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Abstract

Motor learning and adaptation are important functions of the nervous system. Classical studies have charac-
terized how humans adapt to changes in the environment during tasks such as reaching, and have docu-
mented improvements in behavior across movements. However, little is known about how quickly the nervous
system adapts to such disturbances. In particular, recent work has suggested that adaptation could be suffi-
ciently fast to alter the control strategies of an ongoing movement. To further address the possibility that
learning occurred within a single movement, we designed a series of human reaching experiments to extract
from muscles recordings the latency of feedback adaptation. Our results confirmed that participants adapted
their feedback responses to unanticipated force fields applied randomly. In addition, our analyses revealed
that the feedback response was specifically and finely tuned to the ongoing perturbation not only across trials
with the same force field, but also across different kinds of force fields. Finally, changes in muscle activity
consistent with feedback adaptation occurred in ;250ms following reach onset. The adaptation that we ob-
served across trials presented in a random context was similar to the one observed when the force fields
could be anticipated, suggesting that these two adaptive processes may be closely linked to each other. In
such case, our measurement of 250ms may correspond to the latency of motor adaptation in the nervous
system.
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Significance Statement

We measure the latency of feedback adaptation in a human reaching experiment by applying force field tri-
als randomly. Despite the fact that these disturbances could not be anticipated, we measured improvement
in feedback corrections that paralleled standard adaptation. Correlates in muscle recordings occurred with-
in ;250ms following movement onset. Such a short timescale of adaptation suggested that rapid adapta-
tion complements feedback control of an ongoing movement. To further test this hypothesis, we
demonstrate that indeed participants are able to adapt their feedback responses to different kinds of force
fields and directions applied randomly. These findings support the existence of very rapid, possibly online,
adaptation in the nervous system.

Introduction
Humans and other animals can adapt motor patterns to

counter predictable disturbances across a broad range of
contexts, including reaching, locomotion, and eye

movements (Shadmehr et al., 2010; Wolpert et al., 2011;
Roemmich and Bastian, 2018). A central question in
movement neuroscience is to identify the time scales at
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which this process can influence behavior. In the context
of reaching movements, standard learning paradigms
have focused on trial-by-trial learning, such that changes
in behavior were documented by contrasting early and
late motor performances, often separated by minutes to
hours, or equivalently by hundreds of trials (Lackner and
DiZio, 1994; Shadmehr and Mussa-Ivaldi, 1994; Singh
and Scott, 2003; Smith et al., 2006; Wagner and Smith,
2008). Thus, a clear benefit of motor adaptation is to im-
prove behavior over these timescales, which is of prime
importance for instance when we deal with a new tool or
environment. The associated neural mechanism must
also be beneficial for adaptation to changes occurring
over slower time scales such as development and long-
term skill acquisition (Dayan and Cohen, 2011).
Besides the improvement of behavior over medium to

long timescales, previous studies also indicated that
motor learning could be very fast. The presence of rapid
adaptation was previously established by observing
after-effects induced by a single movement (Sing et al.,
2013). Likewise, unlearning was documented after a sin-
gle catch trial when a force field was unexpectedly
turned off (Thoroughman and Shadmehr, 2000). Other
studies showed that the timescale of motor learning
could be even faster (Braun et al., 2009; Crevecoeur et
al., 2020). In the latter reference, it was documented that
healthy volunteers could produce adapted feedback re-
sponses to the unanticipated force field perturbations
during reaching, and after-effects were evoked within an
ongoing sequence of movements in ,500ms when par-
ticipants were instructed to stop at a via-point.
These latter results contrasted with standard models of

sensorimotor learning (Thoroughman and Shadmehr,
2000; Baddeley et al., 2003; Smith et al., 2006; Kording et
al., 2007), which included multiple timescales but as-
sumed that each movement was controlled with a fixed
representation as a consequence of the assumption that
the fastest timescale in these models was longer than
the movement time. The expression of after-effects in
,500ms challenged this view, as it reveals that adapta-
tion was potentially fast enough to influence movements
of similar or longer duration. Thus, motor adaptation
could not only support learning across trials but also
complement online feedback control.
Evidence for online adaptation was interpreted in the

context of adaptive control (Bitmead et al., 1990): a
least-square learning algorithm coupled with a state-
feedback controller. This technique is based on standard
state-feedback control models that successfully capture

humans’ continuous and task-dependent adjustments of
voluntary movements (Todorov and Jordan, 2002;
Diedrichsen, 2007; Liu and Todorov, 2007), as well as
feedback responses to mechanical perturbations (Scott,
2016; Crevecoeur and Kurtzer, 2018). Intuitively, the
state feedback controller in the nervous system can be
viewed as a parameterized control loop, and the goal of
adaptive control is to tune this loop in real time by contin-
uously tracking the model parameters (and errors). This
model captured both adjustments of control during un-
anticipated perturbations, and the standard single rate
trial-by-trial learning observed across a few trials, as-
suming that changes in anticipation across trials may
come from rapid feedback adaptation of the previous
one (Crevecoeur et al., 2020).
To gain further insight into the timescales of motor ad-

aptation in the brain, we designed this study to address
the following key questions: first, we sought to replicate
previous findings of adaptation to unpredictable distur-
bances, and measure precisely the latency of adaptive
changes in control from muscle recordings. Second, we
sought to test a surprising prediction of the theoretical
framework of adaptive control: if the nervous system
tracks model parameters in real time, then, in principle, it
should be possible to handle simultaneously force fields
not only of different directions (clockwise or counterclock-
wise) but also of different kinds (i.e., with different force
components). First, our results showed that feedback re-
sponses to unanticipated perturbations became tuned to
the force field within ;250 ms of movement onset.
Second, we found that humans were indeed able to pro-
duce adapted and specific feedback responses to differ-
ent force fields randomly applied as catch trials. Our
results confirmed the existence of a very fast adaptation
of feedback control during movements and provide an es-
timate of;250 ms for the latency of motor adaptation.

