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Abstract: For decades, improvements in electrolytes and electrodes have driven the development
of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be
developed separately due to the importance of the interaction at their interface. The energy storage
ability and safety of energy storage devices are in fact determined by the arrangement of ions
and electrons between the electrode and the electrolyte. In this paper, the physicochemical and
electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an
electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade
are introduced.
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1. Introduction

Energy storage system (ESS) and electric vehicle (EV) markets have been growing
every year, and various types of energy storage devices are struggling to enter the mar-
ket [1,2]. In particular, fuel cells (FCs), lithium-ion batteries (LIBs), and supercapacitors
(SCs) are competing with one another in the EV market [3]. FCs have attracted a great deal
of attention as energy conversion devices [4]. However, there remain difficulties in their
commercialization based on the disadvantages associated with transporting, storing H2,
and the reluctance to establish H2 stations [5–7]. Further, because of their narrow operating
voltage (theoretically 1.23 V), a stacking process is essential for the application of FCs [8].
In addition, the reaction to convert hydrogen and oxygen into water is highly exothermic,
thus FCs face heat management issues [9–13].

LIBs are considered as one of the candidates for energy storage devices owing to their
high energy density and technological maturity. However, LIBs still have cost and safety
issues. Because the raw materials for cathodes, such as cobalt and lithium, are produced
only by a few countries, there is an unstable supply, and the materials undergo price
fluctuations [14]. In addition, the electrolytes of LIBs typically include conventional binary
carbonate solvents, which have high permittivity and low viscosity, and lithium salts.
Li salts include lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4),
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), etc. [15]. These electrolytes have
issues in terms of poor humidity sensitivity, resulting in the formation of hydrogen fluoride
(HF) [16] and the repeated formation of a solid electrolyte interphase (SEI) layer [17].
Typically, the reduction potential of organic solvents used for LIBs is 1.0 V (vs. Li+/Li).
Thus, when an electric current is applied with Li exposed to a solution, a reaction occurs
between Li and the electrolytes. The insoluble product between Li ions, anions, and
solvents on the electrode surface is called the SEI layer. The growth of the SEI layer causes
dendritic growth of lithium, which induces lower coulombic efficiency and threatens the
life of the LIBs [18]. In addition, traditional organic solvents are not stable for a wide
temperature range. For this reason, electrolytes based on organic solvents are highly
volatile and flammable, which can lead to device deterioration and conflagration. Thus, the
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potential hazards of common organic solvent electrolytes have inspired the development
of non-flammable electrolytes with thermal and electrochemical stabilities.

SCs have been proposed as an alternative energy storage device due to their high
power density and extremely long lifespan. In the case of LIBs, their charge storage
mechanism involves chemical reactions (reduction and oxidation), leading to a slow overall
reaction. Thus, the power density of LIBs is lower than that of SCs. From this point of view,
SCs are a viable substitute for devices that require a high-power density. Up to now, SCs
have been regarded as an appropriate power source for electric buses that use regenerative
braking as they start and stop frequently. In addition, SCs are suitable as intermittent
power supplies. In this respect, they have been applied to electric trains powered by pulse
power [19]. However, SCs have the critical intrinsic issue of a low energy density caused
by their reaction mechanism. Thus, the development strategy of SCs is enhancing specific
energy with reasonable specific power density.

The specific energy of SCs is proportional to the specific capacitance and the operating
potential range [20,21]. Initially, research trends focused on the improvement of non-
faradaic electric double layer (EDL) capacitance by adopting electrode active materials,
which have large surface areas [17]. Thus, porous active materials, such as activated carbon
(AC) and nano-structured carbon, have been studied. Additionally, pseudo-electrode
materials, such as metal oxides and conducting polymers, were studied to utilize pseudo-
capacitance originated from a faradaic reaction. However, these materials have some issues
involving the selection of the electrolyte, cycle stability, and high cost than common SCs
based on AC electrodes [22–26]. Other research of pseudo-capacitance has included the
adoption of an electrolyte that contains redox-active couples [19,20]. Most electrolyte-
adopting redox couples have a solvent limitation as these redox couples are mostly used
in the form of an aqueous solution [27,28]. Hydroxide or protons are utilized as a redox
couple that is generated from an aqueous solution, so the limiting voltage of aqueous
redox-active electrolytes is about 0.8 V [29–33]. These limitations regarding active materials
have motivated the improvement of the electrochemical stability window of electrolytes
for high energy densities.

To overcome conventional electrolyte issues, many researchers have been focused
on ionic liquids (ILs). At the early stage, ILs were studied as solvents. Generally, organic
solvents used as reaction solvents in various chemical processes are highly volatile and
explosive, and most of them are harmful to the human body [15]. Therefore, for developing
environmentally friendly processes, many researchers are working on the development of
next-generation solvents that can replace organic solvents.

ILs are a salt-like material composed of ionic bonds between cations and anions. They
are in liquid state at ≤100 ◦C, stable at high temperatures, and have approximately zero
vapor pressure [34]. Thus, ILs are called “green solvents” and have attracted consider-
able attention as eco-friendly solvents. In addition, ILs can dissolve various inorganic,
organic, and polymeric materials and can easily change physicochemical properties, such
as hydrophobicity, solubility, viscosity, and density; thus, they are also called “designer
solvents” [34,35]. Thousands of syntheses are theoretically feasible using ILs and have
unlimited potential as solvents. ILs exhibit various properties that existing organic solvents
do not possess and have the advantages of being selected and synthesized as per the user’s
purpose [36–38].

Because of the advantages of the ILs, their market is steadily growing. The global
IL market was estimated to be US $20 million by 2015, of which the solvent and catalyst
market was the largest with US $6 million, and the market for ILs is expected to grow due to
the expansion of the application field, particularly in the growth of the energy storage field.
The application fields of ILs can be divided into solvents and catalysts, energy storage,
separation and extraction, and biorefinery, and among these the energy storage field with
high growth potential was examined [39].

ILs have satisfied the desire to develop a non-flammable electrolyte with a wide
electrochemical stability window [34]. ILs consist of large organic cations and inorganic or
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organic anions bound by ionic bonds [35,40]. ILs show various interesting characteristics,
such as non-volatility, high thermal stability, electrochemical stability, tunable polarity,
basicity or acidity, and reasonable ionic conductivity [34,35]. As mentioned, ILs operate
reliably within a wide electrochemical potential window of up to 6 V [36], providing high
energy and power density. In addition, the tunable polarity of ILs prevents the adverse
dissolution of active materials, such as water [37], and various structures of ILs are proposed
by simple synthesis [38]. Because of these properties, ILs for various electrochemical
devices, such as SCs, FCs, LIBs, solar cells, and actuators, have been researched [37,41–46].
ILs consist of a large organic cation, such as imidazolium, ammonium, and pyrrolidinium,
with a variety of anions. Because of their large ion sizes, ILs show high viscosity, leading
to a relatively low ionic conductivity. In general, in accordance with the type of cation–
anion combination, ILs show a viscosity several times higher than widely used organic
solvents [47]. The ionic conductivity is affected by the internal resistance, especially
equivalent series resistance (ESR), limiting both the energy and power densities [48]. The
energy density is decreased due to the ohmic drop induced by ESR and the power density
depends on ESR, as described in Equation (1):

