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Abstract

We report the discovery that Bombus terrestris audax (Buff-tailed bumblebee) locomotor

trajectories adhere to a speed-curvature power law relationship which has previously been

found in humans, non-human primates and Drosophila larval trajectories. No previous study

has reported such a finding in adult insect locomotion. We used behavioural tracking to

study walking Bombus terrestris in an arena under different training environments. Trajecto-

ries analysed from this tracking show the speed-curvature power law holds robustly at the

population level, displaying an exponent close to two-thirds. This exponent corroborates

previous findings in human movement patterns, but differs from the three-quarter exponent

reported for Drosophila larval locomotion. There are conflicting hypotheses for the principal

origin of these speed-curvature laws, ranging from the role of central planning to kinematic

and muscular skeletal constraints. Our findings substantiate the latter idea that dynamic

power-law effects are robust, differing only through kinematic constraints due to locomotive

method. Our research supports the notion that these laws are present in a greater range of

species than previously thought, even in the bumblebee. Such power laws may provide opti-

mal behavioural templates for organisms, delivering a potential analytical tool to study devia-

tions from this template. Our results suggest that curvature and angular speed are

constrained geometrically, and independently of the muscles and nerves of the performing

body.

1. Introduction

At any point along a curve there is a unique circle or line which most closely approximates the

curve near that location. The radius of that circle defines the ‘radius of curvature’, R, whilst

curvature, C, is defined to be its reciprocal, 1/R. According to this definition, it can be expected

that straight lines will have zero curvature, and for a given observer at a fixed scale large circles

will have small curvature and small circles will have high curvature. Curvature along with

angular speed, A, has been used to quantify human writing signatures[1].
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Remarkably the human signature, a powerful individual identifier, adheres to a speed-cur-

vature power law[1]. The speed-curvature, or two-thirds, power law dictates that the instanta-

neous angular speed of movements vary proportionally to two-thirds power of their curvature

[1]. According to the law, movements under high curvature tend to slow down, whereas move-

ments under low curvature speed up[2]. The law is given by

A ¼ kC2=3 ð1Þ

where k is a constant of proportionality.

Maximally-smooth movements, which minimize rates of change of acceleration (i.e., jerks

and jolts), are generated under the two-thirds power law[3–5], which holds true across a range

of voluntary human movements, including drawing, walking and pursuit eye movements

[1,3,6,7]. The law also holds true across a diverse range of taxa. The law has been observed in

the motor cortical control of Rhesus monkey hand movements whilst drawing [8], and even in

the larval movement of the fruit fly (Drosophila melanogaster)[5] albeit with a marginally dif-

ferent power-law exponent, three quarters rather than two thirds.

The principal origins of this speed-curvature power law are contentious. One hypothesis

suggests that the law results from central planning constraints imposed by the nervous system

[8,9]. Another, that the law arises due to physiological constraints conferred by muscular prop-

erties and kinematics[2,5,10]. A further view, that the law exists to maximize movement

smoothness and minimize jerk[3,9]. Identifying the generative mechanism holds the key to

understanding the statistical law, the occurrence of which is remarkable given that behaviours

are shaped by individual psyches and by complex social and environmental interactions. It’s

identification may help to elucidate how other statistical regularities can occur within the com-

plex movement patterns that arise in nature[11–16]. Progress towards identifying the underly-

ing mechanism can be made by determining the pervasiveness of the two-thirds law, and by

establishing whether or not it occurs in other modes of locomotion.

Given that the locomotive patterns of Bombus terrestris, and indeed animal organisms, are

probably shaped by their motivational states and by environmental factors, a seemingly natural

null hypothesis would be that individuals have unique locomotive patterns and that statistical

regularities are absent or trivial (for example, a tendency to move forwards with near constant

speed). Therefore, to determine the pervasiveness of the law, we must first determine whether

the speed-curvature power law persists in the walking trajectories of the bumblebee at all and,

if it does, whether the law differs depending on a bee’s environment. We must then determine

whether the exponent of the law adheres closely to the two thirds exponent. Finally, it is neces-

sary to also assess whether the power law is the best mathematical descriptor of walking bum-

blebee trajectories or whether an alternative better describes the relationship.

Walking is distinctly different from the crawling movements made by limbless larvae[17].

