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Abstract

Background: Pooling cells from multiple biological samples prior to library preparation within the same single-cell RNA
sequencing experiment provides several advantages, including lower library preparation costs and reduced unwanted
technological variation, such as batch effects. Computational demultiplexing tools based on natural genetic variation
between individuals provide a simple approach to demultiplex samples, which does not require complex additional
experimental procedures. However, to our knowledge these tools have not been evaluated in cancer, where somatic
variants, which could differ between cells from the same sample, may obscure the signal in natural genetic variation.
Results: Here, we performed in silico benchmark evaluations by combining raw sequencing reads from multiple single-cell
samples in high-grade serous ovarian cancer, which has a high copy number burden, and lung adenocarcinoma, which has
a high tumor mutational burden. Our results confirm that genetic demultiplexing tools can be effectively deployed on
cancer tissue using a pooled experimental design, although high proportions of ambient RNA from cell debris reduce
performance. Conclusions: This strategy provides significant cost savings through pooled library preparation. To facilitate
similar analyses at the experimental design phase, we provide freely accessible code and a reproducible Snakemake
workflow built around the best-performing tools found in our in silico benchmark evaluations, available at
https://github.com/lmweber/snp-dmx-cancer.
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Introduction

Sample pooling prior to library preparation is an effective strat-
egy for experimental design in single-cell RNA sequencing
(scRNA-seq) studies, which allows researchers to assess and ad-
dress unwanted technological variation such as batch effects [1,
2] and reduces library preparation costs [3–5]. Several strategies
involve pooling cells, labeled or otherwise identifiable in some
way, from multiple biological samples, followed by combined li-
brary preparation and sequencing, and computational demul-
tiplexing to recover the sample identities of each cell. While
sample pooling creates doublets consisting of cells from mul-
tiple individuals, with the doublet rate depending on the con-
centration of loaded cells [5], demultiplexing approaches can
also identify doublets at the demultiplexing step without relying
on downstream doublet identification tools [6–10]. Depending
on the method used, these techniques can also avoid the phe-
nomenon of sample index swapping, which occurs when indi-
vidually prepared libraries are subsequently pooled for sequenc-
ing [11–15].

Existing demultiplexing approaches differ in their experi-
mental procedures, computational methodology for demulti-
plexing, and demultiplexing accuracy. In barcoding-based ap-
proaches (e.g., MULTI-seq [16] and cell hashing [17], and GMM-
Demux for doublet identification [18]), cells are experimentally
tagged with universal oligonucleotides or antibodies together
with sample-specific labels, which can give highly accurate de-
multiplexing performance. However, these approaches make
sample preparation more complex and increase costs due to
reagent purchases as well as additional library preparation and
sequencing. Alternatively, genetic variation–based approaches
rely only on natural genetic variation between samples from
different individuals (such as single-nucleotide polymorphisms
[SNPs]), which does not require additional experimental proce-
dures at the single-cell level. Initial genetic variation–based de-
multiplexing methods, such as demuxlet [5], require a known
genotype reference for each sample obtained using SNP arrays,
whole-exome sequencing, or bulk RNA sequencing. Recently,
new methods have been developed, such as Vireo [3], scSplit [4],
souporcell [19], and freemuxlet [20], which can use probabilistic
models to infer the genotype directly from the single-cell reads.
Note that without an external genotype reference, these meth-
ods can demultiplex cells into individual samples but cannot
assign cells to specific donors because the donor identities of
the inferred genotypes are arbitrary. Depending on the method,
there is also the option to improve performance by providing ei-
ther external sample-specific genotypes, such as from matched
bulk RNA sequencing, or a list of population SNPs, such as from
the 1000 Genomes Project [21] for human samples.