Materials and Methods
Experiments
A total of 44 healthy volunteers were involved in this

study (19 females, between 22 and 37 years) and pro-
vided written informed consent following procedures ap-
proved by the local Ethics Committee (UCLouvain,
Belgium). Eighteen participants performed the first experi-
ment, another group of 18 participants performed the
second experiment, and the rest (n=8) performed the
control experiment. The data of the control experiment
were published in our previous study and were reused
here to underline the similarities between feedback adap-
tation and standard trial-by-trial learning.
In all experiments, participants grasped the handle of a

robotic arm (Kinarm, BKIN Technologies), and were in-
structed to perform visually guided reaching movements
toward a virtual target. Each trial ran through as follows.
Participants had to wait in the home target (a filled circle
with radius 0.6 cm) for a random period uniformly distrib-
uted between 2 and 4 s. The goal was also displayed as a
circle located 15 cm ahead of the start. After the random
period, the cue was delivered to initiate the movement by
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filling the goal target (Fig. 1A). Participants had between
600 and 800ms (including reaction time) to reach the goal
and stabilize in it for at least 1 s. Information about the
time window was provided as follows: when participants
reached the goal too soon, it turned back to an open
circle. When they reached it too late, it remained red.
When they reached it within the desired time window, it
became green and a score displayed on the screen was
incremented. The scores and feedback about timing were
provided to encourage consistent movement times, but
all trials were included in the dataset. The grand average
success rate was 706 12% for experiment 1, and
766 10% for experiment 2. In all cases, the direct vision
of the arm and hand was blocked but the cursor aligned
to the handle was always visible. These procedures were
identical across the three experiments, which only varied
by the frequency and nature of mechanical perturbations
applied during movements.

Experiment 1
This experiment was designed to replicate previous re-

sults on the adaptation of feedback responses to unpre-
dictable perturbations (Crevecoeur et al., 2020), and to
measure the moment within a trial when the muscle activ-
ity started to show feedback tuning corresponding to the
force field. Participants performed six blocks of 60 trials,
composed of unperturbed trials (baseline) and force field
trials. The x and y coordinates corresponded to lateral
and forward directions, respectively (Fig. 1A). In this ex-
periment, the force field was defined as a lateral force pro-
portional to forward velocity: fx ¼ 6lO _y, with lO ¼ 613
Nsm�1 (the subscript O refers to the orthogonal force
field). There were five force field trials per block and per
direction (counterclockwise and clockwise), which corre-
sponded to a frequency of perturbation trials of 1/6, and a
total of 30 force field trials for each perturbation direction.
The sequence of trials was randomized within each block,
such that the occurrence and direction of the perturba-
tions were unpredictable.

Experiment 2
The purpose of this experiment was to test further the

hypothesis of online adaptive control by alternating differ-
ent kinds of force fields, which in theory could be handled
by online tracking of model errors (Bitmead et al., 1990).
To investigate this, we performed an experiment similar to
experiment 1, with the addition of curl force field trials ran-
domly interspersed between unperturbed and orthogonal
force field trials. The orthogonal force field was identical
to experiment 1. For the curl field, both forward and lateral
velocities were mapped onto lateral and forward pertur-
bation forces with opposite signs, respectively: fx ¼ lC _y,
and fy ¼ �lC _x with lC ¼ 615 Nsm�1 (the subscript C re-
fers to the curl field). There were five perturbation trials
per force field (orthogonal and curl) and direction (clock-
wise and counterclockwise), summing to a total of 20 per-
turbations per block presented in a random sequence. As
in experiment 1, participants performed six blocks of 60
trials, composed of 40 baseline trials and 20 perturbation
trials (perturbation frequency: 1/3).

Control experiment
In this experiment, we were interested to measure par-

ticipants’ behavior in a fully predictable context corre-
sponding to a standard adaptation task. Participants
performed a series of baseline trials for training, followed
by 180 force field trials (orthogonal force field, clockwise
(CW) or counterclockwise (CCW) for the entire series), fol-
lowed by another series of 180 force field trials in the op-
posite direction for the entire series. The two series were
separated by 20 baseline trials to induce washout between
the two adaptation phases. We reused previously pub-
lished data for this experiment and refer to Crevecoeur et
al. (2020) for complementary descriptions of the results.

Data collection and analysis
The two-dimensional coordinate of the cursor aligned

to the robotic handle, and the forces at the interface be-
tween the participants’ hand and the handle were

A B C D

Figure 1. A, Illustration of the workspace and task. Participants were instructed to perform forward reaching movements toward a
visual target. An open goal target was presented for a random delay uniformly distributed between 2 and 4 s before it was filled in.
The cue to reach the target was given by filling in the goal in red. The goal was turned red if the time between the go signal and the
stabilization in the target was comprised between 0.6 and 0.8 s. B, Hand paths from the first force field trials (top) and trial #25 se-
lected for illustration (bottom) from each participant (n=18). Counterclockwise and clockwise perturbations are depicted in blue and
red, respectively. The black traces illustrate for each panel baseline trials selected randomly (one baseline trial per participant).
Osh.: target overshoot; Max.: maximum displacement in the direction of the force field; Thresh.: the positional threshold used to
align EMG data. C, Maximum displacement in the direction of the force field. The dashed trace illustrates that the exponential fit did
not reveal any significant curvature across force field trials (p. 0.05). D, Maximum target overshoot in the direction opposite to the
force field. Solid traces revealed strongly significant exponential decay across trials (p,0.001).
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sampled at 1 kHz, and digitally low-pass filtered with a
fourth-order dual-pass Butterworth filter with a cutoff fre-
quency of 50Hz. Velocity signals were obtained from nu-
merical differentiation of position signals (fourth order,
finite difference algorithm). We collected the activities of
two of the main muscles recruited when performing lateral
corrections against the perturbations used in our experi-
ment: pectoralis major (shoulder flexor) and posterior del-
toid (shoulder extensor). Muscle samples were recorded
with surface electrodes for experiments 1 and 2 (Bagnoli
Desktop System, Delsys). EMG signals were collected at
1 kHz, digitally bandpass filtered (fourth order dual-pass:
[10, 400] Hz), and rectified.
Two events were used as timing references. First, reach