P =
V2

4× ESR
(1)

where P represents power density and V is the cell operating voltage. In addition, numer-
ous ILs exist in a solid state at room temperature, preventing actual application. To solve
these issues, electrolytes produced from dissolved quaternary ammonium tetrafluorobo-
rate in organic solvents, such as ACN or propylene carbonate (PC), were investigated [49].
The quaternary ammonium tetrafluoroborate serves as a conductive salt and was selected
because of its excellent solubility, conductivity, and stability. The ionic conductivities
of quaternary ammonium tetrafluoroborates contingent on their cation sizes have been
reported [50]. The several quaternary ammonium tetrafluoroborates the size of tetram-
ethylammonium and tetraethylammonium were dissolved in PC to make about 10 wt%
solution and the ionic conductivity was measured at 25 ◦C. The cation molar conductivity
decreased in the following order: tetramethylammonium > trimethylethylammonium
> dimethyldimethylammonium > triethylmethylammonium > tetraethylammonium, prov-
ing conductivity is determined by ion size. Similarly, non-aqueous electrolytes containing
various alkyl imidazolium salts have been reported [51]. Besides quaternary ammonium
tetrafluoroborate, many other conducting salts have been reported. The ionic conduc-
tivity, specific capacitance, and thermal stability of electrolytes based on imidazolium
salt, 1-ethyl-3-methylimidazolium hexafluorophosphate, and 1-ethyl-3-methylimidazolium
tetrafluoroborate in organic solvents were evaluated [52]. The author prepared a cyclic
and linear alkyl carbonate solvent. The cyclic carbonate has a high dielectric constant,
which helps dissolution of ions, but high viscosity was observed [53]. This high viscosity
resulted in low ion conductivity to hinder the ion mobility. Meanwhile, linear carbonate
shows a low dielectric constant and low viscosity [54]. They investigated how changes
of the dielectric constant and viscosity affect the electrolyte properties when the ILs and
1-ethyl-3-methylimidazolium salt are dissolved. They showed the similar specific capac-
itance in cyclic and linear carbonate when the same ILs were dissolved, demonstrating
that the specific capacitance was independent of the solvent dielectric constant. The SC,
which applied an organic solvent and conducting salt, kept a higher ionic conductivity;
however, this type of SC limits the cell voltage to 2.6–2.9 V [55]. Cell working voltage is
closely related to energy density, and the associated formula is represented as Equation (2):

E =
1
2

CV2 (2)

where E represents the energy density, V is the working voltage, and C is the specific
capacitance of SCs. Mostly, the energy density of SCs based on a carbon electrode with
organic and aqueous solvents is under 10 Wh kg−1 [56–59]. Thus, SCs with organic solvents
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are insufficient for applications involving EVs or portable devices, which require high
energy density. To achieve the higher energy density, a broad cell operating voltage is
required. The cell operating voltage is related to the electrochemical stability window of the
electrolyte. In addition, most organic solvents have the potential hazard of conflagration
due to their high vapor pressure and flammable properties, especially at a high temperature.
This characteristic of organic electrolytes necessitates careful and expensive thermal control.
For these reasons, ILs are an attractive candidate for an electrolyte because of their wide
electrochemical stability and remarkable thermal stability. Generally, depending on the
cation chemical composition, ILs are classified as aprotic-, protic-, and zwitterion-type, as
shown in Figure 1 [60].
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The aprotic-type ILs are composed solely of ions, making them appropriate for SCs
and LIBs as an electrolyte. Meanwhile, protic-type ILs are produced easily with a HA and
B, forming a proton migration between HA and BH+, and this property is suitable for
fuel cells [61]. The zwitterion-type ILs contain both cations and anions that are covalently
tethered [62]. The properties of ILs, including conductivity, solubility, viscosity, and melt-
ing point, are determined by their specific cation-anion combination. Hydrophobicity is
associated with the anion type. As shown Figure 2, mostly imidazolium, pyrrolidinium,
ammonium, sulfonium, and phosphonium cations have been investigated. Unlike the
cations, anions have been investigated in a wide range. The represented anions are inor-
ganic anions such as halides, polyatomic inorganics (PF6

−, BF4
−), or organic anions such

as methanesulfonate (CH3SO3
−), and acetate (CH3COO−) [63–67].
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Recently, various LIBs and SCs applying unique characteristics of ILs have been
reported. It has been demonstrated that the high solubility of ILs in polymers allows for
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their application to gel electrolytes with reasonable ionic conductivity. Further, volatility
and flammability are reduced by adding ILs to the organic solvent electrolytes utilized in
existing LIBs. In addition, ILs are effective for the prevention of poly-sulfide dissolution,
resulting in improved cycle characteristics [68,69]. Furthermore, IL-based electrolytes have
been reported, including poly(ionic liquid)s (PILs), and ILs blended with nanoparticles.
These materials retain the properties of ILs while having new features, such as a reduced
risk of leakage, increased flexibility, and a variety of desirable physical properties. Several
reviews of ILs for energy storage devices have been published [70,71].

Here, we focused on an extensive review of LIBs and SCs that use various forms of
ILs electrolytes. We broadly classified ILs used in LIBs and SCs. The ILs used in LIBs were
classified into those used in lithium-ion batteries, lithium-sulfur (Li-S) batteries, quasi-
solid-state batteries and all-solid-state batteries. The ILs used in the SCs were classified as
net ionic liquids for electric double-layer capacitors, quasi-solid-state, and PIL-solid-state
ILs. We then evaluated the need for ILs as an electrolyte for future research and their
orientation for future research.

Also, acronyms and properties of representative ILs are provided in Tables 1 and 2
along with descriptions of ILs used in various fields of energy storage.

Table 1. The lists of the representative ILs applied in LIBs and SCs as electrolytes.

Classification Acronyms Ionic Liquid Reference(s)

Li-ion batteries

[PMI][TFSI] 1-propyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [70]

[BMI][TFSI] 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [70]

[EMI][TFSI] 1-ethyl-2,3trimethyleneimidazolium bis(trifluoromethane
sulfonyl)imide [72]

[PP13][TFSI] N-methyl-N-propylpiperidinium
Bis(trifluoromethanesulfonyl)imide [73]

[Pyr14][DCA] N-butyl-N-methyl pyrrolidinium-dicyanamide [74]

[Pyr14][TFSI] N-butyl-N-methyl pyrrolidinium
bis(trifluoromethylsulfonyl)imide [74]

[Pyr14][TFSAM] N-butyl-N-methyl pyrrolidinium
bis(trifluoromethylsulfonyl)-N-cyanoamide [74]

[N2(2o1)3][TFSI] N-ethyl-N,N,N-tri-(2-methoxyethyl)ammonium
bis(trifluoromethanesulfonyl)imide [75]

[(N2(2o1)2(2o2)][TFSI] N-ethyl-N,N-di-(2-methoxyethyl)-N-2-ethoxyethylammonium
bis(trifluoromethanesulfonyl)imide [75]

[(N3(2o1)3)][TFSI] N-propyl-N,N,N-tri-(2-methoxyethyl)ammonium
bis(trifluoromethanesulfonyl)imide [75]

[(N4(2o1)3)][TFSI] N-butyl-N,N,N-tri-(2-methoxyethyl)ammonium
bis(trifluoromethanesulfonyl)imide [75]

[C4mpyr][TFSI] N-methyl-N-butyl-pyrrolidinium
bis(trifluoromethanesulfonyl)imide [76]

[PfMpyr][FSI] 1-Methyl-1-propyl-3-fluoropyrrolidinium
bis(fluorosulfonyl)-imide [77]

[C3mpyr][FSI] N-methyl-N-propyl-pyrrolidinium (fluorosulfonyl) imide [78]

LiS batteries

[PP13][TFSI] N-methyl-N-propylpiperidinium
bis(trifluoromethanesulfonyl)imide [79]

[LiG3][TFSI] Li(triglyme) bis(trifluoromethylsulfonyl)imide [80]

PEO, LiTFSI-[TBP][HP]
poly(ethyleneoxide)-lithium

bis(trifluoromethylsulfonyl)imide-tetrabutylphosphonium
2-hydroxypyridine

[81]

PVdF-HFP/PMMA/[BMI][BF4] (poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methyl
methacrylate)- 1-butyl-3-methylimidazolium tetrafluoroborate)) [82]

PVdF-HFP/[EMI][DCA]
(poly(vinylidene

fluoride-co-hexafluoropropylene)/1-ethyl-3-methylimidazolium
dicyanamide))

[83]

PVdF-HFP/[EMI][TFSI]/rGO-PEG-NH2

(poly(vinylidene fluoride-co-hexafluoropropylene)/ (covalent
linked 2,2′′-(ethylenedioxy) bis (ethylamine) to reduced

graphene oxide))
[84]
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Table 1. Cont.

