deaths could be avoided [1]. Therefore,
assessing the cardiovascular states of patients has become an important concern in all health-care
systems. The diagnose of CVDs usually starts with heartbeat detection on the electrocardiogram
(ECG). R-peak detection from single-lead ECGs has been extensively studied [2–13]. Although it
may be considered an easy task under ideal conditions (proper sensor location on the patient’s body,
good contact of the electrodes with the skin, bedridden and completely still patient, and absence of
electrical noise sources, among others), these conditions are usually not maintained throughout the
entire recording in real applications [14]. ECG recordings usually contain noise, baseline wander, and
artifacts caused by patient movement or even sensor disconnections, which may result in intervals with
total signal loss. Multi-lead ECG approaches for heartbeat detection have also been presented [15–21],
though these also tend to fail with ECG data corrupted with high levels of noise; ECG noise (especially
caused by patient movements and electrical interference) tends to be present in all the available leads.

Technological advances have led to more capable monitoring systems, which usually
permit the synchronous recording of multiple physiological signals, including the ECG (single
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lead or multi-lead), continuous blood pressure (BP), arterial blood pressure (ABP), respiration
(RESP), photoplethysmogram (PPG), electroencephalogram (EEG), electrooculogram (EOG), and
electromyogram (EMG), among others. This is especially relevant in Intensive Care Units (ICUs),
where different vital parameters of the patient must be monitored. This multi-modal scenario provides
an opportunity for improving the accuracy of ECG-based heartbeat detectors, since many of the
monitored signals are related to or influenced by cardiovascular activity. The redundant information
extracted from them can be used to support the heartbeat detection when the ECG signal is noisy or
missing. Even signals that are not directly related to the activity of the heart, such as the EEG, may be
contaminated with cardiac spikes that can be used for ameliorating the detection.

There already are heartbeat detectors implemented in software and publicly available for most
of the individual physiological parameters that are affected by the electrical activity of the heart
(e.g., GQRS for ECG [22] and WABP [23] for BP and ABP, [24] for PPG, and [25] for EEG, to name
a few). However, combining the manifestations of the same beat across various signals to obtain a
more robust identification requires some fusion algorithm. This is a complex task which is the subject
of very active research. In ICUs and other clinical applications, robust detection from information
fusion of several signals may reduce the number of false alarms, therefore increasing the confidence
of health professionals in the monitoring system. Furthermore, some of the analyses carried out
from the heartbeats (such as heart-rate variability analysis) are greatly affected by the loss of even
a small number of beats [26]. Hence, the interest in obtaining heartbeat detections as accurate as
possible grows.

The Physionet/Computing in Cardiology Challenge held in 2014 [22] and the subsequent
follow-up [27] boosted the research in ECG-based fusion for heartbeat detection. Furthermore, the data
provided with the challenge is a great contribution for assessing the performance of new algorithms.
Since then, new techniques that aim to take advantage of fusion have been presented. In this paper,
we review and compare the most important approaches for improving the reliability of single- and
multi-lead ECG detectors by fusing the information extracted from this parameter with the information
extracted from other simultaneously recorded physiological parameters.

The paper is organized as follows: Section 2 describes the main databases related to ECG heartbeat
detection that contain multiple types of physiological signals. In Section 3, the most important heartbeat
detection techniques that exploit multi-modal information fusion are described. This section has
been divided into signal selection (Section 3.1), signal preprocessing (Section 3.2), feature extraction
(Section 3.3), signal quality assessment (Section 3.4), detection and delay correction (Section 3.5), and
fusion (Section 3.6). Section 4 describes the evaluation metrics used to measure the performance of the
different techniques presented in the reviewed papers; Section 5 presents these metrics for the different
techniques and discusses these results. Finally, Section 6 concludes the paper.

2. Databases

Although there exist many databases that contain single- and multi-lead ECG recordings along
with the corresponding heartbeat labels (e.g., MIT-BIH Arrhythmia [28,29], LTST [29,30], MIT-BIH
Noise Stress Test [29,31], European ST-T [29,32], and ECG-ID [29,33], among others), there is still a
lack of databases that integrate ECG and other physiological signals in a single database. This section
describes the main multi-modal databases found in the literature that combine ECG recordings and
other physiological signals. These databases, which are available in Physionet [34], constitute an
invaluable resource for research in multi-modal information fusion for heartbeat detection.

2.1. Physionet 2014 Challenge Database

The most relevant database related to heartbeat detection from multi-modal data up to 2014 is the
one released by Physionet in the challenge held that year [22]. It includes ECG, BP, arterial line (ART),
pulmonary arterial pressure (PAP), RESP, and EEG signals, among others. Data was split into training
data, which is typically used for technique design, and three different sets of test data, named test
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phase I, test phase II, and test phase III, with which the actual technique performance can be tested.
Data typically contains 10-min long recordings from human adults, though a few records contain less
than 10 min; 95% of data were obtained from healthy patients, and the rest belong to human adults
who suffer cardiac problems. Each record contains between four and eight signals (an ECG lead is
always present). The sampling rate is not homogeneous along records: in training data, the sampling
frequency of the signals is 250 Hz, and it varies between 10 Hz and 1000 Hz in test data. However, it
must be noted that the sampling frequency is the same for all the signals corresponding to a given test
recording. Labelling for the training data was carried out by experts, who annotated the QRS complex
positions, though a few of them (four) were deemed to have been incorrectly annotated as heartbeats
after further analysis. The training data can be downloaded via the web. Table 1 shows the number of
records of each data set in which each of the most common signals is present, as well as their sampling
frequency and duration.

Table 1. Summary of the most common signals in the Physionet 2014 challenge database: “ECG” stands
for electrocardiogram, “BP’ stands for blood pressure, “ART’ stands for arterial line, “PAP” stands for
pulmonary arterial pressure, “RESP” stands for respiration, “EEG” stands for electroencephalogram,
“N” stands for number of records, “Fs” stands for sampling frequency, and “min” stands for minutes.
This table has been modified from Reference [22].

Data Set ECG BP ART PAP RESP EEG N Fs Duration per Record

Training 100 100 0 0 0 0 100 250 Hz ≈10 min
Test Phase I 100 14 75 70 73 14 100 10–1000 Hz ≈10 min
Test Phase II 200 23 137 126 182 22 200 10–1000 Hz ≈10 min
Test Phase III 300 37 194 177 163 35 300 10–1000 Hz ≈10 min

2.2. Physionet 2014 Follow-Up Challenge Database

A few months after the challenge finished, the follow-up challenge 2014 database was released in
2015 by Physionet [27]. Nowadays, it is the most important database related to heartbeat detection
from multiple physiological signals, among which an ECG lead is always present. It is divided into
training data and test data. Training data consists of the challenge training data plus 100 additional
records from the challenge test data (200 records with 151,032 heartbeat labels in total) and can be
downloaded via the web. Test data consists of 210 records with 152,478 heartbeat labels. The records
contain different types of signals, which are shown in Table 2 along with the number of records
containing each type of signal.

Table 2. Number of training/test records of the Physionet 2014 follow-up challenge database: “EMG”
stands for electromyogram and “EOG” stands for electrooculogram. This table has been taken from
Reference [27] with minor modifications.

Signal Training Test

ABP 135 61
BP 25 116

Carbon dioxide level (CO2) 279 39
Central venous pressure (CVP) 123 57

ECG 210 200
EEG 25 110
EMG 8 44
EOG 8 44
PAP 122 6

General pressure (PRESS) 149 83
RESP 119 213

Oxygen level (SO2) 1 23
Stroke volume (SV) 1 23
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2.3. MIMIC Database

This public and free-access database comprises data obtained from more than 90 hemodynamically
unstable ICU patients at Boston’s Beth Israel Deaconess Medical Center from 1994 to 1996. It contains
100 records from patients who were monitored during 200 days, and their duration varies between 24
and 48 h. Each record was split in 10-min lengths for further processing. Hewlett Packard (HP) Merlin
monitors were employed for data recording in different ICUs. Table 3 summarizes the information
of the most relevant signals for heartbeat detection that are present in the database. All the records
contain three ECG leads (sampled at 500 Hz), along with four or five additional signals (each sampled
at 125 Hz) or two ECG signals and six additional signals. These additional signals include ABP, RESP,
and pulse oximeter. PAP, central venous pressure (CVP), and fingertip plethysmograph (PLE) were also
acquired for some records. Heart and respiration rates; oxygen saturation; blood temperature; inspired
minimum and end-tidal CO2; fractional inspired oxygen; cardiac output; and systolic, diastolic, and
mean arterial pressures were also recorded at intervals of 1024 s. Annotation files for each record are
included as well. Each annotation file includes the following information: heartbeat labels; changes
in the patient’s status; changes in the functioning of the monitor (though not for all the records); and
ABP, PAP, CVP, and PLE signal annotations for those records in which the corresponding signals
exist. The database is provided via CD-ROM. More information about this database can be found in
References [29,35].

Table 3. Summary of the MIMIC database. “N” stands for number of records, “h” stands for hours,
“Fs” stands for sampling frequency, and “PLE” stands for fingertip plethysmograph.

Signal N Total Duration Fs

ECG 100 24–48 h 500 Hz
ABP 100 24–48 h 125 Hz
RESP 100 24–48 h 125 Hz

Pulse oximeter 100 24–48 h 125 Hz
PAP - 24–48 h 125 Hz
CVP - 24–48 h 125 Hz
PLE - 24–48 h 125 Hz

2.4. MIMIC II Waveform Database

This database was released in April 2011 and comprises public and free-access data obtained
from adult patients in ICUs at Boston’s Beth Israel Deaconess Medical Center from 2001 to 2007.
Data includes both physiological signals and minute-by-minute trends.

Physiological data was obtained with the Component Monitoring System Intellivue MP-70 Philips
Health Care. It includes ECG, BP, pulse plethysmogram, and RESP signals. Signals were recorded
with a fixed sampling frequency (125 Hz), and trend data was updated each minute. Additionally,
labelling also contains time-stamped alert information (e.g., arrythmia) for each patient. Data was
stored in three different formats: WFDB (which conveys an open data format from Physionet and also
agrees with the Health Insurance Portability and Accountability Act standards), HTML, and plain text.
Data can be downloaded via the web upon a free registration.