Recently, genetic variation–based scRNA-seq demultiplexing
tools have been applied to pooled samples from cancer cell lines
[22, 23], using known genotype references [5, 22] and pools con-
sisting of up to dozens of cell lines. However, to our knowledge,
systematic evaluations have not yet been performed in cancer
for methods that do not require a genotype reference [3, 4], and
using pooled samples from the same cancer type from differ-
ent individuals, which are likely to be more difficult to distin-
guish than cell lines from distinct cancer types. Cancer is char-
acterized by widespread additional somatic mutations, includ-
ing single-nucleotide variants (SNVs) [24], as well as structural
variation affecting the frequency of SNVs, which could interfere
with the SNP signal used to distinguish individuals in this appli-
cation of demultiplexing. The frequency of additional somatic
SNVs, known as the tumor mutational burden (TMB), can vary

widely between cancer types [25], as well as between patients
and cancer subtypes [26, 27]. However, the TMB is typically small
relative to the overall population SNP burden [24]. For example,
population SNPs with minor allele frequency >1% are thought
to occur on the order of once per 1,000 nucleotides on average,
or 1,000 SNPs per megabase [28]. By contrast, high-TMB cancers
have been defined as having roughly >10 or >20 additional mu-
tations (SNVs) per megabase [26, 27], which is ∼2 orders of mag-
nitude lower frequency than the population SNPs. In the case
of typical scRNA-seq protocols that sequence the 3′ end of tran-
scripts, only SNPs within the sequenced region (e.g., 100–200 nu-
cleotides) can be detected, but the same arguments can be ap-
plied to compare the proportion of cancer SNVs against back-
ground SNPs. Therefore, it seems reasonable to expect that the
natural genetic variation signal would not be severely obscured
by the TMB and that genetic variation–based demultiplexing
tools should still perform well for pooled tissue samples from
the same cancer type from different individuals. However, this
assumption has not been rigorously tested. Owing to the finite
and irreplaceable nature of tumor samples, we computation-
ally evaluated demultiplexing algorithms to confirm that genetic
variation–based demultiplexing performs adequately when ap-
plied to scRNA-seq pooling experimental designs in cancer, be-
fore committing samples to this experimental design strategy. In
addition, we were interested in evaluating the degree to which
these tools can reliably identify doublets consisting of cells from
multiple individuals, including in experimental designs with ex-
tremely high proportions of doublets. Reliable doublet identifi-
cation would allow the use of “super-loading” experimental de-
signs, such as loading cells at very high concentration and sub-
sequently removing identifiable doublets, providing substantial
cost savings during library preparation [5, 17, 29]. In the future,
these tools may also be well suited for cell atlas initiatives, which
are expected to cover large numbers of samples, including even-
tually those from cancer [30, 31].

Here, we performed a benchmark evaluation of genetic
variation–based demultiplexing in cancer scRNA-seq data using
in silico simulations constructed from experimental scRNA-seq
datasets with known sample identity for each cell. We evalu-
ated 2 demultiplexing algorithms (Vireo [3] and demuxlet [5])
and 5 strategies for selecting the genotype reference list of SNPs
used in the demultiplexing algorithms, including strategies that
do not require a matched genotype reference. We also included
varying proportions of simulated doublets by combining raw se-
quencing reads from multiple cell barcodes, which creates both
identifiable doublets (from different individuals) and unidentifi-
able doublets (from the same individual). In addition, we tested
performance for scenarios including a proportion of ambient
RNA from simulated debris or lysed cells, by computationally as-
signing all reads from a percentage of cells to other randomly se-
lected cells. In the benchmark evaluation, we considered scRNA-
seq samples from 2 cancers that are potentially difficult to char-
acterize: high-grade serous ovarian cancer (HGSOC) and lung
adenocarcinoma. HGSOC is characterized by loss of TP53 activ-
ity, and generally has medium to high SNV burden and high
copy number variation (CNV) burden (particularly for focal copy
number alterations), relative to other cancers [25, 32], while
lung adenocarcinoma is characterized by high SNV burden [25].
In addition, we compared against a baseline performance for
healthy cells from cell lines [19]. Our results demonstrate that
genetic variation–based demultiplexing provides high recall at
acceptable precision-recall tradeoffs in both high-CNV and high-
SNV cancer types, even with extremely high simulated doublet
proportions. However, high proportions of ambient RNA from
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Table 1: Number of scRNA-seq samples and number of cells per
sample for HGSOC and lung adenocarcinoma datasets

Sample ID No. of cells

HGSOC dataset
X2 7,123
X3 1,533
X4 6,546

Lung adenocarcinoma dataset [39]
T08 4,093
T09 4,267
T20 4,521
T25 4,428
T28 5,789
T31 7,069