Therefore, we might predict that walking bee trajectories would adhere more closely to the

two-thirds power law exponent reported for unconstrained movements such as human draw-

ing and walking[1,6], than the three-quarters exponent reported for the mechanically con-

strained movements of larvae[5].

To the best of our knowledge the speed-curvature power law has not been studied in any

other invertebrate other than Drosophila melanogaster larvae[5] and never in the final, adult

stage of an insect. Here, we report that Bombus terrestris audax, a social bumblebee species

with a complex behavioural repertoire, displays a two-thirds speed-curvature power law whilst

walking in an arena, under differing environments.

The speed-curvature power law in Bombus terrestris
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2. Methods

Bee subjects

All subjects were Bombus terrestris audax from research hives obtained from Biobest Belgium

NV (Westerlo, Belgium). Colonies were settled in wooden nest boxes (29 x 21 x 16 cm) and pro-

vided with biogluc (Biobest Belgium NV, Westerlo, Belgium) in two gravity feeders in a Perspex

foraging tunnel (26 ×4×4 cm) connected to the nest box. Pollen was also provided in baskets in

the Perspex tunnel. Gravity feeders and pollen were replenished, as necessary, to ensure a consis-

tent supply of food to the colony. Newly emerged individuals were marked in colour groups by

age cohort with coloured plastic bee marking tags (EH Thorne Ltd, Market Rasen, UK) super-

glued to the top of the thorax. This allows tracking of an individual’s age. All individuals used in

a single trial were one-week post-emergence (to allow bees to begin foraging and to be moni-

tored) and of the same age cohort. The hive was observed each day and foragers of each age

cohort were identified in the foraging tube by their colour and number. From the foragers

recorded in each age cohort ten individuals were randomly selected to be tested per trial. The

selected individuals are then randomly allocated to either the treatment or control groups for

each trial. Trials were replicated 3 times; all treatments replicated 3 times across 3 different hives.

The experimental arena

Experiments were conducted within a thermal-visual arena (Fig 1A–1D), similar to a platform

previously used for Drosophila tracking[18]. The arena enables the creation of controlled, but

naturalistic, environments. A Peltier array of 64 2.5x2.5 cm individually controllable thermo-

electric Peltier elements, arranged in an 8x8 grid, facilitates control of the arena’s floor temper-

ature. The arena’s floor is covered in white masking tape to create an inconspicuous,

featureless surface which can be easily cleaned and replaced between trials to prevent the use

of scent marks by foragers to locate arena rewards. In the training trials, visual patterns were

adhered to the surface of the arena’s walls to create a visual landscape consisting of repeating

patterns of stars, dots, horizontal and vertical bars, denoting the four quadrants of the arena’s

circumference. Light-emitting diodes (LEDs) (colour temperature 6500K) around the top edge

of the arena were used to light the arena consistently above the bee flicker fusion frequency

[19] (Fig 1C). The arena was kept in a controlled environment room at 220 C with a day: night

cycle of 16:8 hr.

Training environments

The task required forager bees to use visual landscape patterns to locate a reward zone within

the arena, in response to four training environments: 1) control environment with no reward

or punishment, 2) appetitive reward environment (0.1ml 50% sucrose solution in reward

zone), 3) aversive punishment environment (heated arena floor (45˚C), cool (25˚C) reward

zone) and 4) combined aversive and appetitive environment (heated arena floor (45˚C), 0.1ml

50% sucrose solution in cool (25˚C) reward zone). All rewards (cool zone or sucrose) were

inconspicuous and not visually distinguishable from any other tiles on the arena floor.

Training regime

None of the test subjects had experience of the thermal-visual arena prior to the training trials.

Each bee was given ten trials in the arena (each trial was of three minutes duration) spaced across

three days. Spaced conditioning, in which temporal spacing exists between successive condition-

ing trials, has been shown to lead to higher memory consolidation in bees, especially at long

intervals [20]. When placed into the thermal visual arena, bees were confined under a clear
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plastic tube for one minute prior to the trial start, to allow orientation within the arena. The tube

was then removed, and the three-minute trial started. All bees were starved for one hour prior to

trial start to motivate individuals in the appetitive condition and to remove starvation as a con-

founding variable between treatments. Bees were confined to individual cages in-between trials

to prevent further foraging experience not in the arena and standardise the amount of foraging

experience in the arena each bee received. Cages were placed next to each other and adjacent to

the hive to allow visual and olfactory communication between hive members.