Specifically, the v2.4 version of the database comprises 25,328 ICU stays from 22,870 hospital
entries, which derive 2061 records containing physiological signals and 2000 additional records
that are not matched with the clinical data. More information about the database can be found in
References [29,36].

An extension of this database is the MIMIC III Waveform database [29,37], which contains the
same signals as the MIMIC II Waveform database but differs in the clinical data of the patients.
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2.5. Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform Database

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform database
contains hemodynamic and electrocardiographic signals of stable and unstable patients in several
environments: ICUs, surgery rooms, and laboratories for heart catheterization. The database contains
recordings from 250 patients, of which the length varies from 12 to 86 min, being in most of the
cases one hour long. Each recording typically includes three ECG leads, arterial pressure, PAP, CVP,
respiratory impedance, and airway CO2 signals. Some recordings also include intra-cranial, left atrial,
ventricular, and/or intra-aortic-balloon pressure signals. Additional information regarding ECG
calibration, zero pressure, calibration pressure, and pressure/catheter frequency response tests is
also included.

The original signals were recorded with 1440 Hz as the sampling frequency with an 8-channel
instrumentation tape, then digitized at twice real time, and then downsampled to 360 Hz.
Each recorded signal also includes an annotation file (in .ari format) with heartbeat and event labels.
The database is distributed via CD-ROM. More information about this database can be found in
References [29,38].

2.6. IMPROVE DL Database

This database is encompassed within the Biomed-1 program of the European Union, which
aims to develop biomedical signal processing and recognition methods dealing with vital-tissue
oxygen delivery. Data was collected in the Department of Intensive Care, Kuopio University
Hospital in Finland during 60 days continuously. Data includes 59 records, each with a typical
duration of 24 h, from 50 patients that suffer hypovolaemia, cardiac problems, high flow state,
and oxygen-content-related problems. Signals were acquired with a Datex AS/3, Datex-Engstrom
Instrumentarium Corp., Helsinki, Finland monitor. The database includes different types of
physiological signals with different sampling frequencies: 2-channel ECG (100 Hz), systemic arterial
pressure (SAP) (50 Hz), PAP (50 Hz), CVP (50 Hz), CO2 (25 Hz), airway oxygen concentration (25 Hz),
airway flow (AWF) (25 Hz), and airway pressure (AWP) (25 Hz). The data was stored using the .edf
(European Data Format) format. This database also includes some signal preprocessing steps before
storage: ST calculation, low-pass filters, and median filters. Annotations have a 1-min resolution.

Additionally, seven recordings from five male patients (19–78 years old) that suffer hypovolaemia,
cardiac problems, sepsis (evolved into high blood-flow state), and gas exchange abnormality were also
carried out. These recordings contain 2-channel EEG signals (100 Hz), ECG (100 Hz), SAP (50 Hz), CVP
(50 Hz), CO2 (25 Hz), and AWP (25 Hz), which were also preprocessed from low-pass and median
filters before storage. Data is provided via CD-ROM. Table 4 summarizes the information of the signals
present in the database. More information about it can be found in Reference [39].

Table 4. Summary of the IMPROVE DL database: “N” stands for number of records, “h” stands for
hours, “Fs” stands for sampling frequency, and “SAP” stands for systemic arterial pressure.

Signal N Duration per Record Fs

ECG 66 24 h 100 Hz
SAP 66 24 h 50 Hz
PAP 59 24 h 50 Hz
CVP 66 24 h 50 Hz
CO2 66 24 h 25 Hz

Airway oxygen 59 24 h 25 Hz
Airway flow 59 24 h 25 Hz

Airway pressure 66 24 h 25 Hz
EEG 7 24 h 100 Hz
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2.7. PhysioUnicaDB Database

This database consists of ECG and EEG signals obtained from 22 healthy subjects in the Neurology
Department of the Hospital of Cagliari in Italy. The BrainQuick system developed by Micromed has
been used for signal acquisition. It consists of 64 electrodes located mainly in the scalp of the subject
but with two of them in the wrists. During signal recording, patients were told to close their eyes, to
stay awake, and to reduce eye movements. They were carried out in a silent room with 1024 Hz as
sampling frequency and then downsampled to 256 Hz. Signal duration varies from one recording
to another, with at least two min per signal. The recordings were then segmented into 5-s intervals
for data storage. A preprocessing step which consists of baseline removal was also carried. Data was
stored in .edf format file. More information about this database can be found in Reference [40].

2.8. MIT-BIH Polysomnographic Database

The MIT-BIH Polysomnographic database comprises 18 recordings of several physiological signals
carried out while the patients were sleeping to monitor chronic obstructive sleep apnea and to test
whether constant positive airway pressure is beneficial in the treatment of the disease. They were
carried out in Boston’s Beth Israel Hospital Sleep Laboratory. Recordings amount to more than 80 h,
each of them with a length between 2 and 7 h. Annotated ECG, invasive BP, EEG, and respiration
(in the majority of the cases, from a nasal thermistor) signals are always present for each recording.
Some recordings also include another respiratory signal (derived from inductance plethysmography)
and some of these two signal groups: EOG/EMG signals (measured at the chin) and cardiac SV
signal/earlobe oximeter signal. The sampling frequency in all the cases is 250 Hz. The database is
distributed via CD-ROM. Table 5 summarizes the information of the signals present in the database.
More information about it can be found in References [29,41].

Table 5. Summary of the MIT-BIH Polysomnographic database: “N” stands for number of records, “h”
stands for hours, “Fs” stands for sampling frequency, “NTR” stands for nasal thermistor respiratory,
and “IPR” stands for inductance plethysmography respiratory.

Signal N Duration per Record Fs

ECG 18 2–7 h 250 Hz
BP 18 2–7 h 250 Hz

EEG 18 2–7 h 250 Hz
NTR 18 2–7 h 250 Hz
IPR - 2–7 h 250 Hz

EOG - 2–7 h 250 Hz
EMG - 2–7 h 250 Hz

SV - 2–7 h 250 Hz
Earlobe oximeter - 2–7 h 250 Hz

3. Heartbeat Detection from Multiple Physiological Signals

This section presents the main approaches of the literature that employ fusion of information
extracted from the ECG and from other physiological signals for heartbeat detection. The standard
architecture of a multi-modal heartbeat detector can be seen in Figure 1. The subsections of this section
are organized according to the steps shown in this figure.

Figure 1. Typical steps of heartbeat detection: “SQA” stands for signal-quality assessment.
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3.1. Signal Selection

Signal selection is a necessary stage when different types of physiological signals can be used
for heartbeat detection. On the one hand, the complementary information that some of them convey
could improve performance through the fusion of the information each provides. On the other
hand, selecting multiple signals that convey the same or similar information may not outperform
the heartbeat detection performance and even could reduce it due to the limited amount of data
(theoretically, with infinite amount of training data, an algorithm should reject the bad data, but in a
real scenario, there is only a finite amount of data).

We shall classify large amounts of physiological signals that can be recorded regarding heartbeat
detection into the direct signal group and the indirect signal group. The direct signal group contains
the signals that are directly related to cardiac activity (e.g., ECG, ABP, BP, PPG, SV, PAP, SAP, CVP, and
ballistocardiogram (BCG), among others). The indirect signal group is composed of the signals that are
not related to cardiac activity but that are influenced by such activity, and therefore, they could provide
useful information for heartbeat detection (e.g., EEG, EMG, EOG, and general pressure (PRESS), among
others). Figure 2 shows some examples of these signals of interest. It can be appreciated that some
physiological signals (e.g., BP) have their peaks delayed with respect to the ECG peaks. This should be
taken into account during heartbeat detection to correct the position of the beats (see Section 3.5.3).

Figure 2. Examples of signals of interest for heartbeat detection: Blue vertical lines show the heartbeat
annotations. This figure corresponds to slp04 record from MIT-BIH Polysomnographic Database.

Among the direct group, the ECG records the electrical activity of the heart. Therefore, it is the
most suitable signal for heartbeat detection, since the signal is directly generated by the phenomenon
of interest (the heartbeat). The PPG measures the volumetric change of the heart by measuring light
transmission or reflection. When the heart contracts, a pulse of blood is sent into the arteries of the
body. By detecting peaks in the amplitude of this signal, those pulses and, hence, the heartbeats can
be detected. The SV is the volume of blood pumped from the left ventricle per beat. It is computed
by subtracting the volume of the blood in the ventricle at the end of a beat from the volume of blood
just prior to the beat. The BCG signal, which emerges from a minuscule motion of the human body in
response to the recoil forces of the cardiac ejection into the vascular system, also comprises heartbeat
detection information.

The SAP is the primary determinant of cerebral blood flow. It is computed from the cardiac output
and, hence, is related to heart function. The BP signal relates to the pressure of the blood within the
circulatory system. When the heart beats, it pumps blood around the body to give it the energy and
oxygen needed. As the blood moves, it pushes against the sides of the blood vessels. The BP is the
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strength of this pushing. After the pumping of blood produced by a beat, there is an increase in BP,
followed by a decrease until the next blood pulse (beat) arrives. The specific moment at which the
maximum pressure is reached after a beat depends on the distance between the heart and the point
of the body in which the pressure is being measured. The more distance, the longer the delay in the
arrival of the peak of the pressure wave. The different pressure-related signals (i.e., ABP, BP, CVP,
PAP, and PRESS) measure pressure in different parts of the body. Through the count of the number of
local maximums (or minimums) that occur in the BP, it is possible to establish a patient’s heart rate
(see Figure 2).

Among the indirect signal group, the EEG records the cortical electrical activity of the brain
from the scalp. The relatively high electrical energy of the cardiac activity causes EEG artifacts,
contaminating the EEG signal with QRS complexes (see Figure 2). The EOG signal measures the
electrical activity of the eyes from the corneo-retinal standing potential that exists between the front
and the back of the human eye. The EMG records the electrical activity of the skeletal muscles by
measuring the electrical potentials generated in them. The EOG/EMG signals are also contaminated
with the electrical potentials generated by the QRS complexes (see Figure 2). Therefore, by looking for
those artifacts, the QRS complexes can be identified over the EEG/EOG/EMG signals, making them
potential sources of information about the heartbeat.