Classification Acronyms Ionic Liquid Reference(s)

Supercapacitors

[EMI][BF4] 1-ethyl-3-methylimidazolium tetrafluoroborate [85]

[EMI][FSI] 1-ethyl-3-methyleneimidazolium (fluorosulfonyl) imide [86]

[Pyr14][TFSI] N-butyl-N-methyl pyrrolidinium
bis(trifluoromethylsulfonyl)imide [87]

[EMI][TFSI] 1-ethyl-3-methyleneimidazolium
bis(trifluoromethane sulfonyl)imide [88]

[Pyr14][FSI] N-ethyl-N-methylpyrrolidinium
(fluorosulfonyl) imide [89]

[PIP13][FSI] N-methyl-N-propylpiperidinium (fluorosulfonyl)imide [89]

[Pyr][TFSI] N-butyl-N-methyl pyrrolidinium
bis(trifluoromethylsulfonyl)imide [90]

[PMPyrr][TFSI] 1-Methyl-1propylpyrrolidinium
bis(trifluoromeyhanesulfonyl)imide [91]

[BTM][TFSI] Butyltrimethylammonium- bis(trifluoromethylsulfonyl)imide [92]

[TEA][TFSI] Trimethylamine- bis(trifluoromethylsulfonyl)imide [93]

Quasi-solid-
state

supercapacitors

PHEMA-co-PEGDMA/[EMI][BF4] poly(2-hydroxyethyl methacrylate) and poly(ethylene glycol)
diacrylate/1-ethyl-3-methylimidazolium tetrafluoroborate [94]

[BMI][I] 1-butyl-3-methylimidazolium iodide [95]

[BMI][Cl] 1-butyl-3-methylimidazolium chloride [96]

PVdF-HFP/[EMI][BF4] (poly(vinylidene fluoride-co-hexafluoropropylene) /-
1-ethyl-2,3methylimidazolium tetrafluoroborate)) [97]

PUA/[EMI][TFSI] (polyurethane acrylate-(1-ethyl-3-methylimidazolium-
bis(trifluoromethylsulfonyl)imide) [98]

All-solid-state
supercapacitors

[Pyr14][TFSI] 1-butyl-1-methylpyrrolidinium
bis (trifluoromethanesulfonyl)) imide [99]

[Pyr14][DCA] 1-butyl-1-methylpyrrolidinium dish Amide [99]

[PIL][TFSI] poly(diallyldi-methylammonium) bis (trifluoromethylsulfonyl)
imide [100]

[EMI][FSI] 1-ethyl-3-methyleneimidazolium
(fluorosulfonyl) imide [100]

[MBI][FSI] 1-methyl-3-butylimidazolium
(fluorosulfonyl) imide [100]

[DPI][TFSI] 1,2-dimethyl-3-propylimidazolium
bis(tri-fluoromethylsulfonyl) imide [100]

Table 2. The properties of representative ILs.

Type of Cation Ionic Liquid Melting Point
(◦C)

Density (g mL−1)
at 25 ◦C (lit.)

Cnductivity
(mS cm−1)

Electrochemical Stability
Window (V) Reference(s)

Imidazolium

[EMI][BF4] 15 1.294 13–15 4 (ref. elecrode: carbon) [101,102]

[EMI][TFSI] −15 1.53 8–10 3.5–3.7 (ref. elecrode: carbon) [91]

[BMI][TFSI] 1 1.44 3.9 4.5–5 (ref. elecrode: carbon) [70]

Pyrrolidinum
[Pyr14][TFSI] −6 1.4216 2.5–3 3.5 (ref. elecrode: carbon) [103]

[Pyr14][DCA] −55 0.95 10.8 3 (ref. elecrode: carbon) [104]

Piperidinium
[PP13][TFSI] 12 151 1.4 5–6 (ref. electrode: Li) [73]

[PP13][FSI] 95 3.7 5–6 (ref. electrode: Li) [73]

2. Ionic Liquids for Lithium-Ion Battery Electrolytes
2.1. Lithium-Ion Batteries

Up to now, LIBs have typically been used with an electrolyte composed of 1 M
LiPF6 in binary carbonate solvents or 1 M LiTFSI in ternary ether solvents. These organic
electrolytes are highly volatile and flammable, leading to serious safety issues and the
repeated formation of an SEI layer, which causes the dendritic growth of lithium that can
lead to the short-circuiting of LIBs. Therefore, the development of electrolytes that have
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high thermal stability and low volatility is highly desirable for the advanced LIBs. Among
the superior properties of ILs, non-flammability solves the main safety issues of LIBs.

In 2010, Zaghib proposed [EMI][TFSI] as an additive to the electrolyte for LIBs,
demonstrating an increase in the thermal stability of the electrolyte [72]. Chen et al.
reported that bis(fluorosulfonyl)imide lithium salt ([LiTFSI]) and the [PP13][TFSI] elec-
trolyte significantly improve rate capacity and low temperature performance and are
safer than conventional electrolytes [73]. In addition, inorganic alkali salts with relatively
low melting points were used to improve the cycle stability and high performance of
LIBs, even at high temperatures. For instance, Zhibin et al. found that dual-salt-mixed
potassium bis(fluorosulfonyl)imide ([KFSI]) and [LiFSI] exhibited high ionic conductivity
(10−3~10−2 S cm−1) from 40–150 ◦C [105]. In addition, designs for ionic structures and
the addition of an additive to affect the properties of ILs were reported, as ILs are tunable
with regard to polarity and basicity of acidity. For instance, [EMI][TFSI], [PMI][TFSI], and
[BMI][TFSI] were selected as electrolytes and their electrochemical properties were investi-
gated [70]. It was found that [EMI][TFSI] exhibited the best electrochemical performance
and thermal stability. In 2009, Karna et al. synthesized several quaternary ammonium ILs
based on cations with two identical ether groups and have studied quaternary ammonium-
based ILs [106]. Yang et al. reported five low viscosity quaternary ammonium-based ILs
[N2(2o1)3][TFSI], [(N3(2o1)3)][TFSI], [(N4(2o1)3)][TFSI]; these ILs were applied to LIBs.
Among these IL electrolytes, [(N2(2o1)2(2o2)][TFSI] and [N2(2o1)3][TFSI] showed the best
capacity and cycle characteristics at 0.1 C [75]. In 2014, Hirano et al. synthesized an
organosilicon functionalized ammonium IL with an oligo (ethylene oxide) substituent. All
ILs synthesized in this way contained large cations and had low viscosity (125–173 cP)
at room temperature (RT) and showed superior thermal stability with higher decomposi-
tion temperatures (310–350 ◦C) and a 3.9 V–4.7 V stability window. However, they were
not suitable for LIB electrolytes due to their low conductivity. Therefore, organosilicon
functionalized ammonium ILs with an oligo (ethylene oxide) substituent were mixed with
a commercial carbonate electrolyte to form a hybrid electrolyte. At a doping content of
30 vol%, the lithium iron phosphate (LFP) electrode/Li half-cell showed excellent reversible
capacity, cycle stability, and effectively suppressed electrolyte degradation due to stable
SEI formation, thus improving lithium storage performance [107]. In 2019, Hahime et al.
reported that by replacing the conventional carbonate electrolyte with an RT quaternary
ammonium-based electrolyte, [C4mpyr][TFSI], decomposition of organic solvents was sup-
pressed and short-circuiting caused by Li dendrite formation was prevented. In the above
study, the authors investigated the morphology of Li electrodeposition obtained from the
[C4mpyr][TFSI] electrolyte and clarified the correlation between electrochemical parameters
and Li deposition morphology. The surface resistance was temperature-dependent and also
affected deposition polarizations and nucleation. As a result, to suppress the Li dendrite
growth during cycling, the deposition polarization should be expanded during deposition
while simultaneously increasing the Li diffusion coefficient of the electrolyte [76].