Summary of number of samples and number of cells per sample for scRNA-seq
samples in HGSOC (GSE158937 and phs002262.v1.p1) and lung adenocarcinoma

[39] (EGAD00001005054) datasets. The numbers of cells per sample listed are
the numbers of cells provided by Cell Ranger [35] following sequencing read
alignment. The HGSOC dataset additionally includes matched bulk RNA-seq

samples for each sample. The lung adenocarcinoma dataset includes matched
bulk whole-exome sequencing samples (not used here) for each sample but
not matched bulk RNA-seq samples. Additional details for both datasets (as
well as the healthy non-cancer cell line dataset from [19]) are provided in

Supplementary Table S2.

debris can reduce performance. Our results demonstrate that
these tools support experimental designs that incorporate sam-
ple pooling. We provide a reproducible Snakemake [33] work-
flow based on the best-performing combination of tools for es-
timating a genotype reference list of SNPs and demultiplexing
samples identified in our benchmark, to facilitate experimental
design efforts. The Snakemake workflow is modular, allowing
users to substitute alternative tools. The workflow requires a set
of scRNA-seq pilot samples, access to a Linux computing cluster,
some familiarity with the Linux command line, and optionally
matched bulk RNA-seq samples (for the highest demultiplexing
performance and doublet identification). All code for the bench-
mark evaluation and Snakemake workflow is freely accessible
on GitHub [34].

Results
Genetic demultiplexing in HGSOC and lung
adenocarcinoma

We evaluated the performance of genetic demultiplexing algo-
rithms for scRNA-seq samples from HGSOC (high CNV) and lung
adenocarcinoma (high SNV) using a set of benchmark evalua-
tions and Snakemake [33] workflow built around freely available
tools including Cell Ranger [35], samtools [36], bcftools [37], Unix
string manipulation tools (sed and awk), cellSNP [38], and Vireo
[3] (Methods and Fig. 1). The HGSOC samples were collected at
the Huntsman Cancer Institute, and the lung adenocarcinoma
dataset is a published dataset [39]. Table 1 provides a summary
of the scRNA-seq cancer datasets. Additional details on data col-
lection and accessibility are provided in the Methods.

High precision and recall performance using genetic
demultiplexing

Using the HGSOC scRNA-seq and matched bulk RNA-seq data,
we found the highest recall (defined as the proportion of true
singlet cells for each sample that are identified as singlets and
assigned to the correct sample) and best precision-recall trade-

Figure 1: Schematic illustrating the steps in the Snakemake workflow. The work-
flow is designed to be modular, allowing users to substitute alternative tools.
The Snakemake workflow runs a complete analysis for 1 dataset (HGSOC) and

doublet simulation scenario (20% doublets). Our main benchmark evaluations
include a second dataset (lung adenocarcinoma) and additional doublet simu-
lation scenarios (30% doublets, no doublets). Additional and supplementary re-

sults include simulated proportions of ambient RNA from cell debris (10% and
20% debris), genotype references containing a subset of SNPs from an SNP array,
and a healthy (non-cancer) cell line dataset. The optional step to run genotyp-
ing tools (e.g., on matched bulk RNA-seq samples) improved performance in our

benchmark evaluations. Tools used in each step are shown in parentheses.

off (where precision is defined as the proportion of identified
cells for each sample that are true singlet cells from the correct
sample) when using bcftools [37] to generate a genotype refer-
ence list of SNPs from the matched bulk RNA-seq samples, to-
gether with cellSNP/Vireo [3, 38] for demultiplexing, in all sim-
ulation scenarios (no doublets, 20% doublets, or 30% doublets)
(Fig. 2A–C). This scenario (labeled “bulkBcftools cellSNPVireo”
and colored light blue in Fig. 2) achieves 99.0%, 99.9%, and 99.9%
recall (values averaged across 3 scRNA-seq samples). However,
in this scenario, the precision decreases (100%, 85.9%, and 77.4%)
(values averaged across 3 scRNA-seq samples) as the percentage
of doublets increases with no doublets, 20% doublets, and 30%
doublets (Fig. 2A–C), respectively.