Table 6 presents the signals that have been employed in the reviewed papers. Most of the proposals
for heartbeat detection employ the ECG and ABP signals, since these are directly related with cardiac
activity [42–52]. Other authors have added some other signals to that group: PPG signal [53,54]; SV
and PPG signals [55]; and EEG, EOG, and EMG signals [56,57].

Table 6. Reviewed papers that employ the different signals which can provide information for heartbeat
detection: “BCG” stands for ballistocardiogram.

Group Signal Work

Directly related to cardiac activity

ECG [42–82]
ABP [42–57,77–79,81,82]
BP [58–74,77–79,81,82]

PPG [53–55,74,81,82]
SV [55,66,72,74,79,81,82]

PAP [77–79,82]
SAP [75,76]
CVP [79,82]
BCG [80]

PRESS [81,82]

Indirectly influenced by cardiac activity

EEG [56,57,67,68,73,74,82]
EOG [56,57,69–73,82]
EMG [56,57,71,73,82]

The use of ECG and BP signals has also been extensively studied due to their direct relationship
with cardiac activity [58–65], from which other approaches that integrate up to 3 additional signals
have also been presented: SV [66], EEG [67,68], and EOG [69,70] signals; EOG and EMG signals [71];
SV and EOG signals [72]; EEG, EOG, and EMG signals [73]; and SV, EEG, and PPG signals [74].

The combination of ECG and SAP signals has also been studied [75,76], and the combination of the
most commonly used signals (ECG+BP and ECG+ABP) with some other signal/s as well [77–79] has
been studied. In particular, the pulmonary arterial pressure (PAP) signal is added in References [77,78],
and SV and central venous pressure (CVP) signals are added in Reference [79] to those presented in
References [77,78]. The most extensive signal set composed of ECG, BP, ABP, SV, PAP, CVP, PRESS,
PPG, EOG, EEG, and EMG signals is employed in Reference [82], and ECG, BP, ABP, PRESS, PPG, and
SV are used in Reference [81]. BCG along with the ECG has been employed in Reference [80].



Sensors 2019, 19, 4708 9 of 34

3.2. Signal Preprocessing

Signal preprocessing is often needed to improve the quality of a signal for the subsequent
stages. A summary of the signal preprocessing techniques is presented in Table 7. Low-pass
filters [44,45,57,71,73,80] and band-pass filters [44,55,56,59,65,79,81] are widely used for ECG
preprocessing. Different cutoff frequencies have been proposed for low-pass filtering, including
40 Hz for the ECG and BP signals [57,73]; 35 Hz for the ECG, BP, EOG, and EMG signals [71]; 20 Hz
for the BCG signal [80]; and 16 Hz for the ECG and ABP signals [44,45]. Regarding the band-pass
filters, cutoff frequencies spread in the range 0.5–10 Hz for the ABP signal [44], and 0.5–80 Hz for the
ECG signal [65]. In Reference [56], different cutoff frequencies are employed depending on the signal
(5–40 Hz for ECG, 5–55 Hz for EEG, 10–25 Hz for EOG, and 5–15 for EMG). In some works, the cutoff
frequencies of the band-pass filtering are computed from the percentiles of the RR intervals obtained
from the QRS detection in the BP signals [59] and from the d2, d3, and d4 coefficients of the wavelet
transform in the ECG signals [79]. High-pass filters have also been used in Reference [80], with cutoff
frequencies of 1 Hz for the ECG signal and 0.5 Hz for the BCG signal.

Baseline wander is a key point when processing ECG signals. This is typically caused by
electrode-related issues, movement, and respiration of the person [83] and affects the low-frequency
components (below 0.5–0.6 Hz) of the ECG signal [84] and, in general, of any signal that contains
heartbeat detection information. From the signal recording perspective, baseline wander causes the
signal to shift from its normal base. To address this, baseline wander suppression has been widely used:
in Reference [65], a two-order smooth filter was applied to the ECG and BP signals. In Reference [44],
0.5–10 Hz band-pass filtering has been used for the ABP signals. Approximation coefficients of the
wavelet transform are used in References [67,85] for the ECG signals. From all the filters that are
applied in cascade in Reference [63], the last high-pass filter used in the quadratic spline approach
in that work is used for ECG and BP signals. Band-pass filtering with cutoff frequencies of 5–40 Hz
has been employed for ECG signals in Reference [56]. In Reference [57], a moving median filter is
used. In Reference [78], the convolution-based filtering serves as baseline wander suppression for
ECG, BP, ABP, and PAP signals. Cascade median filters are used in Reference [52] for the ECG signal.
In Reference [79], the d1 coefficients of the wavelet transform are removed for ECG, BP, ABP, PAP, SV,
and CVP signals.

Power line interference can also introduce noise in the signal recordings, which causes variations in
signal parameters (e.g., amplitude and duration, among others) and may lead to diagnostic errors. This
noise occurs at 50/60 Hz frequencies. Notch filtering, aiming to remove this power line interference,
has been employed in References [65,80].

Other types of filters such as moving average [61,66], median [73], mean [57], anti-aliasing [70],
quadratic spline (from low and high-pass filters) [63], and convolution-based filtering (OWN) [78]
have also been used. Wavelet transform has also been employed in Reference [47].

To unify the sampling frequency of the input signals, which enables a meaningful frequency-based
signal analysis, downsampling [61,71,80,81] and resampling techniques [43,52,63,70,72] are
also common preprocessing steps. Signal normalization has also been considered in
References [52,61,63,72,78,79].
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Table 7. Summary of the signal preprocessing techniques employed in the reviewed papers.

Filtering Normalization Downsampling/Resampling Work

Low-pass
- - [44,45,57,73]
- YES [71,80]

YES YES [63]

Band-pass
- - [44,55,56,59,65]

YES - [79]
- YES [81]

High-pass - YES [80]
YES YES [63]

Notch - - [65]
- YES [80]

Smooth - - [65]

Wavelet - - [47,67,85]
YES - [79]

Quadratic spline YES YES [63]

Convolution YES - [78]

Moving average - - [66]
YES YES [61]

Anti-aliasing - YES [70]

Median YES YES [52]
- - [73]

Moving median - - [57]

Mean - - [57]

- - YES [43]

- YES YES [72]

3.3. Feature Extraction

Feature extraction aims to produce the most discriminative set of features from the incoming
(or preprocessed) signals so that heartbeat detection is enhanced. Although not all the proposals
integrate a feature-extraction process (where not, the detection algorithm is largely based on the
raw data of the incoming signal or the data after signal preprocessing), some feature extractors have
been proposed. These can be classified in different categories depending on the type of features
obtained: time-based approaches, frequency-based approaches, and time–frequency-based approaches.
Table 8 presents a summary of the feature-extraction methods employed in the reviewed papers.
It must be noted that any feature of Table 8 can also be used for heart-rate estimation due to the
tight relationship between heart-rate estimation and heartbeat detection. Heartbeat detection enables
heart-rate estimation, since once all the heartbeats from an incoming signal have been detected, the
heart rate can be obtained by, for example, averaging the number of heartbeats detected within a time
window. However, heart-rate estimation cannot be used for precise heartbeat detection, since precise
timing information related to the occurrence of each beat is missed. Therefore, whereas heartbeat
detection can be used for systems that need the precise temporal location of the beat (e.g., arrhythmia
classification and heart rate variability analysis, among others), heart-rate estimation cannot.
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Table 8. Summary of the feature-extraction methods employed in the reviewed papers: “LASTA”
stands for lag-adaptive short-time autocorrelation function, “max” stands for maximum, “PAA” stands
for piecewise aggregate approximation, “PSD” stands for power spectral density, “IMDF” stands for
integer-multiplier digital filters, “min.” stands for minimum, “PR” stands for pressure ranges, and
“AD” stands for average derivative.

Domain Type Feature Extractor Work

Time

U3 transform [86,87], first derivative [70]
LASTA [88], average magnitude difference [89,90], max. amplitude [81]

Symbolic discretization [91] [58,72]
PAA and signal discretization [72]

Slope-sum [44,45]
Derivative [75]

Frequency

PSD [74,82]
FFT [71]

IMDF [92,93] [62,77]
Gaussian and moving average low-pass filters [77]

Time–frequency
Wavelet [47,49,63,65,67]

Pulse score for scale determination [94] [67]
Frequency QRS power, kurtosis, max./min. amplitudes, PR, AD [68]

3.3.1. Time-Based Feature Extractors

U3 transform [86,87] has been employed in Reference [70] for the ECG signal and the first
derivative has been employed for the rest of the signals as the feature extractor. The U3 transform is
defined in a window-basis as follows:

U3i =
L

∑
k=2

(xi+k − xi+k−2)
2,

where x is the input signal, i is the current window, and L is the window size in samples.
Lag-adaptive short-time autocorrelation function [88], the average magnitude difference

function [89,90], and the maximum amplitude pair function, which considers the amplitude of the
signal, have been used for signal representation in Reference [81].

A symbolic discretization method [91] from the original continuous time series that represent the
ECG and BP signals has been presented in References [58,72]. It produces a set of subsequences as
features. In Reference [72], dimensionality reduction from piecewise aggregate approximation and
signal discretization from a Gaussian distribution for the specified alphabet size are added.

Slope-sum functions from the first derivative of the input signals to produce the feature vectors,
which are then normalized and downsampled, were used in References [44,45] as signal representation.
A derivative-based approach as feature extraction in the SAP signal is also employed in Reference [75].
Derivative methods will be explained in more detail in Section 3.5.

3.3.2. Frequency-Based Feature Extractors

Power spectral density (PSD) was used in References [74,82], and Fast Fourier Transform
(FFT)-based frequency features were employed in Reference [71] as signal representation.

On the other hand, integer-multiplier digital filters [92,93] based on slope-sensitive and
peak-sensitive sampling-frequency adjustable band-pass filters were employed in References [62,77],
to which Gaussian low-pass filters with first- and second-order derivatives followed by a moving
average low-pass filter were added in Reference [77] for feature extraction.
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3.3.3. Time-Frequency-Based Feature Extractors

The wavelet transform was used in References [47,49,63,65], to which pulse score for scale
determination [94] was added in Reference [67] to compute the features for the ECG signals.