onset was defined as the moment when the cursor
aligned to the handle exited the home target. Second, we
used a position threshold located at 1/3 of the distance
between the home and goal targets to re-align the EMG
traces offline. The crossing of this position threshold ap-
proximately coincided with the peak forward velocity,
which allowed reducing the trial-to-trial variability in EMG
recordings. Similar conclusions were obtained when all
analyses were performed based on traces realigned with
respect to reach onset.
Exponential fits were used to quantify the presence of

learning on several parameters, including the maximum
lateral hand displacement, and maximum target over-
shoot for experiment 1. The quantification of learning from
experiment 2 was based on exponential fits of the path
length computed as the time integral of hand speed. We
fitted the exponential functions to the raw data from each
participant as a function of the trial index and assessed
whether the 99.9% confidence interval for the parameter
responsible for the curvature of the fit included or not the
value of 0 (p, 0.001). Variability across participants was
illustrated on hand trajectories by calculating the disper-
sion ellipses based on singular value decomposition of
the covariance matrices at different time steps evenly
spaced.
We measured both the onset of changes in EMG re-

sponsible for changes in behavior across early and late
force field trials, as well as the onset of changes in EMG
across force fields from experiment 2. To contrast early
and late trials, EMG data were averaged for each partici-
pant across the first four and last four trials. To contrast
the feedback responses to orthogonal and curl fields in
experiment 2, EMG data were averaged across the last 15
trials of each kind of force field. EMG averages were then
collapsed into a 30-ms-wide (centered) sliding window,
and sliding comparisons across time were performed with
paired t tests. We searched in the time series of p values
the moment of strongest statistical difference across pop-
ulations of EMG data (p, 0.005), and then went back in
time until the threshold of p, 0.05 was crossed. On the
one hand, this test could identify early differences since it
included data from –15 to 115 ms relative to the center
of the bin, but on the other hand, we kept the threshold of
significance instead of attempting to find the true onset of
changes in responses that must have occurred a little be-
fore. This criterion, along with the fact that the crossing of

the threshold of 0.05 was followed by highly significant
differences, ensured reliable conclusions. It should be
noted that corrections for multiple comparisons do not
apply here for two reasons: first, the samples at each time
step are involved in only one comparison, and second
consecutive samples are not statistically independent.
Indeed, if there is a significant difference at a given time
step, it is very likely that there is also a significant differ-
ence at the next time step because signals do not vary in-
stantaneously. Hence, the risk of false-positive must not
be controlled.
An index of motor adaptation was derived based on the

relationship between the lateral commanded force and
the measured force along the same axis. Similar metrics
were used previously (Crevecoeur et al., 2020), and were
based on the fact that these correlations were sensitive to
learning. A classical approach is based on error clamps or
force channels producing virtual walls and allowing an
ideal measure of participants’ expectations. In our case,
we are interested in online control and force channels are
not suitable. The correlations between commanded and
measured forces are also impacted by other factors in-
cluding the robot dynamics (which putatively also influen-
ces the force produced against a channel wall), and real-
time sampling errors. Besides these errors, the difference
between measured and commanded force simply corre-
sponds to lateral acceleration. We documented previ-
ously that errors made by ignoring the robot dynamics
and by online sampling were on the order of �10%
(Crevecoeur et al., 2020). Hence, the change in correlation
in the range that we observed with similar forward kine-
matics could be linked to adaptation. It is clear that this
metric is close to others that could be captured based on
lateral acceleration, velocity or displacement. However,
we privileged the correlation as this technique allows ex-
tracting a single parameter from continuous curves, by
taking their entire time-varying profiles into account.
The data of the control experiment were also used to val-

idate this argument empirically. Specifically, for each trial,
we computed a least-square linear regression between the
commanded force obtained from velocity signals, and the
applied force measured with the force encoders. These
correlations were then averaged across perturbation direc-
tions for each participant (as they revealed qualitatively
similar effects), then across participants for illustration.
Surrogate correlations were obtained by calculating linear
regressions between the measured force and the com-
manded force of randomly selected trials with replace-
ment. These surrogate correlations were calculated on 100
randomly picked trials with a replacement for each index
and participant.

Results
Experiment 1
Our first experiment was designed to replicate previous

findings of the adaptation of feedback responses to un-
predictable disturbances (Crevecoeur et al., 2020), and
measure accurately from EMG data the moment when the
perturbation-related activity started to be tuned to the
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force field. Importantly, a feedback response is expected
in all cases (Milner and Franklin, 2005; Wagner and Smith,
2008; Cluff and Scott, 2013). What we searched for was
not just a feedback response, but a change in feedback
response across early and late force field trials indicating
that the response became adapted to the force field. The
critical aspect of our experiments with respect to these
previous studies, which also documented changes in
feedback response, is that in our case, the force field per-
turbation could never be anticipated.
We measured a clear deviation in the lateral cursor dis-

placement in the direction of the force field as expected
since the perturbations could not be anticipated (Fig. 1B).
Although the maximum hand displacement exhibited a
small reduction across the first few trials, the exponential
fits of this variable as a function of the trial index did not
display any significant curvature (p. 0.05 for both direc-
tions). In other words, the parameter in the exponential fit
responsible for the curvature of the function was not dis-
tinct from 0, reducing to a linear (possibly horizontal) best
fit. In contrast, the maximum target overshoot exhibited a
clear and highly significant exponential decay across trials
(Fig. 1D; p, 0.001). Hence, participants initiated force
field trials with a controller that would otherwise produce
a straight reach path (Fig. 1B, black traces), resulting in a
clear perturbation-related movement error, but then man-
aged to improve their online correction across perturba-
tion trials.
It was shown previously that the reduction in target