In general, we prefer higher recall at the expense of some-
what lower precision, so that we do not lose true singlet cells
during the initial demultiplexing. If reduced precision is due
to additional doublets that have been misclassified as singlets,
these can potentially be identified and removed through down-
stream analyses, such as inspecting visualizations of unique
molecular identifier (UMI) counts or detected genes per cell, or
applying downstream doublet detection tools [6–10]. As an illus-
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Figure 2: Performance evaluations for benchmark scenarios, for HGSOC dataset (A–C) and lung adenocarcinoma dataset (D–F), across 3 proportions of simulated
doublets (no doublets, 20% doublets, and 30% doublets). Performance is evaluated in terms of precision (y-axis) and recall (x-axis) for recovering the sample identities

of true singlet cells from each scRNA-seq sample. Benchmark scenarios are labeled by color and with the naming scheme “genotypeMethod demultiplexingMethod.”
Samples within each dataset are identified with shapes. Note that y-axis limits (precision) for (A) and (D) differ from the other panels for improved visibility.

tration, we investigated the types of incorrect calls leading to re-
duced precision in our top-performing scenario (cellSNP/Vireo
with bulk RNA-seq reference) for the 30% doublets simulation
in the HGSOC dataset (Supplementary Table S3). This showed
that the doublet calls were relatively pure: of the cell barcodes
called as doublets by Vireo, 99.2% were true identifiable dou-
blets consisting of cells from distinct donors. Almost all the non-
identifiable doublets (consisting of 2 cells from the same donor,
which have the same germline SNPs) were assigned to the cor-
rect donor. By contrast, for demuxlet (HGSOC, 30% doublets, bulk
RNA-seq reference), only 31.9% of the cell barcodes identified
as doublets were true identifiable doublets (Supplementary Ta-
ble S4), suggesting that cellSNP/Vireo can more reliably identify
true doublets than demuxlet in these cancer samples (possi-
bly due to non-standard allele fractions in cancer). We also ap-
plied a downstream doublet detection tool (scDblFinder [40]) but
found that this did not perform well, returning large fractions
of false-positive and false-negative results in both HGSOC and
lung datasets (cellSNP/Vireo with bulk RNA-seq reference; 20%
and 30% doublet scenarios) (Supplementary Table S5), suggest-
ing that further analysis is required to reliably identify remain-
ing doublets in cancer samples.

In the comparisons with demuxlet, we found that using
bcftools [37] to generate a genotype reference list of SNPs from
the matched bulk RNA-seq samples together with demuxlet (la-
beled “bulkBcftools demuxlet” and colored green in Fig. 2) re-
sulted in somewhat higher precision (91.3%, 84.3%) with a large
reduction to recall (53.0%, 52.1%) in the 20% and 30% doublet sce-
narios, respectively (Fig. 2B and C). However, no further improve-
ment in precision was observed (99.9%) with a large reduction in
recall (52.8%) for the no doublets scenario (Fig. 2A).

In the scenarios where matched bulk RNA-seq samples are
not available, the next best-performing scenarios were obtained

using the genotype reference from the 1000 Genomes Project
[21] (provided by the authors of cellSNP/Vireo) with no filter-
ing of SNPs (“unfiltered”) and genotype reference from the
1000 Genomes Project filtered to retain only SNPs in the 3′ un-
translated region (UTR) (“filtered,” which speeds up runtime
for 3′-tag sequencing protocols), together with cellSNP/Vireo for
demultiplexing (labeled “1000GenomesUnfilt cellSNPVireo” and
“1000GenomesFilt cellSNPVireo” and colored in orange and pur-
ple, respectively) (Fig. 2A–C). The “unfiltered” scenario achieved
recall 97.9%, 99.0%, and 99.0% and precision 100%, 84.0%, and
74.5% with no doublets, 20% doublets, and 30% doublets, re-
spectively (Fig. 2A–C). Surprisingly, there is only a minor loss
in performance in the “filtered” scenario, which achieved re-
call 94.3%, 95.0%, and 95.3% and precision 100%, 83.7%, and
73.8%, respectively. Alternatively, when we evaluated the sce-
nario to call SNPs directly from the scRNA-seq samples and
use cellSNP/Vireo for demultiplexing (labeled “singlecellCell-
SNP cellSNPVireo” and colored in dark blue), we found compara-
ble recall (91.5%, 91.9%, and 92.1%) with a slight loss in precision
(99.7%, 82.3%, and 72.7%) as the percentage of doublets increases
with no doublets, 20% doublets, and 30% doublets, respectively
(Fig. 2A–C).