Feature extraction in Reference [68] relies on the power of the QRS complex computed in a
predefined frequency range and kurtosis for the ECG signal and on the pressure ranges and average
derivative for a cycle for the BP signal [95] to compute the signal quality index and the maximum and
minimum of the BP signals for BP signal representation.

3.4. Signal-Quality Assessment (SQA)

It is well known that signal combination can lead to better performance if the signals are properly
recorded (i.e., in absence of noise effects and enough sampling frequency, among others) and if they
provide complementary information. On the other hand, noisy signals can dramatically reduce beat
detection performance due to its inherent bad quality. Therefore, signal-quality assessment plays an
important role when multiple physiological signals are used for heartbeat detection, so that those
lower quality ones can be automatically rejected, either before or after heartbeat detection. Table 9
presents a summary of the SQA approaches employed in the reviewed papers, which are described in
detail in the following subsections.

Table 9. Summary of the Signal-Quality Assessment (SQA) methods employed in the reviewed papers:
“SAI” stands for signal abnormality index, “PR” stands for pressure ranges, “AD” stands for average
derivative, and “DWT” stands for discrete wavelet transform.

Type SQA Work

Statistical Fisher’s g-statistic [96–98] [59]
Cross-correlation [65]

RR-interval

R-peak intervals [57]
Peak distance, variance, number of annotations [66]

Heartbeat deviation [56]
Heartbeat comparison, dispersion [79]

Heart-rate variability [26] [54]
Number of annotations [55]

SAI [95] PR, AD [42,46,47,50,55,68]

Detector-based Multiple detector annotations [43–45,47,50,55]

DWT Second-level DWT coefficients [64]
Energy of the detailed DWT coefficients [49]

Other

Band-pass filter, signal saturation, kurtosis [44]
RS slope detection [73]

Delay variance [74]
QRS complex power, kurtosis [68]

Hjorth’s mobility [82]
Sample entropy [99] [48]
U3 transform [86,87] [55]

3.4.1. Statistical-Based Signal-Quality Assessment

Fisher’s g-statistic [96–98] is employed in Reference [59] to determine the BP signal quality based
on the periodicity of the given window signal. That statistic is defined as the ratio of the largest
periodogram value to the sum of all the periodogram values over 1/2 of the frequency interval (0, Fs/2,
with Fs as the sampling frequency). Larger g-values mean better BP signal quality.

The SQA approach presented in Reference [65] is based on a correlation method in which the
cross-correlation between the signal segments with the signal templates is computed. The quality
index assigned to each signal is the median of all the segment correlations.
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3.4.2. RR Interval-Based Signal-Quality Assessment

The histogram distribution of the intervals of the R-peaks that comprise the output of the detectors
for the different signals has been used in Reference [57] to assess signal quality.

In Reference [66], the number of annotations in a signal segment, the variance of the peak distance
(i.e., of the RR interval), the signal variance, and the peak distance (i.e., the RR interval length) have
been used as features to compute the signal quality.

An approach based on the deviation of the heartbeat from the rhythm of heartbeats and on
the probability of the heartbeat being matched with the given deviation has been proposed in
Reference [56].

The SQA approach presented in Reference [79] is based on three different stages: in the first
stage, the quality of ECG and BP (or ART) signals is measured by checking compatibility of all the
detected heartbeats on these two signals. In the second stage, a quality level is assigned by heartbeat
comparison in every possible window. In the last stage, which only runs when incompatibilities occur
in the second stage, quality is assigned to the ECG signal by a sample dispersion-based approach.

Heart rate variability [26] as a measure of the signal quality has been used in Reference [54]. This
is computed from the standard deviation of the eight most recent heartbeat intervals normalized by
the mean of them.

In Reference [55], a signal-quality measurement called fusion regularity (FREG) considers the
most regular of a set of RR interval time series for consecutive windows so that if a time series contains
less than three detections within a given window (15 s), this is considered bad quality.

3.4.3. Signal-Abnormality Index (SAI)-Based Signal-Quality Assessment

SAI [95] considers BP/ABP signals as bad quality in cases where the signal values are not within
reasonable physiological ranges. They include pressure ranges, systolic blood pressure (SBP), diastolic
blood pressure (DBP), mean arterial pressure, duration of each heartbeat, heart rate, and the mean of
the negative slopes.

ABP signal quality in References [47,50,55] and BP signal quality in Reference [68] are computed
from the SAI, which integrates the pressure ranges and the average derivative for a cycle for the
respective signals. The SAI is also employed to assess the ABP signal quality in References [42,46].

3.4.4. Detector Level Agreement-Based Signal-Quality Assessment

A number of algorithms that detect each potential peak over multiple signals has been employed
in Reference [43] as signal-quality index. Similarly, in Reference [55] (fusion signal quality indices
(FSQI)) and in Reference [47,50], an ECG signal-quality approach based on the level agreement of two
R-peak detectors has been proposed.

In Reference [44], the quality of ECG signals is assessed based on two ECG peak detections
algorithms [100,101]. Then, it is checked whether their detections are matched or not. Signal segments
for which the F1 score is 1 are considered as good quality. The same approach of has been employed
in Reference [45], but it has also been extended to ABP quality assessment. For ABP signal quality
assessment in Reference [45], it is based on two independent ABP peak detectors following the same
F1 score-based approach of Reference [44].

3.4.5. Discrete Wavelet Transform (DWT)-Based Signal-Quality Assessment

Two quality indexes for the ECG and BP signals based on the noise estimation from the coefficients
of the second level of detail output by the DWT have been proposed in Reference [64]. To do so, each
segment in which the distribution of noise is lower will be assigned a higher quality index. A second
index is derived from the periodicity of the detected heartbeats in each segment. Both indexes are
summed to create the final signal-quality index for each segment.
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The energy of the detailed coefficients of the DWT has been used in Reference [49] as a
signal-quality metric (the lower this energy is, the higher the quality is).

3.4.6. Other Signal-Quality Assessment Approaches

In Reference [44], the ABP signal quality is obtained by integrating a band-pass filter along with
two different signal-quality indexes. One of these relies on the periods of saturation of the signal
to a maximum or a minimum value so that, if these periods are above a predefined threshold, the
quality is set to be bad. The other index considers the kurtosis of the distribution of each segment. The
multiplication of these indexes provides the ABP signal quality.

The upper and lower boundaries and the RS interval length from RS slope detection have been
used in Reference [73] for SQA.

Signals with a variance in the delay values after heartbeat synchronization above a predefined
threshold are considered as bad quality in Reference [74].

The relative power of the QRS complex and the kurtosis distribution have been proposed in
Reference [68] for SQA.

In Reference [82], the Hjorth’s mobility is used for SQA so that the signal with the lowest values
is assigned the best quality.

The sample entropy [99] has been used in Reference [48] to compute the quality of each
signal segment.

In Reference [55], the U3 transform [86,87] is applied to the EEG/EOG signals. The U3 amplitude
of those spikes that occur at the same time over different signals is compared with the rest of the U3
spikes. If the amplitude of the former set is larger than the latter, the EEG/EOG signals are used for
heartbeat detection.

3.5. Detection and Delay Correction

This stage is the core of the heartbeat detection, since its goal is to detect heartbeats over the
available signals and to compensate for any delay that could exist between the heartbeat instant
of detection over a given signal and the actual instance of occurrence (such as it happens with the
BP signal).

Most of the reviewed techniques first try to detect heartbeats separately in each of the signals of
interest. The main advantage of this approach is that well-tested detection algorithms may be used.
Table 10 summarizes the detection algorithms that are employed as part of different fusion proposals.
This table only includes well-known algorithms (or specific implementations, if possible) and not novel
proposals presented as part of the fusion methods. From this table, it follows that GQRS and WABP
are the most commonly employed algorithms for heartbeat detection in ECG and BP/ABP signals,
respectively. Although some papers do not directly use the methods from Table 10, most of them do
reuse some of their key ideas, usually borrowed from the signal processing literature, and even apply
those methods to EEG, EOG, and EMG signals (e.g., Reference [57]).
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Table 10. Summary of the peak detection algorithms for ECG and BP/ABP used in the reviewed papers: “SSF-TK”
stands for slope sum function and teager-kaiser (operator), “EPLTD” stands for Ep limited, and “OSET” stands
for open-source electrophysiological toolbox.

Signal Detector Work

ECG

GQRS [34] [42,55,59,60,64,66,72,73,79,82]
[46,47,50,57,68,78,81]

Pan-Tomkins [100,102] [43,70,75,79]
Gritzali [103,104] [75,76]

Hamilton-Tompkins [105,106] [43]
Christov [107] [43]

Afonso [108,109] [43,48,49]
Zong [23] [43]

COQRS [110] [55]
JQRS [111] [47,55]
Jinho [94] [67]

RS negative [112] [57]
Ecglib [113] (based on Reference [87]) [69]

SSF-TK [114] [56]
Difference operator method [115] [82]

U3 detector [86,87] [70]
EPLTD [116] (based on References [100,105]) [47]

OSET [117] [65]

BP/ABP
WABP [23] [42,45–47,50,56,60,64,66,72,78,79,81]

RS positive (based on Reference [112]) [57]
Li [118] [48]

3.5.1. Peak Enhancing

In general, most algorithms try to transform the raw signals into other signals where the presence
of the waveforms is signalled with a strong peak. The resulting signals are suited for applying a peak
detection algorithm, along with more modern approaches based on Bayesian methods, machine
learning, and data mining. We may distinguish three main strategies among these algorithms:
derivative-based detectors, template matching, and others (see Table 11).

Table 11. Peak enhancing approaches used in the reviewed papers: “WTW” stands for weighted
time warping, “CWT” stands for continuous wavelet transform, and “LDA” stands for linear
discriminant analysis.