overshoot was associated with a reduction in measured
force near the end of the movement (Crevecoeur et al.,
2020). This result was also replicated below. As a conse-
quence, we expected to measure a reduction in muscle
response to the perturbation. To observe this, we aver-
aged EMG data across the first four and last four trials for
each perturbation direction. Our rationale was that fewer
than four trials would likely be too small a sample, where-
as trials performed after five or more force field (FF) trials
already exhibited significant adaptation, thereby reducing
the size of the effect under investigation. As expected, we
found a significant reduction in EMG responses to the per-
turbations (Fig. 2A,B). When traces were aligned to the
position threshold and averaged across directions (see
Materials and Methods), we found that the onset of a drop
in the time series of p values occurred on average at 122ms
following threshold (center of the 30-ms bin; Fig. 2C,D). It
could be observed that there was no clear difference across
the first and last trials before the moment when the p value
dropped (Fig. 2C), which indicated that there was no sys-
tematic coactivation of this pair of antagonist muscles on
average, and therefore no clear reliance on limb impedance
control.
Because there was some variability between reach

onset (defined as the moment when the cursor exited the
home target) and the moment when participants’ hand
crossed the position threshold, we calculated for each
subject distribution of elapsed time between reach onset
and the moment corresponding to threshold1122 ms.
These distributions are reported in Figure 2E, and the
mean 6 SD of medians is shown (black cross): 2376 15

ms. For illustration, we reported in Figure 2F the mean la-
tency of within-trial changes in feedback response on the
average hand path represented for the first and last four
trials. The black circle illustrates the moment of a signifi-
cant reduction in perturbation-related EMG that could be
linked to the reduction in target overshoot observed in
Figure 1. The analysis of antagonist muscle activity also
revealed a decrease in activity in absolute value, but the
difference was delayed relative to the onset of change in
agonist activity (Fig. 2A,B, dashed traces). Following the
same technique of sliding window, we found that the dif-
ference between early and late trials became significant at
4006 15 ms (medians across individual distributions,
mean6 SD).
The reductions in perturbation related response in EMG

and in target overshoot were expected if participants
learned to handle the force field. To further address
whether their online corrections reflected adaptation, we
correlated the measured lateral force with the com-
manded force calculated offline based on forward hand
velocities. Average traces were represented in Figure 3A,
B for CCW perturbations (normalized for illustration).
Observe that the average correction in the first trial was
variable and the traces were irregular (Fig. 3C). In con-
trast, the same data plotted for the last trials appeared
more regular (Fig. 3B,D). Figure 3C,D shows phase dia-
grams with measured and commanded forces in the first
and last trials for each participant. These traces were
taken from ;200 ms following reach onset to 1000ms
(Fig. 3A,B, gray rectangles), based on the previous analy-
sis revealing that there was no difference until ;240 ms
following reach onset, and thus no expected improve-
ment in correlation before this time. It can also be ob-
served that the peak terminal force occurring after 400ms
decreased in absolute value, which is consistent with our
previous observation (Crevecoeur et al., 2020), and can
be linked to the fact that participants were able to reduce
the lateral target overshoot when exposed to the force
field.
The correlations exhibited highly significant changes

across trials. This was first assessed with a repeated-
measures (rm)ANOVA on the correlations with the trial in-
dices as the main factor (rmANOVA, F(29,493) = 8.7,
p, 10�5), and a standard least-square linear regression
highlighted a clear increase in this variable (Fig. 3E;
p, 0.005). These correlations were compared with those
obtained with randomly picked surrogate profiles to see
whether the measured force in each perturbation trial re-
flected tuning to the ongoing perturbations (see also
Materials and Methods; Fig. 3F), or whether a non-specif-
ic correction pattern was produced, which could correlate
as well with randomly picked surrogates as with the expe-
rienced perturbation. We found that the true correlations
were initially below the surrogate and then became great-
er than the surrogates. In support of this observation, we
found a significant interaction between the the trial index
and correlation type (i.e., true vs surrogate, rmANOVA,
F(29,493) = 1.88, p=0.004).
This result must be interpreted as follows: when pertur-

bations are associated randomly to the measured forces,
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it produces surrogate correlations that are initially better
than in the data due to more regular profiles taken from
late learning, and then it produces correlations that are
weaker than the data as early trials with more perturbed
profiles are sometimes randomly picked in the surrogates.
As a consequence, the change in correlations is not sim-
ply due to the fact that the force profiles become more
regular, which explains the increase in the surrogate data,
but the true correlations are better than those obtained by
random associations between commanded and meas-
ured forces. In other words, the relationship between the
specific perturbation and force profiles from the same tri-
als must be preserved to reproduce the observed correla-
tions. To make sure that this result was not too dependent
on some very particular traces that occurred early during
learning, we performed the same analyses after removing
the first four trials for the surrogate correlations and found
the same result (interaction between trial index and true or
surrogate types without the first four trials, rmANOVA,
F(29,493) = 1.9, p, 0.002).
We verified with the data from the control experiment

that an increase in the same correlations between the
measured and commanded forces occurred when the per-
turbations were fully predictable (Fig. 4). The commanded

and measured forces displayed initially variable traces with
a terminal increase in interaction force at the handle con-
sistent with the production of a target overshoot (black
arrow), followed by more regular and similar profiles.
Hence, the key observations were that these correlations
represented a sensitive metric of learning, and they in-
creased across trials in the random context of experiment
1 similarly as in the standard context of trial-by-trial adap-
tation. In all, the data from experiment 1 highlighted that
participants were able to adapt their feedback responses
to unanticipated force field disturbances within ;240 ms
following reach onset and their force control during unpre-
dictable force field trials paralleled the behavior observed
in a standard learning paradigm despite the lack of
anticipation.