Recently, [Pyr14], [Pyr13], and [Pyr15] were broadly studied for LIBs due to their
high ionic conductivity and superior electrochemical performance [77,108,109]. The elec-
trochemical performance of the LiNi0.5Co0.2Mn0.3O2 (NCM 523)/graphite full cells was
also studied by Paillard et al. These studies found that [Pyr14][TFSI], [Pyr14][DCA], and
[Pyr14][TFSAM] exhibited higher electrochemical performances than organic carbonate
solvent-based electrolytes in NCM 523 and graphite full cells [74]. As the demand for
energy storage devices increases, ILs with high stability, good cycle characteristics, and
resistance to continuously changing temperatures have emerged. Since 2020, a method
based on increasing salt concentration has been used with ILs. Qian et al. achieved high
oxidation stability (>5.5 V vs. Li+/Li) for a graphite and Li metal anode by increasing the
LiTFSI salt concentration to 4 M with [PfMpyr][FSI], leading to superior electrochemical
cycling stability [77]. Howlett et al. reported an LIB with a high energy density system
that suppressed dendritic growth despite the fast charging rate by using LiFSI salt and
[C3mpyr][FSI]. Operating at high current densities increased coulombic efficiency up to 96%
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at 20 mA cm−2 with a 0.2 V polarization. A more detailed morphological study showed
that sediment evolution remained dendrite-free and uniform with low electrode resis-
tance (Figure 3). X-ray photoelectron microscopy (XPS), time-of-flight secondary ion mass
spectrometry (ToF-SIMS), and scanning electron microscopy (SEM) surface measurements
revealed that a LiF-rich SEI layer with a lack of organic components was formed. Reduced
dendrite formations at high current densities are further emphasized by a 500 cycle at
10 mA cm−2 using a porous separator in coin cell cycling [78]. Although the conductivity
of these IL-based electrolytes is lower than that of conventional carbonate electrolytes
(8–12 mS cm−1), the overall performance of the full cell does not decrease much and is
rather superior in terms of stability of the battery.
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2.2. Lithium–Sulfur Batteries

Since 1960, Li-S batteries have been in the spotlight as next-generation LIBs due to
their high theoretical capacity of 1667 mA h g−1 and high energy density of 2510 Wh kg−1.
However, Li-S batteries have a number of serious problems, including the shuttle effect. In
particular, the long chain of polysulfide dissolution in the electrolyte, the dendritic growth
of the lithium, and spontaneous SEI layer formation results in very low cycle stability
and coulombic efficiency (CE) [35,36]. Therefore, Li-S batteries have no choice but to rely
on electrolytes. Numerous studies have been conducted to minimize the defects of Li-S
batteries and increase their electrochemical performance [110–113].

When ILs have been applied to Li-S batteries, the performance of Li-S batteries in-
creased significantly. Yang et al. used an IL as an electrolyte for an Li–S battery and found
that the ILs greatly increased the electrochemical performance and utilization of sulfur
compared with organic electrolytes. Wang et al. also reported that [PP13]-based electrolytes
improved polysulfide diffusion control and Li-metal stabilization [105]. In their paper, the
[PP13][TFSI]/1 M LiTFSI electrolyte prohibited self-discharge. The weak Lewis acid/basic
nature of [PP13][TFSI] induces a decrease in the coordination ability of Li+ with Lewis acid
cations, which is expected not only to control the solubility and mobility of Li2Sx but also
to inhibit the local growth of Li deposition. Peter et al. applied [C4mpyr][TFSI] with LiNO3
additives, and the electrochemical performance and SEI layer were studied and compared
with conventional ether electrolytes in Li-S batteries [114]. It was found that the ILs and
LiNO3 additive prevented the dissolution of polysulfide. Generally, the combination of
ILs and additives prevents the dissolution of polysulfide, which not only increases the
efficiency of Li-S batteries but also significantly reduces self-discharge. In 2019, Zuo et al.
reported [LiG3][TFSI] as a stabilizer for Li10GeP2S12 (LGPS) and demonstrated a solid
state Li-S battery using this formulation [80]. They confirmed that the LiG3 enhances the



Materials 2021, 14, 4000 9 of 31

Li cationic transfer characteristic at the cathode/electrolyte interphases by adopting a
solid–liquid dual phase redox reaction suppressing the shuttle effect (Figure 4a). As shown
in Figure 4b,c, the [LiG3][TFSI] electrolyte exhibited a much higher capacity than the LGPS
electrolyte and the cycle stability was also greatly improved.
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2.3. Ionic Liquids for Lithium-Ion Batteries Using Quasi-Solid- and All-Solid-State Electrolytes

The electrolyte is a crucial factor in determining the power density, energy density,
cycle stability, and safety of batteries. In general, an electrolyte based on an organic solvent
is used for LIBs. This electrolyte has several stability issues, such as including flammability
and poor thermal stability. A solid electrolyte can solve these problems.

In 1979, after demonstrating the solubility of poly(ethylene oxide) (PEO) against
lithium salts, solid polymer electrolytes (SPEs) became widely used in LIBs [81,115–117].
Many researchers have since added ILs and lithium salts to escalate the ionic conductivity
of PEO.

In 2017, Rhee et al. reported an IL-doped PEO-based solid electrolyte, studying the
conductivity and cycle stability of the Li/SPE/LFP. The electrolyte was composed of PEO,
lithium difluoro(oxalato)borate (LIFOB), and [EMI][TFSI] [116]. When 40 wt% of ILs was
added at room temperature, the SPE exhibited an ionic conductivity of 0.185× 10−3 S cm−1,
with improved electrochemical stability and a first discharge capacity of 155 mA h g−1,
which remained at 134.2 mA h g−1 after 50 cycles. In 2019, Wu et al. reported a flexible
IL-based hybrid SPE electrolyte [81]. The hybrid SPE was fabricated with PEO, LiTFSI-
[TBP][HP]. The SPE exhibited an ionic conductivity of 9.4 × 10−4 S cm−1, a wide elec-
trochemical window over 5.0 V. The ionic conductivity of the PI solid electrolyte was
2.3 × 10−4 S cm−1 at 30 ◦C.

In addition, hybrid ternary polymer solid electrolyte systems composed of ILs, polymer
hosts, and lithium salts were also effective in improving the electrochemical performance of
LIBs. Recently, composite polymer electrolytes based on PVdF-HFP/PMMA/[BMI][BF4] have
been reported [82]. When the PMMA content was 60%, the prepared polymer matrix absorbed
[BMI][BF4] up to 234 wt%. This solid electrolyte maintained 96% of its initial discharge
capacity after 50 cycles in the LFP/Li full cell. In 2016, Qin et al. reported a safer and more
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flexible battery based on a solid gel electrolyte using a PVdF-HFP/[EMI][DCA] [83]. Its
conductivity was found to be 6 × 10−4 S cm−1 and it maintained a stable composition
up to 300 ◦C. In 2021, Xu et al. reported improvements in ionic conductivity up to 2.1
using a PVdF-HFP/[EMI][TFSI]/rGO-PEG-NH2 (covalent linked 2,2”-(ethylenedioxy) bis
(ethylamine) to reduced graphene oxide)/LiTFSI gel polymer electrolyte [84]. The fast
lithium-ion transfer network of this gel polymer electrolyte showed a lithium ion transfer
number of 0.45 and it was stable up to 5 V. In addition, PVdF-HFP/[EMI][TFSI]/rGO-PEG-
NH2/LiTFSI-adopted LIBs maintained their capacity of 88% after 80 cycles.