Type Peak Enhancing Work

Derivative-based Equation (1) [44,66,75,78]
U3 transform [69,70,86,87]

WTW [53]
Template matching CWT+[117]+LDA [65]

FFT-based templates [71]
Full beat, clustered beat and statistical templates [72]

Other

Envelope functions [61,71,74,77,82]
Wavelet-based enhancing [63,65,79]

Morphological filters [62,77]
Range filters [61]
Thresholding [79]

T-wave suppression filters [80]
Adaptive filters [67]

Derivative-Based Detectors

Derivative-based detection (sometimes also referred to as slope-sum methods, although some
authors may be referring to the specific proposal of Reference [23]) is the most broadly used method
for enhancing the peaks of the signals. Derivative-based detectors have been used in References [66]
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(for SV signals), [69] (BP, SV, and PPG), [44] (ECG and ABP), [70] (BP, SV, and PPG), [78] (ECG, BP,
ART, and PAP), and [75] (SAP), among others. Most of these derivative-based detectors are defined
as follows:

yi =
L

∑
k=0

hk∆(j)xi−k, (1)

where L is the length of the filter hn and ∆(j)xn is an approximation to the jth derivative of the input
signal xn. Typical values for jth are 1 (first derivative) or 2 (second derivative). Examples of ∆(1)xn

and ∆(2)xn may be as follows:

∆(1)xn = xn − xn−1 ∆(2)xn = xn − 2xn−1 + xn−2,

although other definitions are possible. The filter hn is usually a moving average filter, and it is usually
employed to compute a smooth version of the derivative’s energy (acting like a low-pass filter). Note
that hn is defined as a causal filter in Equation (1), although this is not necessary.

The U3 transform introduced for QRS detection in References [86,87] can be considered a
derivative-based approach. The U3 transform is applied to other signals besides the ECG in
References [69] (EEG/EOG) and [70] (EEG/EOG).

Template Matching

Template matching has also been used as a method for detecting the presence of a reference
pattern in the signal. This is usually achieved by cross-correlating the reference pattern with the
signal of interest. Then, annotations are usually found by examining the cross-correlation signal.
Template matching is employed in References [53] (ECG, ABP and PPG), [65] (ECG and BP), [71] (ECG,
EOG, EMG, and BP), and [72] (ECG and BP), although there are significant differences between them,
especially referring to the generation of the template pattern or its intended use.

The proposal from Reference [53] differs from the others since it uses a variant of Dynamic Time
Warping (DTW) for detecting the heartbeats. Since this algorithm performs detection and fusion at the
same time, it will be described in Section 3.6.4.

The proposal from Reference [65] uses template matching not only for removing pacemaker
pulses but also for removing incorrect R-peaks and for assessing the quality of both ECG and BP
signals. The template of pacemaker pulses is computed by manually annotating pacemaker records.
The template for the R-wave is built from a set of preliminary annotations (obtained through a
Continuous Wavelet Transform (CWT), the peak detector from Reference [117], and Linear Discriminant
Analysis (LDA)), and the patterns for quality assessment are made from short segments (24 s) of the
record being analysed.

In Reference [71], preliminary annotations are generated using the most salient peaks in each
signal from the FFT-based features. Then, averaged shapes (the templates) are computed from the area
that surrounds each preliminary annotation.

In Reference [72], several algorithms based on template matching are compared with a baseline
detector (based on GQRS and WABP). We may distinguish three main approaches. In the full beat
template approach, a different template is created for each of the heartbeats of the Physionet 2014
challenge test set. In the clustered beat templates, K-means is applied to all the test set heartbeats to
reduce the number of beat templates. Finally, statistical templates are also considered. In this approach,
the templates consist of summary statistics instead of the samples of the waveform.

Other Peak-Enhancing Techniques

Among the other methods that try to facilitate the use of a peak detector, it is worth
highlighting envelope functions (a smooth curve outlining the extremes of an oscillatory function),
used in References [61,71,74,77,82]; enhancing peaks through the wavelet transform [63,65,79];
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morphological filters [62,77]; applying range filters (they compute the difference between local maxima
and local minima) [61]; directly thresholding the signal (specially, the ECG, which is “peaky” in
nature) [79]; T-wave suppression filters [80]; and using adaptive filters such as in Reference [67] (in
which the ECG is filtered to try to remove EOG peaks; the output of the filter is used for QRS detection).

3.5.2. Peak Detection

Peak detection involves searching for local maxima, usually by direct comparison with
neighbouring values. For a robust detection, the local maxima are required to meet some conditions.
Common requirements include a minimum height (this removes spurious peaks), a minimum
prominence (a measure of how much a peak stands out from the neighbouring), and a minimum
distance between two consecutive peaks (usually between 200–300 ms for heartbeat detection,
see References [57,78,82]). In Reference [54], a simple peak detector implemented as a moving
window with 0.3 s finds a peak if the middle value of this window is the maximum value of
the overall window. Although some proposals [78,82] implement their own peak detectors from
convolution-based filtering [78] and envelope functions [82], most researchers prefer to use the tools
included in the programming language of their choice (such as MATLAB’s peakdetect) or specialized
software [117]. It must be noted that some proposals directly use the peak detection functions without
any preprocessing [66].

Detection algorithms are not restricted to classical signal processing algorithms, but it is
increasingly common to use other techniques, specially from the field of machine learning or Bayesian
statistics. The different approaches for peak detection are summarized in Table 12.

Table 12. Summary of the peak detection methods used in the reviewed papers.

Type Work

Local-maxima search [54,57,66,78,82]
Bayesian [81]

Machine learning [52,63]
Data mining [58]

In Reference [81], a Bayesian approach able to fuse ECG with some other pulsatile functions
is proposed (it selects, in this order, one of the following signals: BP, ABP, ART, PRESS, PLETH
(PLETH refers to the same PPG signal but with another tag name),PPG, or SV). Three different
estimates of the interbeat intervals are obtained using the set of features presented in Section 3.3. These
estimation algorithms are run on moving windows to find the interval estimations in every signal.
The final interval estimation is obtained by combining the three estimates through a Bayesian approach.
GQRS and WABP tools from the WFDB toolbox are employed to obtain another estimate of the correct
annotation locations. These locations are compared with the mean estimated interval from the Bayesian
approach so that annotations that appear in near positions comprise the final annotation list.

Machine-learning approaches have also been proposed for multichannel heartbeat
detection [52,63]. In Reference [63], two different classifiers are tested: Neural Networks (NN) and
the XGBoost gradient boosted tree (BT) algorithm. The classifiers are trained with small snippets of
data, which are labelled as 1 if there is a heartbeat in the middle of the snippet (and otherwise as 0).
Therefore, the output of the classifiers may be interpreted as the probability of detecting a heartbeat in
the middle of the snippet.

Finally, it is worth mentioning approaches based on data mining algorithms: in Reference [58],
heartbeat detection methods based on a sequential pattern framework are proposed. To do so, the
ConSGapMiner algorithm [119] extracts subsequences that may correspond to a heartbeat from the
signal feature representation (see Section 3.3). Finally, all the generated subsequences are ranked and
subsequently used to hypothesize the annotations.
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The Bayesian approaches from References [44,45,50,51] and the machine-learning method from
Reference [52] merge the detection and fusion steps into a single one, and therefore, they will described
in Section 3.6.4.

3.5.3. Delay Correction

There could exist a delay between the R-peak of the ECG and the associated peaks in other signals.
In the case of BP, this delay is known as Pulse Transit Time (PTT). These delays should be taken
into account to fuse the annotations from several signals. Most algorithms try to tackle the issue by
estimating the delay and by correcting it before the fusion algorithm. The main differences between
the different proposals arise at the delay estimation step. A summary of these proposals is shown
in Table 13.

Table 13. Summary of the delay correction approaches used in the reviewed papers.

Type Delay Correction Work

Constant for all data Taken from literature [52,64,78,79]
Estimated from data [45,75,81]

Patient-dependent but constant Central tendency estimate [47–49,55–57,66,73,74,82]
Cross-correlation [69,70]

Patient and time-dependent

Moving average filter [60,61,67]
Hampel filter [120,121] [42]
Windowed-correlation [62,65,77]
Physiological variance [76]

The simplest approach is to use a fixed delay value for each signal taken from the literature
(for example, 200 ms for the BP signal) [52,64,78,79]. Some authors also use constant delay values for
all the records (and each signal), although they estimate the values from the data [45,75,81].

The delay is most usually corrected in a patient-specific basis [47–49,55–57,66,69,70,73,74,82].
The estimation is usually based on the mean, median, or mode of the delays between the annotations,
although some authors use the cross-correlation between the annotations and the signal shifted [69,70].
Some of these algorithms try to focus on clean segments to achieve an accurate estimate [47,55,66],
and most of them use constant default values taken from the literature for those cases where the
estimation cannot be done [47,55,66,69,73] or where it yields unreasonable physiological values [69,70].
In Reference [74,82], an even more drastic approach is taken: if the standard deviation of the delay
values is too high, the signal is discarded.

Although the delays are known to vary between consecutive contractions, there is a good reason
for using a constant value for the delays. Besides the simplicity of this approach, the variance of the
delay times is usually negligible compared to the margin that is usually permitted for an annotation to
be considered correct (150 ms in the Physionet Challenge 2014) [79].

Even so, some algorithms estimate a dynamic delay time for the signals, accounting for the
variation between successive contractions. The most broadly used method consists of smoothing the
delays between QRS peaks and the peaks from the signal of interest, either by using a moving average
filter [60,61,67] or a Hampel filter [120,121], which has been used in Reference [42]. These filters help
in eliminating the effect of wrong delays due to missing or additional annotations. The delay may also
be estimated by using the correlation method in small windows [62,65,77] or by using the variance of
the physiological delay between electrical and mechanical myocardial activation [76]. In addition to
the correlation method, Reference [62] also proposes estimating the proper shift of the signal of interest
by using a linear regression. In this case, the model predicts the proper shift using as the predictor
the interpolated pulse rate of the signal of interest. Again, a default value can be used if the method
predicts unreasonable values [42].
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3.6. Fusion

The fusion stage is necessary to produce the final annotation list that contains all the heartbeats
detected over the multiple physiological signals. A good fusion strategy can improve heartbeat
detection by exploiting complementary information present in the different physiological signals while,
at the same time, avoiding those signal intervals that have poor quality or high levels of noise.