Experiment 2
This experiment was designed to investigate whether

participants could learn to adapt their feedback re-
sponses when exposed to four different force fields at the
same time: either orthogonal or curl force field, in clock-
wise or counterclockwise directions. For the orthogonal
field, we observed the same behavior as in experiment 1:

A B C

D E F

Figure 2. A, Activity of posterior deltoid (PD; agonist, solid), and pectoralis major (PM; antagonist, dashed) averaged across the first
four (light blue) and last four counterclockwise (dark blue) perturbation trials. The vertical arrows illustrate the moment when a sliding
paired comparison of the agonist activity averaged in a 30-m window dropped below p, 0.05. Traces were aligned to the position
threshold corresponding to one-third of the reach path to reduce variability. B, Same as panel a for clockwise perturbation trials.
The position threshold is also represented. C, Grand average of the difference between the agonist activities of the first four and
last four force field trials, aligned to the position threshold and averaged across muscles and participants (n=18). The gray area cor-
responds to the standard error of the mean. The dashed window is the first window that displays a significant difference from sliding
paired comparison (pp, 0.05, width = 30 ms). The solid window is the window associated with the minimum p value (ppp, 10�4).
D, p value of the sliding paired comparison performed on the data from C. All EMG traces were smoothed with a 5-ms sliding win-
dow for illustration purposes. E, Cumulative individual distributions of the delay between movement onset, and the moment when
the p value of panel d dropped below 0.05. This moment corresponds to the time of threshold crossing plus 122ms. The median
delay between movement onset, and this time was 2376 15 ms (mean 6 SD across participants, n=18). F, Average hand paths
and standard dispersion ellipses for the first four and last four trials in each direction, Dispersion ellipses are displayed 50ms (see
Materials and Methods). The black dots represent the moment corresponding to the vertical arrows of A, B.
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minute changes in the maximum lateral displacement
across the first few trials, and highly significant exponen-
tial decay of the maximum target overshoot across trials
(data not shown). Hand traces during curl field trials were
distinct because, unlike the orthogonal field, the antero-
posterior component of the force field prevented a sys-
tematic target overshoot (Fig. 5A,B). For this reason, we
used the path length to capture adaptation across the two
force fields with the same metric. We found a clear reduc-
tion in path length for each force field and each perturba-
tion direction (Fig. 5C). Exponential fits confirmed a very
strong decay across trials (Fig. 5C; p, 0.001).

As for experiment 1, we calculated the temporal corre-
lations between the commanded and measured lateral
forces averaged across clockwise and counterclockwise
directions. For the two kinds of force fields, we found a
clear impact of the trial index on the correlations, which
confirmed the visible increase shown in Figure 5D
(rmANOVA, F(29,493) . 4, p, 10�6). Furthermore, for the
two kinds of force fields, we found highly significant inter-
actions between the trial index, and the difference be-
tween the true and surrogate correlations (F(29,493) . 5,
p, 10�10). As for experiment 1 we verified that this result
was not too dependent on the early phase of learning
where force and velocity profiles were more irregular and
found also a strong interaction between the trial index and
the correlation type after removing the first four trials
(F(29,493) . 5, p,10�10). Observe also that in this experi-
ment, the correlations in the last trials were significantly
stronger than for the surrogate (direct comparisons, one
sided paired t test: orthogonal field: t(17) = 3.7, p=0.0016;
curl field: t(17) = 6.4, p, 0.001). This analysis indicated
again that true correlations were lower first, then became
greater, which supported that online corrections were
tuned to the specific force profile experienced during
each trial.
Surface recordings during the orthogonal force fields

gave similar results as those reported in Figure 2; we
found that the initial responses to the perturbations were
similar for pectoralis major and posterior deltoid, until
100ms following the threshold, where we observed a re-
duction in activity consistent with the production of an
adapted response (Fig. 6A–C). As a consequence, the ad-
justments, in this case, were even observed slightly earlier
than during experiment 1. Indeed, the median time
elapsed between reach onset, which was defined as the
time when they exited the home target, and the reduction
in target overshoot was 2186 10 ms (Fig. 6D). The analy-
sis performed on curl field trials also revealed a significant
reduction in perturbation-related activity occurring 104ms
following the threshold, which corresponded to a delay be-
tween reach onset and changes in muscle response of
2256 11ms (Fig. 6E–H).
Again, there was no systematic change in co-contrac-

tion, which could have impacted the mechanical imped-
ance of the shoulder joint (Hogan, 1984; Burdet et al.,
2001). Indeed, the average traces in Figure 6C,G repre-
sent the average difference in muscle activity aligned to
the position threshold for each muscle. The presence of
co-contraction would have resulted in an offset observed
at the beginning of reach onset. To quantify this, we aver-
aged the activity in each muscle from the first 100ms of
the window presented in Figure 6 (threshold-200 ms until
threshold-100 ms), and compared the activity across the
first and last four trials. We did not observe any statistical
difference (t(17) , 1.1, p. 0.3). Besides possible changes
in limb impedance (but see Crevecoeur and Scott, 2014),
there is a known modulation of baseline activity evoked
by unanticipated force field trials identified previously on
the same muscles and during a similar task (Franklin et
al., 2008; Crevecoeur et al., 2019). However, this effect
did not impact the activity before the perturbations