3. Ionic Liquids for Supercapacitor Electrolytes
3.1. Net Ionic Liquid for Electric Double-Layer Capacitor

Generally, imidazolium-type ILs were selected for their relatively low viscosity and
high ionic conductivity [85,118]. Meanwhile, pyrrolidinium-type ILs showed a wide
electrochemical stability window [117]. Vera Lockett et al. investigated the differen-
tial capacitance based on the imidazolium electric double-layer capacitor [119]. Three
different imidazolium-based ILs were prepared: [EMI][Cl], [BMI][Cl], and 1-methyl-3-
hexylimidazolium [HMI][Cl]. The cell was configured with a glassy carbon electrode,
a Ag/AgCl reference electrode, and a Pt counter electrode, and then cyclic voltammo-
grams and impedance spectroscopy were used to investigate the electrode/electrolyte
interface. The differential capacitance was increased when the size of imidazolium cations
was smaller: in the order [HMI][Cl] < [BMI][Cl] < [EMI][Cl]. This result was related to
the thickness of the double-layer, showing the thinner double-layer was obtained when
smaller imidazolium cations were applied. Similarly, Bettini et al. proposed a film SC
based on a carbon material nanostructure (ns-C) electrode and ILs [120]. The electrolyte
was varied with respect to cations, such as [BMI], [Pyr14], 1-dodecyl-3-methylimidazolium
([C12MI]), and [EMI], while the use of [FSI] anions remained constant. The ionic con-
ductivity was increased depending on the size of the cation in the following order:
[C12MI] < [Pyr14] < [BMI] < [EMI]. The SCs adopting [BMI][FSI] showed 75 F g−1, which
was the highest specific capacitance, despite having the second-highest ionic conductiv-
ity. This implies that [BMI][FSI] has chemical affinity with ns-C. Norihisa Handa et al.
suggested that the electric double-layer capacitors (EDLCs) applied to [EMI][FSI] as an
electrolyte exhibited remarkable rate durability at 2 V. After 10,000 cycles, the SC main-
tained over 90% of the initial specific capacitance [86]. Chenguang Liu et al. displayed
an SC with an ultrahigh energy density of 85.6 Wh kg−1 at a current density of 1 A g−1,
as shown in Figure 5 [101]. They adopted the graphene-based electrode because of its
high specific capacitance and applied the [EMI][BF4] as an electrolyte because of its wide
electrochemical stability window (>4 V). Coupled with an electrode having high specific
capacitance and an electrolyte with a broad electrochemical stability window, the highest
specific energy density was achieved among carbon-electrode-based EDLCs.
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The pyrrolidinium cations were investigated for their broad electrochemical stability
window. A. Balducci et al. proposed the symmetric-type SC, which applied [Pyr14][TFSI]
as an electrolyte [87]. This SC showed an operating voltage of 3.5 V, and after 40,000 cycles
the SCs showed a specific energy density of 31 Wh kg−1 and a power density of 8.6 KW
kg−1 at 60 ◦C. Because of the high working voltage, the value of the energy density was
higher than the commercially achieved ACN-based EDLCs. However, due to the relatively
lower ionic conductivity of ILs, the specific power density was decreased compared to SCs
with applied organic electrolytes. C. Largeot et al. introduced high-temperature operating
SCs based on the [Pyr14][TFSI] electrolyte and microporous carbide-derived carbon (CDCs)
electrodes [125]. Because of the excellent thermal stability of ILs, IL-based SCs are capable
of operating at a high temperature above 70 ◦C, which is impossible for common organic
electrolytes. In addition, most pyrrolidinium-based ILs maintain a quasi-solid state at room
temperature; thus, a high operating temperature is required to maintain the liquid phase
and high ionic conductivity. These SCs showed a specific capacitance of 130 F g−1.

The electrochemical performance, in accordance with the correlation between the pore
size of the electrode and the ion size of the electrolyte, has been studied [126–129]. Celine
Largeot et al. presented insight between the pore size of an electrode and the ion size of an
electrolyte [88]. The author tailored the pore size of the electrode for [EMI][TFSI]. Because
[EMI] and [TFSI] have a roughly equal ion size (~0.7 nm), a design consisting of the same
pore size of the anode and cathode is possible. CDCs were adapted as an electrode because
the pore size is adjusted above or below ion size of the electrolyte. CDCs are prepared
by high-temperature extraction of non-metals from a carbide precursor. The vacuum
decomposition and high-temperature chlorination method is the common way to fabricate
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CDCs. Celine Largeot et al. fabricated CDCs via the high-temperature chlorination method.
The pore size was controlled by chlorination for 3 h at a temperature range from 400 ◦C to
1000 ◦C. The pore size increased in accordance with the chlorination temperature in the
range of 0.65–1.1 nm. The average pore size depending on the chlorination temperature is
represented in Table 3.

Table 3. CDC porosity measurements using the Ar gas sorption technique. Reprinted 2008 from [88] with permission from
the American Chemical Society.

Chlorination Temperature ( ◦C) BET SSA (m2 g−1) Pore Volume (cc g−1) Average Pore Widt (nm) Maximum Pore Width a (nm)

400 1113 0.51 0.65 1.12
500 1140 0.50 0.68 1.18
550 1202 0.51 0.72 1.29
600 1269 0.60 0.74 1.23
700 1401 0.66 0.76 1.41
800 1595 0.79 0.81 1.54
1000 1625 0.81 1.10 2.80

a 85% of pore volume is below this size.

As shown in Figure 6, the x-axis implies the pore size depended on the chlorination
temperature. The maximum specific gravimetric or volumetric capacitances were achieved
at a 600 ◦C chlorination temperature. At 600 ◦C, the average pore width was 0.72 nm,
which is very close to the ion size of [EMI][TFSI]. In this case, there is no space available for
more than one ion per pore, which is implied with the ion adsorbed on both pore walls
(the distance of pore and pore). They demonstrated that when the pore size was close to
the ion size the ion adsorption was achieved in the most efficient way by minimizing the
free space available. At under 600 ◦C, when the pore size of the CDCs was smaller than the
ion size of [EMI][TFSI], the specific capacitance was decreased. Especially, at 400 ◦C, the
specific gravimetric or volumetric capacitance hugely decreased because the pore size was
too small to access the ions. Furthermore, above 600 ◦C the pore size was bigger than the
ion size, and the specific capacitance was decreased. As the pore size increased, with the
space for one ion per pore still free, the distance between the pore walls and the center of
the ions increased, which led to lower volumetric capacitance.
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In 2011, Soavi et al. reported the role of the carbon electrode and electrolyte chemistry
in SCs based on the ILs [130]. The capacitive response is regulated by the carbon porosity
and IL properties. In their report, the authors analyzed the cases where the pore size was
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wider than the size of the ion, the pore size was similar than the size of the ion, and the
pore size was smaller than the ion size. When the pore was close to the IL size, the lack of
electrolytes caused the high electrode polarization required for EDL charging, limiting the
charge storage capacity. Meanwhile, when the pore size was wider than the ion size, an
electric double-layer was easily formed because accessible ions increased with increasing
pore size. At this point, properties such as conductivity, viscosity, and solvent polarity
of ammonium or pyrrolidinium-based ILs such as [Pyr14][TFSI] and [Pyr14][FAP] had
little effect on electrode response properties. Hence, the pore-to-ion size affects EDLC
performance rather than the bulk properties of ILs. Furthermore, the density of ILs,
especially [Pyr14][TFSI] with at least a value of 1.4 g cm−3, greatly contributed to the total
SC weight. They insisted a sufficient amount of electrolytes is required to avoid inadequate
electrolytes in carbon pores; thus, the total weight would be higher than that calculated
using only the electrode material loadings.

Recently, Ortega et al. investigated ion–electrode compatibility based on four different
carbon-based electrodes, such as AC, mesoporous carbon (MES), multi-walled carbon
nanotubes (MWCNTs), and reduced graphene oxide (rGO) [131]. They insisted that consid-
ering only pore and ion size for choosing the carbon electrode is insufficient. The materials
with a high specific surface area showed specific capacitance and energy density, but in
terms of power density, rGO or MWCNT, which have a more open surface, were more
desirable (Figure 7). Furthermore, they reported the interaction between the electrode
surface and ion, suggesting MWCNT and rGO were desirable for the negative electrode,
and AC and MES for the positive electrode.
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3.2. Other Approaches of Ionic Liquids as a Liquid Electrolyte