Trajectory tracking

To facilitate 2D trajectory tracking, foragers were confined to walking on the test platform by

wing clipping. Selected foragers’ wings were clipped using a queen marking cage and dissec-

tion scissors (EH Thorne Ltd, Market Rasen, UK).

Individual bee trajectories were filmed using a camera (FLIR C2 Infrared Camera) attached

to a tripod above the arena (Fig 1B). Video recording was at four frames per second for ten,

three-minute trials per bee. Video files were tracked using CTRAX: the Caltech Multiple Walk-

ing Fly Tracker software[21]. The raw centroid tracking data files outputted by CTRAX were

then used for speed-curvature power law calculation.

Speed-curvature power law calculation

For the data analysis, the x, y coordinates and corresponding timestamps for whole trajecto-

ries, for individual bees, from the centroid tracking were used to compute angular speed A(t)

Fig 1. The thermal-visual arena. (a) Diagrammatic representation of the thermal-visual arena. (b) The arena in-situ in

the lab. (c) A birds-eye view of the arena with an example Bombus terrestris forager completing a training trial. (d) A

thermal camera being used pre-training trial to confirm the location of the inconspicuous cool reward zone within the

arena.

https://doi.org/10.1371/journal.pone.0226393.g001
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and curvature C(t) using standard differential geometry[22]. Velocities were calculated from

consecutive, regularly timed, positional fixes, _x ¼ xðtþDtÞ� xðtÞ
Dt and _y ¼ yðtþDtÞ� yðtÞ

Dt where Δt = 0.2 s
is the time interval between consecutive recordings. Accelerations _x_and _y_were calculated in a

directly analogous way from consecutive velocities. Together these quantities determine the

‘radius of curvature’36,

R ¼
ð _x2 þ _y2Þ

3=2

_x _y_ � _y _x_

�
�
�
�
�

�
�
�
�
�

ð2Þ

which in turn gives the angular speed,

A ¼ ð _x2 þ _y2Þ
1=2
=R ð3Þ

and the curvature,

C ¼ 1=R ð4Þ

Data selection

Whole trajectories were analysed, with data selected so that only individual bee tracks which

had greater than 50 data points (n =>50) were used for analyses (for all other tracks

n = between 66 and 1047). Excluded bees: n = 14. Bees used for analysis, n = 45. When we

removed all bees with under 100 data points the outcomes of our analyses did not change and

therefore we can consider selection at 50 data points to be robust and there was no need to

exclude further bees. Data were not filtered (smoothed) prior to processing. Filtering does not

affect the outcomes of our analyses (see S1 Appendix).

Statistical analysis

The hallmark of a power-law relationship between curvature, C, and angular speed, A, is a

straight-line relationship between log(C) and log (A). Taking the logarithm of both sides of the

two-thirds power-law rule gives the linear relationship log A = log K + beta log C, with β = 2/3.

Here, following Zago et al.[5] we looked for such relationships by least squares linear regres-

sion of log(C) and log(A). Using this method, we estimated the exponent, β, and the variance,

r2, accounted for by the power-law.

The power-law scaling demonstrated by our analysis extends over two or more scales of

magnitude. This fulfils Stumpf and Porter’s[23] ‘rule of thumb’; after critically appraising

power laws identified in biological systems, they suggested that a candidate power law proba-

bility frequency distribution should apply over at least two orders of magnitude along both

axes and should be explainable by a viable mechanism.

We then went beyond previous analyses[5,24] by comparing our observations with strongly

competing functions that resemble power-laws but are not underpinned mechanistically. The

power-law relationship between curvature and angular speed cannot, of course, extend to arbi-

trarily large curvatures and angular speeds because of physiological constraints that place lim-

its on the tightness of turning and on the speed that can be attained by an individual.

Departures from power-law are expected when the maximum curvatures and speeds are

approached by an individual. Here we examine this by fitting our data to two functions that

resemble power-laws over a range of scales, but which depart from power-laws when curva-

tures and speeds are sufficiently high. These functions are stretched exponentials (which

include exponentials as a special case),

A ¼ a:expðbCpÞ

The speed-curvature power law in Bombus terrestris
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and log-normal like functions,

A ¼ a:expðbðlnC � lndÞ2Þ

where a, b, p and d are free parameters that are determined by fitting the functions to our data.