A B

E F

C D

Figure 3. A, Forward hand velocity (black) and measured lateral
force (blue) normalized to the average maximum calculated on
the first trial. Shaded areas represent one standard error across
participants (n=18). Panels display data from the trials with
counterclockwise force field perturbation. B, Same as panel a
for the last trial normalized to the average maximum of the first
trial. C, Lateral force as a function of the forward velocity for
CW and CCW perturbations (red and blue, respectively). D,
Same as C for the last trial. For panels C, D, there was one
trace per participant. Observe that the traces were smoother in
the last trials. E, Mean 6 SEM of the linear correlation (R2 sta-
tistics) across force field trials from experiment 1 (CCW and CW
perturbations averaged). F, Difference between the correlations
from experiment 1 as calculated in C, and the correlation be-
tween the lateral force of each trial with the forward hand veloc-
ity of a randomly picked surrogate trial with replacement. The
surrogate correlations were calculated 100 times per trial and
participants and averaged across. The shaded area is one
SEM.
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systematically, likely due to the fact that perturbation trials
were randomly interspersed and the modulation of base-
line activity averaged out.
We made similar observations as in experiment 1 re-

garding the antagonist response: the activity in the antag-
onist was statistically similar until later in the reach relative
to the change in agonist response, for both muscles and
for the two force field conditions. We applied again the
same sliding analysis to the grand average as suggested
in Figure 2C but for the antagonist activity and found that
the changes relative to reach onsets were at 3456 10 ms
for the orthogonal force field, and 3516 11ms for the curl
force field (medians of individual distributions, mean 6
SD). These changes in antagonists were also character-
ized by a reduction in perturbation-related activity.
It remained to be elucidated whether the feedback re-

sponses to the orthogonal and curl force fields were dis-
tinct, or whether participants used a single response
pattern undifferentiated across force field disturbance,

should the perturbations be sufficiently close to be handled
with a single and non-specific response. Our data allowed
us to reject this possibility. Indeed, we contrasted the feed-
back response to curl and orthogonal force fields averaged
across the last 15 force field trials for each muscle. We
found clear changes in EMG patterns, such that the curl
force field evoked a stronger response, and was followed
by a second increase in activity near the end of the reach
(Fig. 7A,B). Based on the difference between the activities
from curl and orthogonal fields, we found that the modula-
tion of EMG activity was highly significant (Fig. 7C).
Furthermore, the onset of changes in EMG revealed that
the feedback responses were tuned to the force field very
early during movement: this time corresponded to;55 ms
before threshold on average (Fig. 7D), which was denoted
as a star in the average hand path displayed in Figure 7D,
black circle. This median of the distributions of elapsed
time from reach onset to this time across participants was
65610 ms (mean6 SD).

A B C

Figure 4. Control experiment, data from Crevecoeur et al. (2020). A, Individual hand traces from the first and last perturbation trials
in each direction from the control experiment (one traces per participant, n=8). B, Commanded (black) and measured (red) force
profiles for the first (left) and last (right) clockwise perturbations. The arrow highlights the increase in peak terminal force linked with
the target overshoot. Observe that the traces become very similar, which increases the temporal correlation between them. C,
Correlations between commanded force and measured force as in Figure 3 against trial indices. Correlations were averaged across
directions and participants. Displays are mean 6 SEM across participants.

A B

C D

Figure 5. A, Hand paths from the first (light colors) and 25th (dark colors) trials with an orthogonal field chosen to illustrate changes
in feedback responses. All data were taken from experiment 2, and each trace represents trials taken from each participant (n=18).
Blue and red traces represent counter clock-wise and clockwise perturbations. B, Same as panel a for the curl field. C, Path length
across force field trials. D, Trial by trial correlations between the lateral commanded force (proportional to forward velocity) and the
measured force. Correlations were averaged across counterclockwise and clockwise directions. The shaded areas represent one
SEM across participants. The dashed traces (mean 6 SEM) are the correlations between the measured lateral force and the com-
manded force corresponding to the velocity of randomly picked trials with replacement. The procedure was repeated 100 times for
each participant, and the results were averaged across CCW and CW perturbations directions.
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It is important to stress that this result was expected and
must be used as a control analysis. In fact, the perturba-
tions across orthogonal and curl fields were distinct, thus it
is not surprising to observe distinct responses. The goal of
this analysis is to verify that the motor system responded
to the details of the perturbations across each trial, and as
a consequence, there were no default feedback responses
triggered in all cases. The link with adaptive control was
based on the observation that participants’ behavior had a
similar signature as during a trial-by-trial learning scenario
(Fig. 4), in conjunction with the fact that there was no antici-
pation (by design), no systematic co-contraction, and that
the feedback responses were adjusted to each perturba-
tion trial (Fig. 7 and surrogate data analyses on Figs. 3, 5).
A consistent observation across Experiments 1 and 2

was a decrease in perturbation-related feedback response,

which accounted for the improvement in reach control. We
interpret this reduction as an adaptation in the feedback
circuits, because of similar changes in correlation as ob-
served in the control experiment with standard trial-by-trial
learning. But could there be a “default” downregulation of
feedback gains? Our data suggest that it was not the case.
We limited this analysis to the orthogonal field for simplic-
ity. Across experiments and perturbation directions, we
found no significant variation of forward velocity across tri-
als (rmANOVA, all F(29,493) , 1.36, all p. 0.1). Thus, the
commanded lateral force was statistically similar. A default
downregulation of feedback gains should then be visible in
the peak of measured force applied to the handle. We
found such a decrease in absolute value in only one case
(CCW in experiment 1, F(29,493) , 1.74, p=0.01), and a vis-
ual inspection indicated that this happened for the first few

A B C D

E F G H

Figure 6. A–D, Same as Figure 2 for the orthogonal force field data from experiment 2 (a distinct group of 18 participants). Traces
are first and last four trials in the force field for pectoralis major (A, blue) and posterior deltoid (B, red) aligned to the position thresh-
old. The activity during unperturbed trials was subtracted and the traces were smoothed with a 5-ms moving average for illustration.
The vertical arrows show the moment with a sliding paired comparison of activity averaged in 30-ms bins became significant
(p,0.05). C, Difference between early and late feedback responses (mean 6 SEM) averaged across participants and muscles. The
results of the sliding paired comparisons are shown: one star, first 30ms-bin with p, 0.05, two stars: minimum of p (p, 0.005; see
Materials and Methods). D, Individual distributions of time elapsed between reach onset and the center of the first bin with p, 0.05.
The cross is the median 6 SD across participants. E–H, Same as A–D for the curl force field.