There exist multiple strategies used to combine the annotations from the different signals.
We shall distinguish four main approaches, although other classifications are possible, in particular
when considering the diffuse edges between them and that some overlap exists. These approaches
are RR-based methods (Section 3.6.1), signal switching (Section 3.6.2), voting (Section 3.6.3), and
approaches that merge heartbeat detection and fusion into a single step (Section 3.6.4). RR-based
methods rely on the beat-time information previously obtained, since the fusion is based on the time
between two beats (often, between the R-peaks of two QRS complexes). This makes precise time
location of the beat crucial for fusion and may present a bottleneck for improving the performance.
Signal switching depends on the SQA algorithm, since the annotations that are kept in the final list are
obtained by using the signal which yields the best SQA measurements. In this case, employing a robust
SQA algorithm is a must. In voting approaches, each potential beat detection over a signal constitutes
a vote for the final beat presence, a vote that is often weighted by some metric of the signal’s reliability
and/or quality. This may be similar to the signal-switching approaches, since these also employ some
kind of voting (i.e., they rely on the detection provided by the best signal). Techniques that combine
detection and fusion in a single step borrow the ideas either from statistical methods (often Bayesian
approaches or techniques based on Hidden Markov Models) or from machine learning for merging
detection and fusion into a single step.

Some authors [80] have also proposed a manual fusion from the morphology and timing of the IJK
complex in the BCG signal and of the R and T peaks in the ECG signal. Table 14 presents a summary
of the fusion approaches used in the reviewed papers.

Table 14. Summary of the fusion approaches employed in the reviewed papers: “SQI” stands for signal
quality index, “HSMM” stands for hidden semi-Markov model, “DBN” stands for dynamic bayesian
network, and “CNN” stands for convolutional neural network.

Type Fusion Work

RR intervals [42,46,57–59,61,64,72,73,78,79,81]
Hampel filter [120,121] [42]

Hjorth’s mobility [74]
RR-based Nearest-neighbour [43]

Sandwich rule [42,60]
RR interval post-processing [47,59,61,63,74,78,82]

Signal switching Signal annotation selection [47–49,55,57,62,65,66,68,77,79]

Majority voting [67,74,79,82]
Tukey weighted voting [69,70]

SQI, mean temporal location [56]
Voting Mean correlation, template matching [71]

Bayesian inference [54]
Annotation score [122,123] [76]

AND/OR rules [75]

Euclidean distance+DTW [53]
HSMM [44,45]

Joint detection and fusion HMM+BN [51]
DBN [50]
CNN [52]

Other Manual [80]

3.6.1. RR-Based Methods

A common approach for combining the annotations obtained over different physiological signals
is joining all the annotations into a single annotation list, sorting them, and combining very close
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annotations (usually employing a window of 150 ms approximately). Then, the RR intervals are
used for detecting missing annotations (which would yield a very large RR interval) or spurious
annotations (which would yield a very short one). Usually, spurious annotations are directly removed
whereas missing annotations are predicted using interpolation or the mean RR interval. This approach
or similar ones are used in References [42,46,57–59,61,64,72,73,78,79]. The process may be repeated
several times until convergence [81]. It is worth discussing some of the variations of this idea.

Some proposals use advanced filtering techniques for improving the detection of outliers within
the RR series. For example, in Reference [42], a Hampel filter [120,121] is used for detecting outliers,
which are then interpolated using a nearest neighbours approach. On the other hand, the Hjorth’s
mobility is employed in Reference [74] for estimating the number of missing annotations.

In Reference [43], a nearest-neighbour selection scheme is employed. In this way, in case the
annotation is output by two or more heartbeat detection algorithms, the end time and peak value
corresponding to the mode RR interval time are assigned to the given annotation, and in case the
annotation is output by a single algorithm, the end time and peak value yielding an RR interval closest
to the previous averaged 12 RR intervals are assigned to the corresponding annotation.

The “sandwich rule” proposed in Reference [60] states that an R-wave is valid if two conditions
are met: It is the only R-wave between two consecutive ABP onsets, and each of these ABP onsets is
the only onset between two consecutive R-waves. In the simplest cases, an invalid annotation (either
from ECG or ABP) is corrected by using a mean QRS-BP delay. For example, if two consecutive BP
onsets “sandwich” more than one QRS, the mean QRS-BP delay is used to predict proper positions of
the missing QRS peaks. Since in pathological cases (such as premature ventricular heartbeats or a very
noisy ECG segment) the “sandwich rule” may fail, the authors perform a sanity check to ensure that
the ECG peaks are indeed QRSs. The idea is that a QRS complex will intersect a set of regularly spaced
horizontal lines placed over the ECG at most six times, whereas this number will be probably larger in
noisy segments. The “sandwich rule” is also applied in Reference [42].

It is worth noting that RR intervals are also used to refine the final annotation list that results after
the fusion algorithm [47,59,61,63,74,78,82]. The techniques employed to that end are very similar to
those introduced at the beginning of this subsection.

3.6.2. Signal Switching

A recurrent idea which usually yields good performance is generating the annotations by
switching from one signal to another depending on the quality index of the current segment. Usually,
a hierarchy of signals is built. For example, if the ECG has enough quality, the annotations from the
ECG are used, and if not, the quality of the BP is assessed; if it is good enough, its annotations are
used, and if not, the signal with the highest quality among the remaining ones is used. Examples
of these approaches can be found in References [47–49,55,57,62,65,66,68,77]. The method presented
in Reference [79] simply rejects an annotation in case this belongs to a signal segment in which the
physiological range values are out of a predefined interval.

3.6.3. Voting

Among the voting approaches, we may distinguish between majority voting and weighted voting.
In majority voting, each of the signals votes for the presence of a heartbeat in a small window. The final
heartbeat location is then found by searching for a local maximum or by requiring the agreement of a
minimum number of signals (usually, half plus one). Majority voting is used in References [67,74,79,82].

Majority voting can be improved by assigning different weights to the signals according to diverse
criteria. We shall summarize some of the algorithms using weighted voting to illustrate possible
weighting schemes.

In Reference [69,70], a majority voting technique using a Tukey window is proposed. However,
different weights are assigned to the signals (according to its type), so that ECG, BP, or PPG can trigger
a detection on their own. However, two simultaneous detections over SV, EEG, and EOG or a single
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detection over any of these signals overlapping with the location of a predicted heartbeat (using linear
interpolation) are required to trigger a final detection.

In Reference [56], a majority voting fusion method integrates the information from the multiple
physiological signals as follows. First, the signals are segmented into small windows and the average
heartbeat signal quality index (SQI) is used to choose the best signal as reference signal. In this
reference signal, each RR interval is selected and considered as a potential annotation in case it fits
within some tolerance limits. All the annotations in the other signals within a window of 150 ms are
considered for fusion. To that end, weights for each signal are assigned for majority voting, so that
signals below a predefined threshold are considered noise and rejected in the voting. Finally, the mean
temporal location computed from the annotations in the voting produces the final annotations.

In Reference [71], the annotations are created by combining all the channels (which were
preprocessed using template matching; see Section 3.5) into two different new signals: the Total
Correlation Response (TCR) signal, which weights all the channels according to the mean correlation
between the channels and the template pattern, and the Best Correlation Response (BCR) signal, which
just picks the temporal maximum across the channels. The annotations are created by ensuring that
each new detection is far enough from the previous one and by switching from TCR to BCR when the
quality of TCR is too low. In Reference [54], Bayesian inference that permits weighting the different
signals is employed for fusion.

The work presented in Reference [76] uses the optimal fusion method proposed in
References [122,123]. This decision rule combines the individual decisions of each detector, weighted
according to its performance. On the other hand, and and or rules are applied in the annotations in
Reference [75] to confirm or reject these. In this work, a heartbeat detection is copied to the final
annotation list if it is output by the two signals of interest (and rule) or only by a single signal (or rule).

3.6.4. Simultaneous Detection and Fusion

In Reference [53], all the signals are employed to build a matrix that represents a multiparameter
signal in which rows represent time and columns represent the type of signal to fuse. Then, the
Euclidean distance is used to compute the similarity between each new signal and predefined templates
for all the signals of interest. This Euclidean distance matrix is given to a variant of DTW, named
Weighted Time Warping, which looks for the annotation boundaries. This algorithm yields as the
result the final annotations, and therefore, it performs detection and fusion at the same time.

In References [44,45], hidden semi-Markov models (HSMM) are employed for robust heartbeat
detection. The HSMM uses two hidden states (QRS complex and non-QRS complex) and a Gaussian
emission function. To estimate the state of the ECG and BP signals, features obtained from
derivative-based filters are fed to the HSMM. The most likely sequence of states for the observable
signals are obtained using the Viterbi algorithm. As the Viterbi algorithm provides output probabilities
for each feature vector, these are then merged with the signal-quality index computed previously to
output the final annotations.

The algorithm from Reference [51] proposes fusing ECG and ABP signals using a more complex
Bayesian approach, which is based on two layers. In the first layer, signals are decoded in terms of
states related to well-known waveform segments: ISO (isoelectric), P, PQ, QRS, ST, and T for the ECG
and SBP, DBP, Diastolic cusp, and Offset for the ABP. This is achieved by modelling the waveforms as a
Hidden Markov Model (HMM). The second level uses the HMM decoded states of the ECG and ABP
to detect the presence or absence of a QRS segment. The authors propose two different models to make
this decision. The simplest model uses a Bayesian Network (BN) to model the relationships between
the three relevant random variables of the problem: the state of the ECG E, the state of the ABP B,
and the classification output C (which is a binary random variable). Within this model, the authors
test different BNs which may be broadly categorized into two categories: BNs assuming that E and
B participate independently in the decision about C and BNs assuming that E and B are dependent
on each other for deciding C. The second model the authors propose is justified by the observation



Sensors 2019, 19, 4708 22 of 34

that consecutive states of the signals are correlated in time. This information can be incorporated in a
model using state transitions, which results in Dynamic Bayesian Networks (DBNs). Just like with
BNs, the authors test different transition models that show correlations between E and B or not.

Yet another example of a Bayesian approach is Reference [50], which fuses ECG and BP using
a generative model that captures a simplified understanding of the heart rhythm. The graphical
model is a dynamic Bayesian network that relates hidden state variables (such as heart rate or a binary
variable indicating if a BP peak is present) with both observations obtained from the GQRS and WABP
algorithms and signal quality indices. The hidden states (including ECGPeak and ABPPeak) are learned
by applying a particle filtering to the signals, which are first split into 25-ms windows. The hidden
states are then used to annotate the signal. Specifically, the annotations correspond to timestamps
where enough particles are in a state of ABPPeak. The position of the annotation is corrected using yet
another hidden variable that captures the latency between the ECG and the BP signals.