Since ILs typically have a melting point over 0 ◦C, eutectic IL mixtures have been
studied to reduce the melting temperature and enhance the liquid range (Figure 8). A
eutectic mixture is defined as a mixture of organic salt and other compounds (urea or
chlorine) that inhibit the crystallization of one another at certain ratios, resulting in a
decrease in melting point [132]. It was demonstrated that the crystallization process is
mainly affected by anions [88,130,131,133–135]. Simon et al. were able to extend the
temperature range from −50 ◦C to 100 ◦C by mixing [PIP13][FSI] and [Pyr14][FSI] [89].
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To prevent an ordered arrangement and crystallization, the appropriate combination of
cations with the same anion is essential. This combination restrains the formation of a lattice.
In addition, SCs fabricated with exohedral nanostructured carbon electrode and eutectic IL
mixtures as an electrolyte demonstrated a wide electrochemical stability window (>3.7 V)
and a very high charge/discharge scan rate of up to 20 V s−1. Timperman et al. proposed
a protic eutectic IL mixture of pyrrolidinium ([Pyr]) nitrate ([NO3]) and [Pyr][TFSI] [90].
The eutectic mixture maintained a liquid phase at 60 ◦C to 100 ◦C, whereas individual
ILs existed in a solid state at room temperature. The SC fabricated with binary protic IL
electrolytes and AC electrode exhibited a capacitance of 148 F g−1 at 2 V. Newell et al.
reported the use of an [EMI][TFSI] and [PMPyrr][TFSI] eutectic IL mixture as an electrolyte
for EDL capacitors [91]. The eutectic IL-based SC exhibited a specific capacitance of
5 µF cm−2 (−70 ◦C) and 100 µF cm−2 (80 ◦C) at 20 V s−1. Besides, suggested SC showed
excellent specific capacitance retention up to 500,000 cycles at an operating voltage of 3.5 V
(Figure 9).

A new strategy for producing eutectic IL mixtures was proposed because of the
expensive cost of ILs. Fletcher et al. presented ternary mixtures composed of ILs and
a polar solvent [92], including ternary mixtures of sulfolane, 3-methyl sulfolane, and
butyltrimethylammonium ([BTM])[TFSI]. Sulfolane was chosen for its high thermal stability
and ease of mixing with ILs. The high freezing point of sulfolane was decreased by mixing
it with 3-methyl sulfolane. By adding a 60/40 eutectic mixture to [BTM][TFSI], the ionic
conductivity was enhanced from 2.1 to 5.0 mS cm−1 at room temperature. The SC based on
the AC electrode and ternary mixture electrolyte showed a wide electrochemical stability
window up to 7 V.

Another approach of using ILs is as a redox-active electrolyte. The redox-active
electrolyte is regarded as a promising electrolyte for enhancing the energy density of SCs.
The redox-active couples dissolve in the electrolyte and undergo a faradaic reaction at the
electrode/electrolyte interface, contributing the pseudo capacitance [136–139]. Since such
redox couples show excellent solubility in aqueous electrolytes, many studies based on
aqueous electrolytes have been reported. However, the aqueous electrolytes decompose at
1.23 V, limiting the cell operating voltage. To enhance the energy density, a relatively high
operating cell voltage is required; thus, numerous IL-based redox-active electrolytes have



Materials 2021, 14, 4000 15 of 31

been studied. The halide redox couple, particularly iodine/iodide or bromide/bromine, has
been investigated. When 5 wt% of [EMI] iodide ([I]) was added to [EMI][BF4], the specific
capacitance was about 50% higher than when only [EMI][BF4] was applied to the SC [140].
Similarly, Yamazaki et al. discovered that using [EMI][Br]/[EMI][BF4] as an electrolyte
presented a higher specific capacitance than without bromide [141]. However, the weight
ratio is inappropriate for representing the number of ions in the [EMI][I]/[EMI][BF4]
mixture because the EDL capacitance is derived from the number of ions. Thus, our
team proposed a redox-active electrolyte containing an equal number of ions [142]. The
proposed redox-active electrolyte consisted of [EMI][TFSI] and [EMI][X] (X = Br, I) as
redox-active couples. The SCs with a 0.12 mole fraction of [EMI][I] showed 175.6 Wh kg−1

and 4994 W kg−1 at 1 A g−1, showing up to 5000 cycles.
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Xie et al. proposed an SC based on redox-active ILs by modifying the cations or anions
with ferrocene to minimize self-discharge [127]. The modified IL-based SC exhibited an
operating voltage of 2.5 V and an energy density of 13.2 Wh kg−1, which was 83% higher
than that of the unmodified IL-based SCs.

The electrochemical performance of SCs applied with [TEA][TFSI] mediated with
hydroquinone (HQ) was studied and AC was adopted as an electrode for these SCs [93].
The specific capacitance was increased from 42 F g−1 to 72 F g−1 at 0.57 mA cm−2 when
0.3 M HQ was added to [TEA][TFSI]. The pseudo-capacitance contribution of HQ with the
faradaic reaction of HQ/Q led to these results (Figure 10).
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3.3. Ionic Liquid as a Quasi-Solid and All-Solid Electrolyte

Liquid electrolytes are not desirable for flexible designs because it is necessary to en-
capsulate them. To solve this issue, numerous studies, such as those that have investigated
solidifying the IL, have been widely conducted because ILs retain their ionic conductivity
when solidified, whereas organic solvents do not. The ILs with a polymer matrix are
typically used to represent solid-state electrolyte combinations. Figure 11 shows various
methods for making solid electrolytes using a polymer matrix and ILs.
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3.3.1. Ionic-Liquid-Embedded Polymer Electrolyte

The IL-embedded polymer electrolyte can be referred to as an ion gel. Ion gel elec-
trolytes have both a polymer electrolyte and IL [144–146]. The IL ratio of ion gels affects
ionic conductivity. The more IL ratio of the ion gel embrace, the higher ionic conductivity
showed. On the other hand, a high ratio of IL in the ion gel causes weak mechanical
stability. Thus, the optimum ratio of the polymer electrolyte and IL must be determined to
achieve high ionic conductivity and mechanical stability.

The prototype ion gel electrolytes consist of ILs, organic solvents, and polymers, so-
called gel polymer electrolytes of energy storage devices. In 1997, Fuller et al. reported
an ion gel using PVdF-HFP as the polymer matrix [147,148]. The ion gel consisting of
[EMI][BF4], [EMI][CF3SO3], and PVdF-HFP achieved an ionic conductivity of 5.8 mS cm−1.
Ghamouss et al. presented a quasi-solid electrolyte that was combined methacrylate and
dimethacrylate oligomers dissolved in [PMPyrr][TFSI] via free radical polarization, as
shown in Figure 12. The advantage of this incorporation is that the formed electrolyte
can be used as a separator, is leakage-free, and provides a wide electrochemical stability
window. The SC that used the prepared electrolyte showed a specific energy density of
16 Wh Kg−1, a power density of 1.1 kW kg−1, and coulombic efficiency of 99.9%.
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Figure 12. The scheme of the cross-linked gel polymer electrolyte that is composite with methacrylate and dimethacrylate
oligomers dissolved in [PMPyrr][TFSI] followed by a cyclic voltammogram depending on scan rates. Reprinted 2011
from [64] with permission from Elsevier.

Most ion gel electrolytes have a relatively lower ionic conductivity than liquid-phase
ILs. To overcome this issue, various types of organic or inorganic fillers have been added to
the ion gel. Kim et al. synthesized an ion gel with PHEMA-co-PEGDMA/[EMI][BF4] and
added cellulose as a filler [94]. Figure 13 shows the schematic illustration of the electrolyte.
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Without cellulose, the ionic conduction path was not sufficiently formed. With cellulose, on
the other hand, the hydroxyl group and the IL formed hydrogen bonds in the ion gel. This
caused an interaction between the polymer and the IL, resulting in ion-pair dissociation.
Furthermore, the polar functional group of the cellulose promoted ion transfer by providing
an ionic conduction channel. The maximum ion conductivity value of 12.27 mS cm−1 was
observed under 3 wt% cellulose fillers. This value was a 266% improvement compared to
that of the ion gel electrolyte without cellulose, and it was close to the previously reported
[EMI][BF4] ionic conductivity (14 mS cm−1).
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Other ways to increase ionic conductivity were proposed by Liu et al. [149]. High
ionic conductivity was achieved by fabricating the aligned ion gel electrolyte. The SCs
with the aligned ion gel electrolyte exhibited a 29% higher specific capacitance (176 F g−1

at 25 ◦C and 1 A g−1) than SCs with an equivalent non-aligned ion gel electrolyte because
of the directional ion pathway.