The relative merits of the power-law, stretched exponential and log-normal functions as repre-

sentations of our data were determined using the Akaike information criterion[25].

The stretched exponential and the log-normal like functions can be considered as strongly

competing descriptions of our data that contain three rather than two free parameters. This

extra flexibility could result in better fits to our data. Functions were fitted to individuals’

movement patterns, rather than to pooled data as we sought to capture an individual’s con-

straints. We then compared the pooled data with functions parameterized in terms of the aver-

age best fit parameters.

Stretched exponentials (typically with p~0.007) provided good fits to our data, but better

fits are obtained with power-laws. Even better fits were obtained with the log-normal like func-

tions which is not surprising given that they are more flexible than simple power-laws. In all

cases, the Akaike weights for the log-normal like functions are 1.00 which indicates that the

log-normal like functions are convincingly favoured over the power-law and stretched expo-

nential functions. However, as is often the case, the better fit of the complex model (the log-

normal like function) trades off with the elegance and clarity of the simpler model (the power-

law function). The log-normal functions are, however, convex with maxima at lnC = lnd. Such

maxima are not evident in our observations and consequently the estimates for lnd (approxi-

mately 35) were much larger than lnCmax (approximately ten). This implies that the fitted log-

normal like functions are effectively fits to power-laws because when lnd are much larger than

lnCmax

A � a:expð� 2blnðdÞlnðCÞ þ blnðdÞ2Þ

¼ kCb

where k = a.exp(bln(d)2) and β = −2bln(d).

Our mean estimates for the power-law exponents; 0.59 (controls, n = 14, range 0.42–0.87),

0.61 (appetitive + aversive, n = 12, range 0.43–0.87), 0.60 (aversive, n = 7, range 0.49–0.94) and

0.57 (appetitive, n = 12, range 0.44–0.8) are broadly consistent with the two-thirds power-law

rule. We have therefore arrived at this law using two different approaches; by fitting our data

to power-laws and by fitting our data to log-normal functions.

Statistically significant differences between the power exponents (β) of treatment groups

and expected exponent values of two thirds (0.66) and three quarters (0.75) were calculated

using non-parametric tests (Kruskal-Wallis ANOVA by ranks), as data were not normally dis-

tributed (Shapiro-Wilk test, p value = 0.000587518���). Kruskal-Wallis tests were conducted in

RStudio (Version 1.0.44–2009–2016 RStudio, Inc.). Summary boxplot, Fig 2 was produced in

RStudio using the ‘ggplot’ package.

3. Results

Varying exploratory strategies

To facilitate the creation of different walking trajectories, bees were tested across differing

training environments within a thermal-visual arena (Fig 1). Training environments differed

in the reward or incentive provided to foragers, providing either no reward or punishment

(control), an appetitive sucrose reward, an aversive punishment (heated arena floor) or a com-

bined aversive punishment and appetitive reward environment. Each bee was given ten

The speed-curvature power law in Bombus terrestris
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training trials, experiencing only one of the training environments across all ten trials. In each

training trial bees were required to use visual landscape patterns, around the circumference of

the arena, to locate the appropriate reward zone (refer to ‘training environments’ in methods

section for further details).

In all environmental conditions, bees traced complex trajectories (Fig 3 panels a, b, c, d). In

each case curvature is seen to occur across a broad range of scales, as evidenced by the presence

of nearly straight-line movements with low curvature and the presence of tight turns with high

curvature. Across differing environments bees appeared to display varying exploratory trajec-

tories. Individuals tested in the control condition often traced concentric paths, delineating

the boundary of the arena (Fig 3). Individuals in the aversive condition located and remained

in the cool reward zone for extended periods, making directed exploratory trajectories to a sec-

tion of the arena’s edge (Fig 3B). Similar trajectories were seen for individuals in the combined

aversive and appetitive environment where both a sucrose and cool zone reward were given in

the same location (Fig 3C). In the appetitive reward environment individual’s trajectories were

more varied, not being constrained to particular routes (Fig 3D).