In Reference [52], a Convolutional Neural Network (CNN)-based approach is proposed for the
detection and fusion of the annotations obtained from ECG and BP signals. Note that the CNN is
able to extract the features by itself, and therefore, in contrast to the method from Reference [63], the
inputs are the raw signals. Again, the CNN is trained with small intervals of data labelled as 1 or 0
depending on whether there is a heartbeat in the middle of the interval or not. Unlike the method from
Reference [63], this proposal blends together detection and fusion.

4. Evaluation Metrics

To compare the different proposals of the literature, we will use a set of quantitative metrics.
Those employed in the Physionet Challenge 2014 are a good starting point: gross sensitivity (Se), gross
positive predictivity value (PPV), average sensitivity (Se), average positive predictivity (PPV), and
overall score (Overall), which are computed as follows:

Se =
100 ∗ TP
TP + FN

PPV =
100 ∗ TP
TP + FP

Se =
100
N

N

∑
n=1

TPn

TPn + FNn

PPV =
100
N

N

∑
n=1

TPn

TPn + FPn

Overall =
Se + PPV + Se + PPV

4
,

where N is the number of records, TP is the number of true positives (i.e., the number of heartbeats
that are correctly detected), FP is the number of false positives (i.e., the number of detected heartbeats
that do not appear in the ground truth), and FN is the number of missed heartbeats or false negatives
(i.e., the number of heartbeats in the ground truth that are not actually detected). TPn, FPn, and FNn

are the number of true positives, false positives, and false negatives for the record n, respectively.
It must be noted that the main difference between the gross and average values relies on the different
number of heartbeats per record. If all the records had the same number of heartbeats, then gross and
average values would coincide. A tolerance interval of hundreds of milliseconds with respect to the
ground-truth annotation of the database is typically given to a heartbeat to be considered as TP. For
example, the Physionet Challenge 2014 considered a 150-ms tolerance interval.

In addition to the challenge metrics, in the literature, there are authors who use other metrics to
evaluate the performance of their proposals. For example, the F1 score is defined as follows:
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F1 =
100 ∗ 2 ∗ TP

2 ∗ TP + FN + FP
.

The average F1 can also be employed by averaging the F1 score obtained from the TP, FN, and FP
values of each signal/record independently.

Additionally, the accuracy may also be employed for evaluation. This is defined as follows:

Accuracy =
100 ∗ TP

TP + FN + FP
.

All the evaluation metrics range between 0 and 100. For all metrics, the larger, the better.

5. Results and Discussion

Table 15 shows the results of the different techniques presented in this paper for the different
databases from the evaluation metrics.

The Physionet 2014 challenge and its follow-up may be the most straightforward databases with
in which comparison can be ascertained, since the largest amount of techniques are tested on those
databases. Analysing their performance on the challenge database, the techniques obtained better
performance on the training data than on the test data, as expected. The best overall performance on
the training data (99.99% overall score) is obtained by the work presented in Reference [74], which
employs ECG, BP, SV, EEG, and PPG signals; PSD computation as feature extraction; the GQRS
algorithm for R-peak detection in ECG signal and a threshold-based approach in the rest of the signals,
a majority voting approach for fusion; and Hjorth’s mobility and minimum heartbeat RR interval for
missing annotations. However, this approach does not generalize well on test data (86.6%), probably
due to overfitting. On the challenge test data (Phase III), the best overall performance (87.9%) is
obtained by Reference [55]. It employs ECG, ABP, SV, and PPG signals and specific algorithms for
heartbeat detection for each signal type. This approach generalizes better than the one presented in
Reference [74] on unseen data. In addition, both the fusion approach based on the set of RR interval
time series (FREG) and the one based on level agreement of two peak detectors (FSQI) may be more
robust than the majority voting approach presented in Reference [74]. Figure 3 compares the three
best results obtained over the Physionet 2014 challenge database, in which the overall metric has been
chosen for evaluation ranking.

Regarding the follow-up database, the technique presented in Reference [65] obtained the best
overall performance on the training data (97.3%). This shows the usefulness of multi-lead ECG and
BP signals, wavelet transform, correlation methods, and template matching approaches for robust
heartbeat detection. On test data, the best overall performance is obtained the technique presented in
Reference [52] (94.0%), which takes advantage of the ABP signal, CNNs, and a single detection and
fusion stage for robust heartbeat detection. Figure 4 compares the three best results obtained over
the Physionet 2014 follow-up challenge database, in which the overall metric has been chosen for
evaluation ranking.

In the literature, there are authors who report better performances on the other databases than
on the test challenge data (see Table 15). On the one hand, those databases already existed before
the challenge was launched; therefore, more effort could have been devoted by researchers aiming to
improve the performance of their algorithms over them. On the other hand, challenges are usually
constructed with more difficult conditions (i.e., more noisy signals are involved and unseen test data
is used for evaluation, to name a few), which makes the performance drop. According to the best
results found for each individual database, EEG, EOG, and EMG signals (99.8% overall performance
in the MIT-BIH Polysomnographic database [56]) and PPG signal (99.5% accuracy in the MIMIC
database [53]) may outperform the performance of the most commonly used signal set (ECG and
BP/ABP). However, some authors [70] note that the use of additional signals does not always improve
the results, which may be due to the database used for evaluation and the algorithm/fusion approach
employed. This could make the optimal signal set quite database-dependent.
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Among those techniques that do use several signals (different from BP/ABP) to improve the
detection, most of them require the signals to be labelled with their type (BP, EEG, etc.); only a few
algorithms (see Reference [82] (ID)) are able to identify automatically the signal types.

Table 15. Results obtained by the techniques presented in the reviewed papers: “Ov” stands for
overall, “Ac” stands for accuracy, “rec” stands for records, “Ch” stands for challenge, “FU” stands
for the follow-up of the challenge, “diff” stands for difficult, “CV” stands for cross-validation,
“Ar” stands for arrhythmia, “Pol” stands for polysomnographic, and “NS” stands for noise stress.
When a paper presents two or more techniques, these are denoted in the most left column with
the corresponding ID referred across the paper: “GJ” for GQRS/JQRS, where GQRS was used as
the baseline set of annotations and JQRS was used for signal-quality assessment evaluation; “JG”
for JQRS/GQRS, where JQRS was used as the baseline set of annotations and GQRS was used for
signal-quality assessment evaluation; “EG” for EPLTD/GQRS, where EPLTD was used as the baseline
set of annotations and GQRS was used for signal-quality assessment evaluation; “EJ” for EPLTD/JQRS,
where EPLTD was used as the baseline set of annotations and JQRS was used for signal-quality
assessment evaluation; “G+W” for GQRS+WABP, where detections from both algorithms are fused;
and “G+O” for GQRS+OWN, where detections of both algorithms are fused. The work marked with
“*” presents the results on the database composed of training and test data. All results are given in %.
For results higher than 99.9, the second decimal is shown so that the best performance can be seen.
Results from Reference [69] have been presented as in the original paper.

Work Database Se PPV Se PPV F1 F1 Ov Ac

[58] 30 rec Ch training 65.3 72.1 51.7 67.2 - - - -

[59] Ch training 99.97 99.3 99.96 99.3 - - 99.6 -
Ch test III 83.3 79.8 83.8 77.8 - - 81.2 -

[42]
FU test 91.1 87.1 89.4 87.2 - - 88.7 -

100 diff rec FU training 93.2 88.5 92.1 89.9 - - 90.9 -
CV 100 diff rec FU training 92.5 88.6 91.3 90.0 - - 90.6 -

[66]

MGH/MF training - - 96.9 96.8 - - - -
Ch training - - - - - - 99.96 -

Ch test I - - - - - - 90.0 -
Ch test II - - - - - - 83.8 -
Ch test III - - - - - - 84.3 -

[73] Ch test III - - - - - - 86.4 -

[74]
Ch training 99.98 99.99 99.98 99.99 - - 99.99 -

Ch test II 85.2 86.7 85.7 87.3 - - 86.2 -
Ch test III 88.9 83.8 88.5 85.3 - - 86.6 -

[69]

Ch training >99.9 99.7 >99.9 99.7 - - 99.8 -
Ch test I 86.6 95.7 85.5 88.0 - - 88.9 -
Ch test II 73.4 80.5 75.3 75.6 - - 76.3 -
Ch test III 84.6 86.8 82.9 83.5 - - 84.2 -

[55] FSQI (GJ) MGH/MF training 94.3 96.4 93.9 95.9 95.4 - 95.2 -
Ch test III 89.7 85.3 89.8 86.7 87.5 - 87.9 -

[55] FSQI (JG) MGH/MF training 94.0 96.3 93.7 96.2 95.2 - 95.1 -
Ch test III 88.7 85.1 88.7 86.2 86.8 - 87.2 -

[55] FREG MGH/MF training 96.2 95.6 95.8 95.6 95.9 - 95.8 -
Ch test III 91.2 83.2 91.2 85.1 87.0 - 87.7 -

[44] Ch test III - - - - - - 83.5 -
5150 rec MGH/MF - - - - - - 92.7 -

[71]
47 rec MIT-BIH Ar 99.8 99.0 - - - - - -

Ch training 99.9 99.96 - - - - - -
Ch test III 83.6 84.8 - - - - 83.7 -

[60]
Ch training 99.9 - 99.96 - - - - -
Ch test III 87.8 - 85.2 - - - 86.7 -

Ch training - - - - - - 99.6 -

[80] 4 healthy subjects - - - - - - - 88.0
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Table 15. Cont.