SCs are considered an attractive power source due to their high power density and
extremely long life cycles. However, SCs have the intrinsic problem of low energy density.
The energy density is related to the specific capacitance of electrode materials and cell
operating voltage. For these reasons, porous electrodes, such as carbonaceous materials,
have been investigated due to their high surface area, which increases non-faradaic EDL
capacitance. In addition, redox-active materials have also been investigated, as mentioned
in a previous chapter. To overcome aqueous medium-induced limiting voltage issues,
gel-type redox-active electrolytes are suggested. Recently, Tu et al. prepared a gel polymer
electrolyte consisting of [BMI][I], poly(vinyl alcohol) (PVA), and Li2SO4 [95]. Changes in
the salt of the gel polymer electrolyte triggered the redox reaction. The [BMI][I] served as
a plasticizer and provided a pseudo-capacitance from the reversible faradaic reactions at
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the electrode/electrolyte interfaces. Moreover, the tensile strength of the SC significantly
increased while its flexibility was maintained. Equation (3) presents the redox pairs in the
PVA–Li2SO4–[BMI][I] gel polymer electrolyte:

3I− ↔ I−3 + 2e−

2I− ↔ I2 + 2e−

2I−3 ↔ 3I2 + 2e−

I2 + 6H2O↔ 2IO−3 + 12H+ + 10e−
(3)

Furthermore, Yadav et al. used a dual redox-additive material (KI and diphenylamine
(DPA)) to maximize the redox reaction at the electrode/electrolyte interface in non-aqueous
gel polymer electrolytes with [BMI][TFSI] [146]. The proposed electrolytes showed a wide
potential window (6.2 V vs. Ag), high ionic conductivity (σ = ∼0.452 × 10−2 S cm−1),
high flexibility, free-standing properties, and remarkable thermal stability at up to 230 ◦C.
Furthermore, the synergistic effect of the dual redox-additive material results in high
specific energy and power densities of about 73.2 Wh kg−1 and 34.8 kW kg−1, respectively,
with an enhanced specific capacitance of 337 F g−1.

In relation to increasing the operating voltage, the cell working voltages depend on
the electrochemical stability window of the electrolyte. Most of the mentioned ILs and
ion gel worked at 2.0–3.5 V. These operating voltages were insufficient to overcome the
intrinsic low energy density limitation of SCs hindering their broad application. Thus,
ion gel electrolytes that exhibit excellent electrochemical stability have been extensively
investigated. Pandey et al. used zeolite as an additive to enhance the working voltage; the
zeolite-incorporated SCs were stable up to 4.1 V [43]. A cross-linked polymer matrix was
suggested as a solid electrolyte for high-voltage SCs.

The flexibility of the polymer chain is one of its unique characteristics. The soft and
hard segments of the polymer backbone enable its flexibility. Flexibility is a necessary
feature for wearable devices. Maolin et al. utilized these polymers as the electrolyte in
SCs. The gel polymer was mixed with [BMI][Cl], Li2SO4, and PVA (ratio of 3:2.2:1) using
the freeze-drying method [96]. A bending test was conducted on the SC fabricated with
the electrolyte and with AC as the electrode, as shown in Figure 14. Although the SCs
were bent several times, they had nearly similar cyclic voltammetry and GCD profiles
(Figure 14a,c). Similar resistances are observed via the Nyquist plot in the case of different
bending angles (Figure 14b). Furthermore, the SCs had a specific capacitance retention
of 82% after 1000 bending cycles at 135 ◦C. These results mean that the proposed SCs
exhibited excellent flexibility.

In 2016, a quasi-solid polymer electrolyte that was operated to 4 V was reported [41].
This electrolyte was composed of a cross-linked (poly-4-vinylphenol (c-P4VPh)) polymer
and [EMI][TFSI]. The cross-linked polymer served as a frame, while the IL aided in increas-
ing the ionic conductivity. This electrolyte system improved the electrochemical stability
of SCs because the hydrogen bonding between [EMI][TFSI] and c-P4VPh increased the
electrochemical stability window while maintaining the quasi-solid state. Figure 15a shows
the estimated structure. The electrolyte composite was thermally stable up to 300 ◦C
and electrochemically stable at over 7.0 V (Figure 15b). The SCs with the prepared elec-
trolyte applied demonstrated a specific capacitance of 172.5 F g−1 and an energy density of
72.3 Wh kg−1. Additionally, the introduced SCs had excellent flexibility, as confirmed by
the bending test (Figure 15c,d) [41].
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Figure 14. (a) Cyclic voltammogram for the SCs of PVA-[BMI][Cl]-Li2SO4 FGPE with bending test at
a scan rate of 10 mV s−1; (b) Nyquist plot for the SCs of PVA-[BMI][Cl]-Li2SO4 FGPE at different
bending angles; (c) galvanostatic charge-discharge for the SCs of PVA-[BMI][Cl]- Li2SO4 FGPE
with bending test at a current density of 0.15 A g−1; (d) variation of specific capacitance after 1000
bending cycles (bending angle = 135◦); (e) synthesis of PVA-[BMI][Cl]- Li2SO4 FGPE. Reprinted 2017
from [150] with permission from Advanced Materials Technologies.
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 Figure 15. (a) Estimated structure of solid electrolyte; (b) linear sweep voltammogram for [EMI][TFSI] and solid electrolyte;
(c) flexibility of solid electrolyte and bending performance of SCs with solid electrolyte for 1000 cycles; (d) photograph of a
green light-emitting diode (LED) powered by a single SC with a solid electrolyte. Reprinted 2015 from [60] with permission
from IOP Publishing.

Cho et al. presented an SC which is adopted an ion-gel composed of [EMI][BF4]
and a polymer matrix of PVdF-HFP as electrolyte. Furthermore, PVdF-HFP/[EMI][BF4]
achieved an improved specific capacitance of 323 F g−1 at 4 V by optimizing the electro-
chemically active surface of the carbonaceous electrodes. To achieve an electrochemically
high performance, this research proposed morphological manipulation for controlling
carbon electrode materials to be suitable for IL electrolytes [97].

Recently, our team proposed a solid electrolyte adopting PUA/[EMI][TFSI] through
the novel and facile process while maintaining the free-standing properties and high ionic
conductivity [98]. Most reported ion gel electrolyte fabrication methods require additional
solvents. However, the proposed ion gel electrolyte was prepared using a solvent-free
in situ ultraviolet (UV) polymerization method. The operating voltage of the ion gel is
enhanced by the hydrogen bonding between the polymer matrix and anion. The suggested
ion gel contains up to 90 wt% of [EMI][TFSI] owing to the high compatibility of the
PUA and IL. Additionally, the proposed electrolyte exhibits excellent flexibility without a
decrease in ionic conductivity and thermal stability. The SCs, which comprise 25 wt% PUA
and 75 wt% [EMI][TFSI], exhibited a specific capacitance of 150.88 F g−1 at 0.1 A g−1.
They also denoted a high specific energy density of 93.93 Wh kg−1 at 2000.96 Wh kg−1.
Capacitance retention of the ion-gel-applied SCs were 99% after 1000 cycles and exhibited
remarkable flexibility while maintaining 92% of capacitance retention after 100 times
bending (Figure 16).
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Figure 16. (a) Ionic conductivities and decomposition voltages of [EMI][TFSI] and ion gel; (b) relaxation time and
phase−angle of SC based on ion gel; (c) bending test of SC based on ion gel and photographs of a light-emitting diode
working at 4 V; (d) Ragone plots of SC based on ion gel. Reprinted 2021 from [98] with permission from Elsevier.

3.3.2. Poly Ionic Liquid as a Solid Electrolyte

A PIL is a polyelectrolyte that is composed of a polymer skeleton and an IL species
in repeating units [151]. The PILs (from oligomers to high-molecular-weight polymers)
are affected by the IL properties, including thermal stability, negligible vapor pressure,
non-flammability, relatively high ionic conductivity, and broad electrochemical stability
window [151–154]. The structures and properties of PILs have been used for various appli-
cations such as electrolytes, electrochemical devices, electrochemical catalyst supports, and
porous polymer structures. So far, PILs have been investigated to improve the compatibility
of PILs with other components as well as to take advantage of the versatility of PILs and
enhance properties [155,156].