Fig 2. Summary boxplot statistics for the β-exponent of bees in the four conditions: control (n = 14), aversive

(n = 7), appetitive (n = 12) and aversive + appetitive (n = 12 (post data filtering) and individuals from all

conditions combined. 99% of all data lies within the boxplot whiskers (outliers represented as dots). The two-thirds

power exponent (0.66) is represented by the red line. The three-quarters exponent (0.75) by the blue line and a new

predicted exponent of 0.55 by the green line. Although treatment groups did not differ significantly from the two

thirds exponent (Kruskal-Wallis analysis), when visualised, it is clear that median β-exponent values vary around a

0.55 power exponent value, suggesting that an exponent range of 0.5 to 0.66 best describes the exponents of our

walking bees.

https://doi.org/10.1371/journal.pone.0226393.g002
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Individual bees’ trajectories may be governed in part by differing motivations in response

to differing training stimuli. When provided with no training stimuli there is no motivation

for foragers to complete any task other than escape, resulting in delineating pathways (control

group, Fig 3A). Training appears to be most effective in the aversive (Fig 3B) and combined

aversive and appetitive (Fig 3C) conditions as foragers are increasingly motivated to take direct

paths to and from the reward zone. Nonetheless, these complex, highly unique pathways all

have statistical regularities characterised by a simple power law, which holds true irrespective

of motivational environment or training regime.

The speed-curvature relationship

A power-law relationship between curvature, C, and angular speed, S, (C = aS^b) will manifest

itself as a straight-line (log A = log K + beta log C) on a log-log plot. We tested for such a

straight-line relationship by linearly regressing log C on log S for each bee within each envi-

ronmental condition (Fig 4A, 4B, 4C and 4D). The average (mean) estimates for the power-

law exponents are 0.59 (controls, n = 14, range 0.42–0.87), 0.61 (appetitive + aversive, n = 12,

range 0.43–0.87), 0.60 (aversive, n = 7, range 0.49–0.94) and 0.57 (appetitive, n = 12, range

0.44–0.8).

Fig 3. Trajectories of representative bees from the control (a), aversive (b), appetitive (c) and combined aversive and

appetitive conditions (d). The blue squares indicate the location of the reward zone (specific to condition) in the arena

environment. Bees appear to implement differing exploratory strategies, dependent on the reward or punishment

environment they are in. In the control condition (a), individuals often trace concentric paths which delineate the

arena boundary. In the aversive condition (b), with a heated floor, individuals were motivated to locate and remain in

the cool reward zone. Therefore, trajectories often showed directed exploratory paths out from the reward zone to a

facet of the arena. Similar directed trajectories are seen for individuals in the combined aversive and appetitive

condition (d). This is not surprising as this is the condition which should provide foragers with the most motivation to

remain in the reward zone, with two rewards (sucrose and cool zone) and a punishment in the form of the heated

arena floor. Individuals in the appetitive reward environment (c) often tracked more varied paths, not constrained to

set routes or areas of the arena.

https://doi.org/10.1371/journal.pone.0226393.g003
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The suitability of the power law to describe our data was tested against two competing sta-

tistical relationships; stretched exponentials and log-normal like functions (Fig 4A, 4B, 4C and

4D) (see ‘statistical analysis’ methods section for further details). Power laws provide better fits

than stretched exponentials, and although good fits are obtained with log-normal functions,

they are consistent with the two-thirds power law rule, making the simpler, more elegant

power law model the best choice.

Adherence to a power law across environments

Adherence to the law did not depend on the environment an individual forager was exposed

to (see Fig 4A–4D) and the distribution of power exponents did not differ significantly

between treatments (including controls) (Kruskal-Wallis ANOVA by ranks, chi-

squared = 0.62489, df = 3, p-value = 0.8907 (>0.05)). As would be expected, all treatment

exponents were significantly different from zero (Kruskal-Wallis ANOVA by ranks, chi-

squared = 32.321, df = 4, p = 1.645e-06���� (<0.00001)).

Two-thirds or three-quarters?

To determine whether bees’ trajectories adhered more closely to the two-thirds or the three-

quarters power law exponent, treatments were tested for significance against populations with

assumed power exponents of 0.66 and 0.75.

Treatment populations were highly significantly different from the three-quarters power

law exponent (0.75) (Kruskal-Wallis ANOVA by ranks, chi-squared = 17.79, df = 4, p-

value = 0.001356�� (<0.05)).