Using the high-TMB lung adenocarcinoma scRNA-seq (with-
out matched bulk RNA-seq) dataset, we only considered
the scenario using the genotype reference from the 1000
Genomes Project (filtered) together with cellSNP/Vireo (labeled
“1000GenomesFilt cellSNPVireo” and colored in purple in Fig. 2)
because this resulted in the highest precision and recall in the
HGSOC evaluation when using either the genotype reference
from 1000 Genomes Project or directly calling SNPs from the
scRNA-seq samples, while also keeping runtimes lower (details
in Fig. 4) than the 1000 Genomes (unfiltered) scenario. In this sce-
nario (labeled “1000GenomesFilt cellSNPVireo”), we found com-



Weber et al. 5

Figure 3: Performance evaluations for benchmark scenarios including ambient RNA from simulated cell debris. Top-performing and computationally efficient scenarios
for HGSOC dataset (A–C) and lung adenocarcinoma dataset (D–F), across 3 proportions of simulated doublets (no doublets, 20% doublets, 30% doublets), after introducing
ambient RNA from simulated cell debris by assigning all reads from 10% of final cell barcodes to other randomly selected cell barcodes. Performance is evaluated in
terms of precision (y-axis) and recall (x-axis) for recovering the sample identities of true singlet cells from each scRNA-seq sample. Benchmark scenarios are labeled

by color and with the naming scheme “genotypeMethod demultiplexingMethod.” Samples within each dataset are identified with shapes. Axis limits range from 0 to
1 for all panels.

Figure 4: Computational runtimes (in hours) of genetic demultiplexing workflow steps and genotyping tools. (A) Runtimes for steps in the complete Snakemake
workflow, for a single dataset (HGSOC) and doublet simulation scenario (20%). Parallelized tools (Cell Ranger and cellSNP; points indicated in dark red) were run using
10 processor cores, and all other tools using a single core (points indicated in orange), on a high-performance Linux computing cluster. For steps where samples were
processed individually, separate points are shown for each sample. (B) Runtimes for alternative options for running cellSNP in the workflow, depending on the choice

of genotype reference (1000 Genomes filtered, 1000 Genomes unfiltered, matched bulk RNA-seq using bcftools, matched bulk RNA-seq using cellSNP, and single-cell
RNA-seq using cellSNP). The cellSNP step in (A) matches the row “bulkBcftools cellSNP” in (B), which was the highest-performing scenario from Fig. 2. (C) Runtimes
for alternative options to generate genotype reference file. Horizontal axis scales differ between panels for improved visibility.

parable ranges of precision and recall values as for the matching
scenario in the HGSOC dataset (Fig. 2D–F). These results demon-
strate that we can also achieve excellent demultiplexing perfor-
mance even in a higher-TMB cancer setting.