There are two methods for synthesizing PILs: (1) the one-step method and (2) the
multi-step method [156]. The one-step method involves direct chain-growth polymer-
ization of ILs with or without non-ionic monomers. This method has the advantage of
being straightforward and easy to perform. In the multi-step method, PIL composites
are generated via the bonding of the precursors of a substance and the IL monomer unit
followed by a chemical reaction. There are two different approaches to the multi-step
method: (1) the step-growth polymerization of IL monomers and (2) post-modification of
polymer chains with IL monomers. In the step-growth polymerization of IL monomers,
the IL monomers are first immobilized by substances before being polymerized to generate
PILs. This process has the advantage of allowing composites to be designed using a variety
of IL monomers and polymerization methods. In the post-modification of polymer chains
with IL monomers, the polymer structure is formed first and then IL monomers are bound
to the polymer matrix. The sizes or spatial distributions of the substances in the composite
are well controlled.
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The properties of ILs, such as high thermal stability, wide range of electrochemical
stability, and high ionic conductivity are essential in solid electrolytes. Among them, the
high ionic conductivity is the most important property when using PILs as a solid-state
electrolyte. The ILs and ion gels are capable of moving anions and cations, whereas PILs
are usually single-ion conductors. In PILs, the cation or anion is constrained as part of the
polymer backbone [151], resulting in an ionic conductivity that is generally lower than
that of monomeric ILs. This phenomenon results from an increase in the glass transition
temperature (Tg) and a decrease in the mobile ions after covalent or ionic bonding [155].
The factors that affect the ionic conductivity of PILs are the polymer molecular weight and
the chemical characteristics of the polymer backbone.

The chemical structure of PILs determines the decomposition temperature, which is related
to thermal stability [99]. The chemical characteristics of an anion are one of the factors that affect
the decomposition temperature. To investigate the anion effect, Marcilla et al. reported on four
IL-based polymer electrolytes (IL-b-PE) (Figure 17). The four IL-b-Pes PEs were synthesized by
blending a [PIL][TFSI] with four different ILs: [Pyr14][TFSI] (IL-b-PE1), imide [Pyr14][FSI] (IL-b-
PE2), 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HEMI][TFSI])
(IL-b-PE3), and [Pyr14][DCA] (IL-b-PE4) (Figure 17) [99]. The physical and chemical properties
of the four solid electrolytes are largely determined by the IL properties. The IL-b-PEs containing
relatively small anions showed higher ionic conductivity than those containing large anions. In
addition, the electrochemically stable pyrrolidinium cation and the IL-b-PEs with TFSI and
FSI anions showed a wide electrochemical stability window. The full cell was fabricated
using an AC electrode and performed best in IL-b-PE2, which compromised both the ionic
conductivity and electrochemical stability window. The energy density, power density, and
specific capacitance were as high as 150 F g−1, 36 Wh kg−1, and 1170 W kg−1, respectively,
with a 3.5 V electrochemical stability window.
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Figure 17. Chemical structure of [PIL][TFSI] and different ILs ([Pyr14][TFSI], [Pyr14][FSI], [Pyr14][DCA], and [HEMI][TFSI]
and the respective photo for each membrane. Reprinted 2016 from [99] with permission from Elsevier.

In 2019, Lavall et al. suggested combining synthetic PILs composed of poly(1-vinyl-3-
propylimidazolium bis(fluorosulfonyl)imide) (poly-VPIFSI) and [EMI][FSI] to create a new
gel with adhesion characteristics [152]. The combination of a PIL matrix and ILs resulted in
the synthesis of adhesive an GPE with high conductivity at room temperature (Figure 18).
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The prepared electrolyte had excellent adhesion and the wettability of a gel electrolyte to
the electrode surface, and prevented leakage into the PIL matrix, demonstrating excellent
PIL–IL interactions and high cycle stability. In addition, when the cell was folded, it had
improved kinetics and cycling with minor changes in the capacitance, energy density, and
power density.
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Figure 18. Galvanostatic charge–discharge profile for the SCs at 0.5 A g−1 at (a) 2.5 V; (b) 3.0 V.
The cycle stability at (c) 2.5 V; (d) 3.0 V. (e) Schematic illustration of the experimental procedures.
Reprinted 2019 from [152] with permission from Elsevier.

As mentioned above, PIL electrolytes are single-ion conductors since the cations or
anions are confined in the polymer structure. Thus, the ionic conductivity of PILs is
comparatively lower than that of IL monomers. To solve these issues, PIL composite
electrolytes were investigated, such as PIL-IL and PIL-salt. Oliveira et al. developed gel
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polymer electrolytes prepared with pyrrolidinium-based [PIL][TFSI]. Additionally, two
ILs, [MBI][FSI] and [DPI][TFSI], were used as an ion conductor [100]. The gel electrolytes
showed electrochemical stability windows of 2.8 V and 3.0 V, respectively. Moreover,
the prepared electrolytes exhibited a conductivity of 3.2 × 10−3 S cm−1 [MBI][FSI] and
5.0 × 10−4 S cm−1 [DPI][TFSI] at 25 ◦C.

4. Conclusions and Prospective

This article reviewed research on IL applications, focusing on LIBs, Li-S, and SCs.
With the continuous development of energy storage and conversion systems, ILs

have played an important role in energy storage and conversion systems to enhance the
electrochemical characteristics, reliability, and safety of these systems.

Conventional electrolytes for LIBs have struggled with humidity sensitivity, the re-
peated formation of SEI layers, operating voltage limitations, and flammability because
of the use of organic solvents. However, ILs are suitable materials for overcoming these
problems. ILs have almost no vapor pressure, are flame retardant and thermally stable, and
can simultaneously allow free combinations of cations and anions to control the acidity of
the electrolyte. Furthermore, ILs can provide a high operating voltage because ILs have
a wide electrochemical stability window of up to 6 V. Since this value is over 30% higher
than the existing operating voltage of 4.5 V, it can greatly contribute to the improvement of
the energy density of LIBs.

ILs have been used as an electrolyte for LIBs in various methods: (i) organic solvents
have been replaced with ILs to reduce volatility and flammability, (ii) ILs have been mixed
with conventional organic electrolytes to suppress electrolyte degradation due to stable SEI
layer formation, thereby improving lithium storage performance, (iii) ILs have been used
to minimize polysulfide dissolution, and (iv) ILs have been used with PEO and PVdF-HFP
to improve the low conductivity of solid electrolytes.

ILs are also used as an electrolyte for SCs. In particular, when using ILs as electrolytes,
the addition of salts is not required, and similar to LIBs the operating voltage can be
greatly increased.

ILs have also been used as an electrolyte for SCs in various methods: (i) the high
electrochemical potential window (over 3.5 V) of ILs has been used to increase energy
density, (ii) the anions of two ILs can be mixed to form eutectic ILs, (iii) according to the
ion size of the ILs and the pore size adjustment of the carbon electrode, ILs contribute to
the characteristics of EDLs, (iv) ion gels made of ILs can be used as a solid electrolyte in
wearable devices to obtain high energy density, and (v) PILs can be used to increase energy
density and long-term cycle stability.

The application of ILs to energy storage devices has been continuously conducted,
and it is expected to continue in the future to improve the electrochemical performance
and stability of energy storage devices. However, the price of ILs is ~1000 dollars per
kg based on imidazolium salt, which is expensive compared to conventional solvents, so
research on reducing the cost of producing ILs is inevitable. In addition, more studies on
the compatibility of LIB and SC electrodes with IL electrolytes and methods to improve
the ionic conductivity of IL electrolytes are necessary. Furthermore, research on new
combinations of ILs or eutectic salts that combine two or more types of ILs is also required.
In addition, as studies on ILs progress, it is expected that ILs can be applied to future
energy storage and conversion devices, such as multivalent ion batteries and metal air
batteries, in addition to LIBs and SCs introduced in this paper.

In this regard, we believe that this paper can inspire researchers to pursue more
advanced applications of ILs in energy storage devices.
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