However, treatment populations were not found to be significantly different from the two-

thirds power law (0.66) (Kruskal-Wallis ANOVA by ranks, chi-squared = 6.0816, df = 4, p-

value = 0.1931 (>0.05)). However, Fig 2 shows that although treatment groups did not differ

significantly from 0.66, the medians of treatment groups vary around a 0.55 power exponent

line. Populations were found to not significantly differ from this 0.55 power exponent either

(Kruskal-Wallis ANOVA by ranks, chi-squared = 1.7447, df = 4, p-value = 0.7826 (>0.7826).

4. Discussion

Locomotive patterns are frequently complex but do, nonetheless, have surprising regularities

(primitives) that may provide insights into the underlying generative mechanisms for move-

ment and into motor planning. These regularities take the form of power-laws that have been

shown to characterise not only curvature[1], but also the duration of movement bouts and

pauses[26].

Our work in Bombus terrestris supports previous findings in Drosophila larvae[5] that the

power laws which govern voluntary human behaviours[1,3,4,6] also govern the behaviours of

less complex organisms. Remarkably, this law holds, not just across vastly different locomotive

methods and speeds (walking[6], drawing[1], crawling[5]), but also across greatly differing

organisms (human[1,3,4,6] and non-human primates[8], Diptera[5], and now Hymenoptera).

The explanations for these power laws within movement patterns are contentious with con-

trasting hypotheses for their existence. Originally ascribed to central motion planning by the

nervous system[8,9] it was thought that the existence of the relationship between speed and

curvature could not be a result of muscular properties and limb dynamics[10]. This is sup-

ported by the observation that the law holds true for human drawing under isometric condi-

tions[27]. Notably, the speed-curvature power law is also corroborated across widely diverse

taxa. Evidence that the law originates as a result of decoding complex cortical processes is

apparent in the motor cortical control of Rhesus monkey hand movements, as population
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vectors in the motor cortex obey the power law during drawing[8], adding weight to the cen-

tral planning origin hypothesis.

Drosophila Larval locomotion power exponents have been recorded to deviate from the

two-thirds exponent reported for human voluntary movements[1,3,4,6], at closer to three-

quarters[5]. The researchers suggest that these findings prove a role for dynamic effects adding

on purely kinematic constraints[5]. In support of this notion, the power exponent recorded

for human drawing shifts closer to this value of three-quarters (0.73) when drawing underwa-

ter[28], suggesting that power laws can indeed be governed by kinematic constraints. Our

analyses suggest that, in walking bumblebees, a power law exponent between 0.55 and 0.66

(two-thirds) better defines movements than the near 0.75 exponents previously reported for

Drosophila[5] and constrained human movements[28]. Our evidence further supports the idea

that exponents are forced closer to the three-quarters value when kinematic constraints are

present, as our constraint-free bees have a generally much lower exponent at closer to two

thirds.

Fig 4. The relationship between angular speed and curvature of path in walking bee trajectories. The two-thirds

power law holds true in walking bees across differing environments (control (a), aversive (b), appetitive (c) and

combined aversive+ appetitive (d). (a) Scatter plot of instantaneous angular speed plotted against local path curvature at

a population level on a log-log scale, for all individuals in the control group. All data points (n = 12224) were sampled at

equal time intervals along the trajectories of 14 individual bees. Data was fitted to the power function A(t) = kC(t)2/3

(red line), to stretched exponentials (green line) and log-normal (blue line) functions. Stretched exponentials and log-

normals can resemble power-laws and are strongly competing models of the data. (b) Log-log plot of angular speed

versus curvature for 7 bees in the aversive group (n = 1081). (c) Log-log plot of angular speed versus curvature for 12 bees

in the appetitive group (n = 1835). (d) Log-log plot of angular speed versus curvature for 12 bees in the combined

aversive + appetitive group (n = 2309).

https://doi.org/10.1371/journal.pone.0226393.g004
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However, other studies take a less definitive approach, suggesting that biomechanical fac-

tors and central planning may interact to constrain kinematic movement aspects, limiting the

degrees of freedom which they can take[29]. An extension of this, the minimum jerk hypothe-

sis[3,9] states that the law exists to maximize smoothness, selecting for jerk-free, stable, con-

trollable movements. The occurrence of these laws across organisms could be seen to support

a convergent evolution theory of a jerk-free movement mode which remains behaviourally

efficient across organisms of different size, complexity, and phyla. Maximally smooth move-

ments may seem to be without biological significance for grounded invertebrates, like crawling