A B C D

Figure 7. A, Average activity of posterior deltoid in curl (thick) and orthogonal (thin) counterclockwise perturbations across the last
15 trials of each type of force field. B, Same as a for pectoralis major from clockwise perturbations. C, Difference between activities
recorded during curl and orthogonal force fields averaged across participants and muscles. The onset of significant changes based
on a 30-ms-wide sliding window is highlighted with one star (p, 0.05), followed by strongly significant differences (two stars,
p, 0.005). D, Average hand paths during counterclockwise perturbations. Ellipses are two-dimensional standard dispersion across
participants every 50ms, and the impact of the force field is illustrated with the gray arrow (a common scaling for the two force
fields was applied for illustration). The open dots are the moment when the activities started to differ across two types of
perturbations.
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trials. In the other cases, we found either no change across
trials (F(29,493) , 1.2, p. 0.2), or even an increase in the
peak of lateral measured force (CW in experiment 2,
F(29,493) = 2.11, p, 0.001). Thus, there was no default or
generic downregulation of feedback gains, instead, it oc-
curred typically later than the peak force during the reach.
A precisely timed downregulation with respect to the force
field is expected to assume adaptation of feedback motor
responses.
To summarize, participants produced feedback re-

sponses tailored to the details of the unanticipated pertur-
bations for each kind of force field; these feedback
responses improved and exhibited similar traits as those
of standard adaptation paradigms, namely the increase in
correlation between commanded and measured forces.
These changes in behavior were linked to finely tuned
EMG activities, which indicated that feedback response
was adapted to the force field as early as 250ms following
reach onset.

Discussion
Current theories of motor learning have postulated that

sensory feedback about movement error is mapped to
model updates for the next movement. Based on this
idea, several seminal studies have characterized learning
across movements by means of trial-by-trial learning
curves. We recently argued that motor adaptation un-
folded over faster time scales, potentially within a single
trial, which revealed a novel function of motor adaptation,
which is to complement feedback control online
(Crevecoeur et al., 2020). To further test this hypothesis,
we performed here two experiments with the following
aims: (1) to replicate our previous results on improve-
ments in feedback responses to unanticipated force
fields; (2) to identify in muscle recordings the latency of
adaptive changes in control; and (3) to test whether
healthy humans could adapt their feedback response to
two different force fields and two different perturbation di-
rections randomly applied across trials. The results con-
firmed our previous findings and highlighted a modulation
of feedback responses within 250ms of reach onset.
Importantly, these feedback responses were also specific
to each perturbation profile (curl and orthogonal force
fields).
Previous studies investigated learning in random envi-

ronments and found partial to total anterograde interfer-
ence between different motor memories dependent on
the time between two adaptation sessions (Gandolfo et
al., 1996; Shadmehr and Brashers-Krug, 1997; Karniel
and Mussa-Ivaldi, 2002; Caithness et al., 2004). To ex-
plore the neural basis of acquisition of multiple motor
skills, subsequent studies have highlighted that adapting
to opposite velocity-dependent force fields was possible
if they were associated with different contextual cues,
movement representations, initial limb proprioceptive
states, or planning conditions (Wada et al., 2003; Addou
et al., 2011; Hirashima and Nozaki, 2012; Howard et al.,
2012; Green and Labelle, 2015; Sheahan et al., 2016). Our
data contrast with this literature at first glance: we claim
there was feedback adaptation to opposite velocity-

dependent force fields applied randomly without any
change in context or representation across trials. We ex-
plain this discrepancy by the fact that most studies used
indicators such as maximum perpendicular error, based
on which we would not conclude for adaptation either
(Fig. 1C). In contrast, an indication of changes in feedback
control occurred later in movement and was observed
when we analyzed the details of force, EMG and kine-
matic signals near the end of movements. Thus, we con-
clude that there is an adaptation of the feedback
controller, which is evoked by the perturbation experi-
enced within the movement, and as a consequence takes
some time during the trial before it has a measurable im-
pact on control. Our data suggested that motor execution
could form and recall distinct internal representations of
dynamics during movement. This interpretation based on
adaptive control captures both interference and feedback
adaptation: if the nervous system tracks model parame-
ters online, then the alternation of CW and CCW force
field trials produces an estimate of the force field that is
zero on average. Thus, in this framework, there is no an-
ticipation of the force field type or direction, but the im-
provements in feedback corrections are mediated by
online adaptation. In addition, these individual perturba-
tion responses were not stereotyped. The differences be-
tween single-trial adaptive responses when orthogonal
and curl field perturbations were randomly intermingled
indicated specificity of perturbation response at the single
trial level. Interestingly, a field specific adaptation was re-
ported in a random perturbation scenarios were position
and velocity-dependent force fields were applied (Joiner
et al., 2017). Thus, online responses and single-trial adap-
tation seem both highly sensitive to the details of the per-
turbation profiles.
Of course, this adaptation may differ from anticipatory

or feed-forward adaptation. In standard learning para-
digms, it was postulated that reaching movements con-
sisted of a feed-forward component, which we can define
as an open-loop control sequence, along with a feedback
component (Kawato, 1999), and that adaptation was as-
sociated with changes in the internal forward model
(Shadmehr et al., 2010; Franklin and Wolpert, 2011).
Several reports have then documented that feed-forward
and feedback control systems share their internal repre-
sentations, based on the observation that changes in
feedback corrections correlated with the learning of a
force field (Wagner and Smith, 2008; Ahmadi-Pajouh et
al., 2012; Cluff and Scott, 2013; Maeda et al., 2018). The
adaptation that we highlighted here may be a distinct pro-
cess because there was no possibility for the participants
to change their anticipatory compensation for the force
field trials, which were unpredictable by design.
However, the observed feedback adaptation may not