Work Database Se PPV Se PPV F1 F1 Ov Ac

[53] MIMIC - - - - - - - 99.5

[67] Ch training - - - - - - 99.6 -

[64] 200 rec Ch 96.4 94.5 95.9 94.9 - - 95.4 -

[61]

Ch training 99.9 - 99.93 - - - - -
MIT-BIH Ar training+test 98.6 - 99.7 - - - - -

MIT-BIH NS test 94.9 - 92.0 - - - - -
European ST-T 99.91 - 99.9 - - - - -

MGH/MF training+test 98.7 - 98.3 - - - - -
MIT-BIH Pol 99.9 - 99.7 - - - - -

[62]
Ch test I - - - - - - 89.2 -
Ch test II - - - - - - 85.9 -
Ch test III - - - - - - 85.1 -

[63] NN
Ch training 99.94 99.96 - - - - - -
Ch test III 91.6 87.9 - - - - - -

FU training 95.5 92.2 - - - - - -

[63] BT Ch training 99.95 99.96 - - - - - -
FU training 96.5 92.3 - - - - - -

[54] MIMIC - - - - - - - 77.0

[72] 100 rec Ch test - - - - - - 88.0 -

[56]
FU training 95.3 95.0 94.8 94.6 95.2 94.7 94.9 -

FU test 92.7 90.4 91.6 88.9 91.6 90.2 90.9 -
MIT-BIH Pol 99.9 99.6 99.9 99.7 99.8 99.8 99.8 -

[79] FU * - - 95.5 96.0 95.6 - - 93.1

[82] PSD
FU training 94.6 92.4 - - - - 93.5 -

FU test 89.0 87.5 86.4 85.3 - - 87.1 -
100 rec MGH/MF 90.8 96.7 - - - - 93.7 -

[82] ID
FU training 95.4 93.3 - - - - 94.3 -

FU test 90.7 90.2 89.6 89.6 - - 90.0 -
100 rec MGH/MF 97.1 97.8 - - - - 97.4 -

[43] MGH/MF training+test 90.6 96.7 - - - - 93.7 -

[70]
FU training 95.9 91.4 95.7 92.3 - - 93.8 -

FU test 92.7 87.4 91.1 87.0 - - 89.5 -
MIT-BIH Pol 99.98 99.0 - - - - - -

[45] FU training 94.5 96.5 94.8 95.6 - - 95.3 -
FU test 92.8 88.5 89.7 85.4 - - 89.1 -

[81]
Ch training/test 95.7 95.5 96.1 96.3 - - 95.9 -
FU training/test 91.0 91.9 89.4 90.5 - - 90.7 -

MIT-BIH NS 86.3 80.3 86.1 80.4 - - 83.3 -

[46] Ch training 99.9 99.96 - - - - - -
Ch test III 82.1 84.1 - - - - - -

[76] IMPROVE - - - - - - - 63.6

[57] Ch test III 87.0 85.8 87.6 85.2 - - 86.4 -
FU test 88.6 88.3 88.0 87.5 - - 88.1 -

[77]

LTST 96.5 94.1 96.0 94.0 - - 95.1 -
MGH/MF training+test - - 95.2 93.2 - - - -

Ch training and FU training 98.1 97.5 97.8 97.2 - - 97.7 -
FU training 96.4 95.4 95.7 94.5 - - 95.5 -

FU test 95.7 93.5 93.9 91.6 - - 93.6 -
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Table 15. Cont.

Work Database Se PPV Se PPV F1 F1 Ov Ac

[51] FU training - - 94.0 93.0 - - - -

[49] Ch training 99.7 99.92 99.7 99.91 - - - -

[47] GJ FU training 96.9 94.2 96.5 95.1 95.5 - 95.6 -
FU test 94.0 88.8 91.6 88.8 91.3 - 90.8 -

[47] EG FU training 96.8 93.7 96.5 94.9 95.2 - 95.4 -
FU test 94.0 87.7 91.6 88.4 90.8 - 90.4 -

[47] EJ FU training 94.4 93.5 93.8 94.4 94.0 - 94.0 -
FU test 95.1 89.3 92.6 89.0 92.1 - 91.5 -

[68] Ch training - - - - - - 99.97 -
Ch test III - - - - - - 86.3 -

[78] G+W FU training 92.1 91.6 92.2 93.0 91.8 92.5 92.2 -
FU test 89.8 85.8 87.3 86.3 - - 87.3 -

[78] OWN FU training 90.9 89.5 91.0 90.8 90.2 90.7 90.6 -
FU test 87.8 85.1 85.3 83.3 - - 85.4 -

MIT-BIH Ar training+test - - 99.1 99.8 - - - -

[78] G+O FU training 94.5 94.0 94.4 94.4 94.2 94.2 94.3 -
FU test 91.2 88.1 88.9 87.3 - - 88.9 -

[48] Ch training 99.7 99.91 99.7 99.91 - - - -

[65] FU training 96.7 98.3 96.5 97.8 - - 97.3 -
MGH/MF training+test 96.3 97.0 96.2 96.9 - - 96.6 -

[50]

Ch training 99.6 99.9 99.6 99.9 - - - -
FU training 94.1 93.6 93.1 93.2 - - - -

MIT-BIH Pol 99.7 99.7 99.6 99.7 - - - -
MGH/MF training+test 95.4 96.1 95.3 95.3 - - - -

[75] (and) IMPROVE - - - - - - - 86.1

[75] (or) IMPROVE - - - - - - - 92.1

[52] FU test 93.4 95.5 92.9 94.3 - - 94.0 -
23 rec MIT-BIH Ar 99.93 99.91 99.94 99.91 - - 99.92 -

Results have shown that signal preprocessing techniques such as band-pass filtering (with specific
cutoff frequencies depending on the signal), notch filtering, and baseline wander suppression are
also crucial for heartbeat detection. Wavelet transform and power spectral density have been shown
to be suitable for feature extraction. Signal normalization and resampling are very commonly used
during preprocessing. Techniques based on the variance of the delay values in the annotations, the U3
transform, the level agreement between two peak detectors, the SAI, correlation, and the deviation of
the heartbeat from the rhythm of heartbeats have also shown their potential for measuring the quality
of the signals to be used within the fusion.

Among the best individual heartbeat detection methods, GQRS, COQRS, JQRS, Open-Source
Electrophysiological Toolbox (OSET), Slope Sum Function and Teager-Kaiser (operator) (SSF-TK),
template matching, LDA, and Weighted Time Warping (WTW) algorithms are worth highlighting.
Delay correction that aims to compensate the timestamp differences between the annotations output
by the different signal detectors based on mean and median of the timestamps, the correlation method,
or in a fixed delay value have been found to be useful.

Fusion techniques based on Hjorth’s mobility, RR intervals, delay values, majority voting, signal
switching, detector level agreement, and CNNs have shown their potential for heartbeat detection.
The review also shows that techniques which merge in a single-step detection and fusion are still a
minority. This may be due to the fact that splitting detection and fusion eases the reuse of previous
methods. However, the recent advances in machine learning enabling the development of end-to-end
techniques may switch this tendency. In addition, deep learning has not yet been widely applied to the
problem of ECG fusion. It should be noted that the technique that has obtained the best performance
on challenge follow-up test database, that in Reference [52], together with that in Reference [63], are
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the only two techniques of Table 15 that use neural networks. This shows the potential of applying
deep-learning techniques to heartbeat fusion.
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Figure 3. Results for the Physionet 2014 challenge database over (a) training and (b) test III data: Se is
represented as mean-Se and PPV is represented as mean-PPV. “Ref.” stands for reference.
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Figure 4. Results for the Physionet 2014 follow-up challenge database over (a) training and (b) test
data: Se is represented as mean-Se and PPV is represented as mean-PPV.

6. Conclusions

An extensive review of the papers found in the literature that employ fusion of ECG with other
physiological signals to enhance heartbeat detection has been presented. The best techniques are
generally built from a few signals of interest (ECG, BP, and ABP) along with specific heartbeat detection
algorithms depending on the signal type. Signal preprocessing based on different filters types, delay
correction based on correlation methods, mean and median approaches, along with signal-quality
assessment methods are often present in the approaches that have better performance. Fusion is
accomplished by exploiting regularities and inconsistencies in the RR intervals obtained from the
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different signals; by selecting the most promising signal for the detection in every moment; by a voting
process based on the detections over each individual signal; or by performing simultaneous detection
and fusion using Bayesian techniques, hidden Markov models, or neural networks. Fusion techniques
that aim to estimate the missing heartbeats have also been proven useful to enhance the performance.

We note that, to the best of our knowledge, there is a lack of proposals trying to use a new model
that learns how to combine several fusion strategies (i.e., a fusion of fusions), in the same spirit of
stacked generalizers in machine learning [124]. An issue with this approach (that may explain the lack
of works) is that each individual fusion strategy must give different outputs so that they complement
each other. We consider this an interesting line of work that is worth exploring. Another promising
line may be the application of deep learning as a tool to detect beats over multiple signals and to fuse
the results. The fact that the authors which have obtained the best performance on Physionet 2014
follow-up challenge test data have used a convolutional neural network [52] hints the potential of
deep learning for heartbeat fusion.

Nowadays, it is difficult to compare research on multi-modal physiological signals for heartbeat
detection due to the different databases and metrics employed in the different papers. Results obtained
over the different databases cannot be compared, since these comprise different conditions: signal
complexity, types of signals available, different noise levels, and different patient conditions, to name a
few. Therefore, we encourage authors to pay attention to these issues during the evaluation. We highly
recommend that future research should be evaluated using always the challenge follow-up data, since
it is the most complete and challenging database and many proposals have already been evaluated over
it. The MGH/MF Waveform database, which comprises a considerable amount of signal types and
different patient conditions (stable and unstable patients) could be used as an additional database to
test the techniques. Researchers may add other databases at their discretion, as long as they include the
Physionet 2014 follow-up challenge database. Proposals must only employ training/development data
for technique construction, so that the test data is only employed to validate the proposed technique.
This permits a fair comparison between all the proposals for any database/metric. Moreover, the data
used for system training and development should be specifically stated in the proposal, along with the
system parameters, so that any author could replicate the results at their convenience.

Besides the databases, the metrics employed for evaluation also play a critical role when two or
more techniques are compared. To that end, we recommend that all proposals report (at least) true
positive, false negative, and false positive numbers per each record of the database. With these figures,
all the metrics presented in Section 4 can be computed. The standardization in the databases and in
the reported metrics would yield an optimal framework for comparison and would contribute to the
progress of multi-modal fusion heartbeat detection.
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