Drosophila larvae[5] and walking bumblebees. However, they could, nonetheless, be adaptive

for airborne invertebrates, allowing for downwind flights in the absence of visual cues for ori-

entation. Such common orientation has been widely documented since the advent of entomo-

logical radar, and allows noctuid fliers to add their flight speed to the wind speed, so

maximizing their dispersal[30]. Our analysis suggests that this ability is a spandrel that pre-

dates flight, lying dormant in terrestrial movements.

Contrarily, the pervasiveness of the law may be an inconsequential by-product of the noise

inherent to central pattern generators (CPGs)[31]. Or more positively, an accidentally advanta-

geous property of noise, as somewhat paradoxically, noise may result in maximally smooth, con-

trollable movement. Possibly, the law may stem from simple harmonic motions[32], such as

those outputted by CPGs when combined with muscular viscoelastic properties[2]. However, this

hypothesis seems unrealistic when considering the power law in walking bees as we report here.

Our findings, together with those of Gomez-Marin et al.[5] for Drosophila larvae, are sug-

gestive of common mechanics of model switching in the locomotion of limbless and legged

animals. As first suggested by Kuroda et al.[33] who noted similarities between leg-density

waves of centipedes and millipedes and the locomotive waves of limbless animals. Our findings

hint at a deeper analogy. Marken & Shaffer[34] have argued that these power laws are artefacts

of the calculations themselves. However, this seems improbable, as the law is shown to persist

regardless of its calculation methodology[35].

Any tendency to walk around the perimeter of the circular arena (of radius r = 10 cm) either

in part or wholly will be associated with a curvature of radius R = r. Our data for this curvature

is consistent with the overall power-law scaling seen across all radii and is not anomalous. This

suggests that the circular geometry of the arena is not impacting on the speed-curvature power

law. This may not be true of other geometries, such as squares, who’s corners might be associ-

ated with high curvatures.

In our analyses, individual bee’s tracking data were pooled within each learning environ-

ment. This allowed us to collectively compare each training group to differing statistical mod-

els and to examine a potential training environment impact on power law exponents. We

acknowledge that this approach minimises the role of intra-individual behavioural variation

often seen in bees[36]. Although we have not examined it here, future studies could examine

the impact of this intra-individual variation on power law exponents between bees and across

learning experience.

The multitude of evidence for varying originating mechanisms suggests that the origins of

such power laws are most likely pluralistic in nature and potentially constraints vary across

organisms. Nonetheless, the pervasiveness of these multiple scaling laws, across both taxa and

locomotive mode, could imply an underlying driver. The notion that scale-free movements are

intrinsic[11] suggests universal scaling laws could present an optimal behavioural template

which may then be favoured by natural selection.

Nonetheless, this might be overemphasizing the role of evolution as the fundamental deter-

minate of behaviour, and underemphasizing the role of physical laws and mechanical limita-

tions, as exemplified by the minimum jerk hypothesis[3,9]. As animals, may simply be
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predisposed to have jerk-free movements due to physical constraints. The argument for pro-

cess structuralism[37], in which mathematical laws supersede natural selection as a “shaping

agency”[38] may therefore be more applicable. This resonates with the occurrence of Levy

walks; movement patterns that are characterised by power-laws and seen across taxa from sin-

gle cells to humans. In many cases these appear to be shaped by physical constraints rather

than by natural selection[39].

Understanding the basal behavioural templates behind organisms’ locomotive trajectories

may provide a tool for behavioural study. Biological stressors, such as disease, have been

shown to cause deviations from this optimal behavioural template[40]. Power laws may there-

fore provide a diagnostic tool for the sub-lethal impact of such stressors at a finer scale.

Our work with Bombus terrestris is one of the few examples of the speed curvature power

law outside human movements. Supporting the notion of an optimal behavioural template

which is pervasive across movement modes and organisms as a result of kinematic constraints.

The discovery of this null template in Bombus terrestris may add a tool to the arsenal of scien-

tists, allowing us to better study potential sublethal disruptors of optimal behaviour.
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