be functionally distinguishable from the standard adapta-
tion: it enabled adjustments of motor output suitable to
the experienced force field. Although feedback adapta-
tion may be dissociable from feedforward adaptation
(Yousif and Diedrichsen, 2012; Kasuga et al., 2015), and
may not engage the same circuits, there is no reason a
priori to dismiss it as a contributor to motor adaptation in
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general. A possible link between feed-forward and feed-
back adaptation is that the online representation which is
used to adapt the feedback response in a force field trial
may be stored and used as a new prior for the next move-
ment. This hypothesis is motivated by the observation
that a single force field trial is sufficient to produce signifi-
cant after-effects in the next trial (Scheidt et al., 2001;
Sing et al., 2013; Crevecoeur et al., 2019; also observed
in the present dataset). Considering this, a challenging
question arises as to howmuch feedback adaptation con-
tributes to trial-by-trial learning, and how these two puta-
tive processes are implemented in neural circuits.
Our reasoning was based on the theory of adaptive

control. The basic premise of this theory is that the con-
troller adjusts the parameters of the state-feedback con-
trol loop in real time. In principle, there is no lower bound
on the time scale of this mechanism, but the instantane-
ous learning rate should not be too large to prevent insta-
bility (Bitmead et al., 1990). The reduction in target
overshoot for the orthogonal field (data from experiment
1) without impacting the maximum lateral hand deviation
was previously explained in this context (Crevecoeur et
al., 2020). The ability to adapt feedback responses to two
different randomly applied force fields was also a predic-
tion of this model: if parameters can be tracked online, it
does not matter which force field is applied (curl or or-
thogonal), since sensory feedback of each specific trial
can be used to produce a response adapted to the on-
going perturbation.
Another candidate mechanism to counter unexpected

disturbances is the use of co-contraction to modulate the
limb’s intrinsic properties (Hogan, 1984; Burdet et al.,
2001; Franklin et al., 2008), and the feedback gains in a
non-specific way (Crevecoeur et al., 2019; Bian et al.,
2020). Such a strategy was previously demonstrated to
influence feedback control gains across a few trials,
which also limits the extent of lateral displacement follow-
ing disturbances. However, our current dataset requires
another explanation because the perturbations were ap-
plied randomly, and there was no co-contraction ob-
served on average. Furthermore, an increase in EMG
activity expected if a strategy based on co-contraction
was used, whereas we documented a decrease in pertur-
bation-related response across the two experiments (as
shown in Figs. 2A,B, 6A,B,E,F). The absence of a system-
atic increase in baseline coactivation questioned the pos-
sibility that a default increase in intrinsic limb impedance
or control gains was responsible for the adjustments of
control.
Contrary to an increase in limb mechanical impedance,

our data showed that the change in feedback correction
was instead associated with a reduction in muscle activ-
ity, raising the question whether this change was based
on knowledge of the force field, or whether it was applied
in a non-specific manner. One should recall that the for-
ward velocity was relatively constant by design, and we
did not measure any systematic change in interaction
force applied to the handle until the peak in this variable.
Thus, the reduction in control gain was not a default
mechanism either, as it was observed only after some

time within the trial. In our view, it is difficult to imagine a
precisely timed modulation in control gains unrelated to
adaptation (albeit not feedforward adaptation), since the
function of this mechanism, that is, to improve control,
and one of its behavioral signatures (changes in correla-
tions) were the same across random and predictable
contexts.
Online tracking of model parameters is a candidate

model to explain the change in control occurring within a
movement. Indeed, movements were straight on average
and force field trials were often separated by several
baseline trials. Thus, participants initiated the reaching
movements with a controller corresponding to a baseline
trial (i.e., without force field), which would, in this case,
produce a straight reach path (Fig. 1, black traces). Then,
during perturbations, they changed their control to pro-
duce feedback responses that became adapted to the
force field. This transition between a baseline controller
and a controller adjusted to each force field, along with
the observation that each feedback response was better
adapted without practicing in a predictable context, con-
stituted strong evidence for adaptive control in the motor
system.
How much the controller changed within perturbation

trials, or between two trials remains a matter of debate.
On the one hand, our previous study provided an upper
bound of ;500 ms within which after-effects could be
evoked (Crevecoeur et al., 2020). Our current measure-
ments based on EMG indicated that the change in feed-
back responses, likely based on the same mechanism,
occurred within 250ms. This time window leaves enough
room for adjustments of the controller to each force field
within the movement. However, it is clear that changes in
movement representation also occurred offline, between
two trials or over longer timescales (Krakauer and
Shadmehr, 2006; Smith et al., 2006; Kording et al., 2007;
Dayan and Cohen, 2011).
Further investigations are required to better character-

ize the components of adaptive control. For instance, our
experiments did not allow teasing apart how much vision
and somatosensory feedback contributed to feedback
adaptation, as the cursor was visible all the time.
However, a strong contribution of proprioception is ex-
pected: first, this system could produce detailed re-
sponses to the smallest perturbations with long-latency
delays (50–60 ms; Crevecoeur et al., 2012), which almost
certainly contributed to the early changes in EMG data of
experiment 2 evoked by very small differences across or-
thogonal and curl force fields. Furthermore, previous work
highlighted that long-latency feedback engaged motor re-
sponses that are well captured in a state-feedback control
model (Crevecoeur and Kurtzer, 2018). This rapid state-
feedback control loop is supported by a distributed net-
work through primary sensory and motor cortices, pre-
motor cortex, parietal regions, and cerebellum (Flament et
al., 1984; Omrani et al., 2016). Hence, the fastest adjust-
ments to state feedback control could be achieved by
tuning the long-latency feedback loop.
Besides the potential contribution of muscle afferent

feedback, the fact that changes in feedback responses
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were detected within 250ms leaves enough time to en-
gage task-related feedback responses mediated by touch
(Pruszynski et al., 2016; Crevecoeur et al., 2017), and vi-
sion, which participates in goal-directed feedback control
(Franklin and Wolpert, 2008; Scott, 2016), as well as in
rapid changes in navigation strategies (Cross et al., 2019).
Characterizing the specific contribution of each sensory
system constitutes an exciting challenge for future work.
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