Reduced recall performance due to ambient RNA from
simulated cell debris

Single-cell samples may contain proportions of ambient RNA
from cell debris and lysed cells, with increased proportions in
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complex or necrotic samples [41], such as in cancer. Because
SNPs from the ambient RNA may interfere with the set of SNPs
observed for each droplet (cell barcode), this may affect SNP-
based demultiplexing performance. To evaluate this effect in
cancer samples, we created additional simulations where either
10%, 20%, or 40% of final cell barcodes were assumed to repre-
sent debris or lysed cells, and assigned all sequencing reads from
these cells randomly to other cell barcodes (Fig. 3 and Supple-
mentary Figs S1 and S2). The range of debris proportions was
selected to be in the higher range of previously published re-
sults for non-cancer cell line data [19]. For these simulations, we
included the top-performing and computationally efficient sce-
narios from the main benchmark (cellSNP/Vireo with bulk RNA-
seq and 1000 Genomes filtered references), as well as demuxlet
for comparison (HGSOC dataset). These results showed a reduc-
tion in recall performance, although the reduction was smallest
for the top-performing scenario (“bulkBcftools cellSNPVireo,”
light blue). For the 10% debris simulations (Fig. 3), we observed
mean recall of 85.1%, 86.2%, and 86.7% across samples (no dou-
blets, 20% doublets, and 30% doublets scenarios) when using the
bulk RNA-seq reference, and 61.7%, 60.3%, and 60.8%, respec-
tively, when using the 1000 Genomes filtered reference, for the
HGSOC dataset. For the lung dataset, recall decreased to a mean
of 57.0%, 54.2%, and 59.4% across samples (no doublets, 20% dou-
blets, and 30% doublets) using the 1000 Genomes filtered ref-
erence. The performance of demuxlet decreased substantially,
with mean recall of 7.8%, 6.7%, and 6.4% across samples (no dou-
blets, 20% doublets, and 30% doublets) using the bulk RNA-seq
reference for the HGSOC dataset, suggesting that demuxlet is
more sensitive to ambient RNA than cellSNP/Vireo. Additional
results with higher proportions of simulated debris (20% or 40%
of final cell barcodes, Supplementary Figs S1 and S2) showed
greater reductions in recall performance. While precision per-
formance was also somewhat reduced compared to the main
results, the effect was much smaller than for recall (Fig. 3 and
Supplementary Figs S1 and S2). Overall, these results demon-
strate that ambient RNA reduces demultiplexing performance,
although the effect is minimized when using the top-performing
set of tools (“bulkBcftools cellSNPVireo,” i.e., cellSNP/Vireo with
a bulk RNA-seq reference, when this is available).

Performance remains high when using subset of SNPs
from SNP array

Because SNP arrays are often used for genotyping in cancer
studies, we were also interested in demultiplexing performance
when using SNPs from an SNP array instead of the bulk RNA-
seq or 1000 Genomes references used in the main results. To
test expected performance when using SNP arrays, we generated
additional simulations using a subset of SNPs from a common
SNP array that also overlapped with our other genotype refer-
ences. We selected the Infinium Multi-Ethnic Global-8 v1.0 array
from the Multi-Ethnic Genotyping Array (MEGA) consortium and
calculated the overlapping sets of SNPs from this array with ei-
ther the 1000 Genomes filtered (“1000GenomesFiltMEGA”), 1000
Genomes unfiltered (“1000GenomesUnfiltMEGA”), or bulk RNA-
seq (“bulkBcftoolsMEGA”) reference (for the HGSOC dataset).
This left either 16.5% of the 84,853 filtered 1000 Genomes SNPs,
8.6% of the 7,414,539 unfiltered 1000 Genomes SNPs, or 7.6%
of the 605,367 bulk RNA-seq SNPs, or alternatively (compared
to the array) 0.8%, 36.8%, or 2.6% of the original 1,733,345 ar-
ray SNPs, respectively (see Supplementary Table S1 for a sum-
mary of the overlapping set sizes). Despite the large reduction in
number of SNPs used for demultiplexing, performance for cell-

SNP/Vireo remained remarkably high, with almost no reduction
in recall or precision performance in the top-performing sce-
nario when using the overlapping SNPs from the bulk RNA-seq
reference (“bulkBcftoolsMEGA”) for the HGSOC dataset (mean re-
call across samples 96.9%, 98,7%, and 99.0%, and mean preci-
sion across samples 100%, 86.3%, and 77.7%, with no doublets,
20% doublets, and 30% doublets, respectively). When using the
1000 Genomes filtered or 1000 Genomes unfiltered references
(“1000GenomesFiltMEGA” or “1000GenomesUnfiltMEGA”), there
was a somewhat larger reduction in recall. By contrast, the per-
formance of demuxlet was substantially lower, suggesting that
demuxlet is more sensitive to the set of SNPs used for demulti-
plexing (Supplementary Fig. S3). Because the set of SNPs used in
the top-performing scenario (“bulkBcftoolsMEGA cellSNPVireo”)
is much smaller than the full set of SNPs from the array and per-
formance is only slightly reduced, these results suggest that de-
multiplexing performance with cellSNP/Vireo is likely to remain
high when using the full array.

High performance in baseline comparison for
non-cancer cell lines

As a baseline comparison for healthy (non-cancer) data, we
evaluated performance in a dataset consisting of 5 samples
of induced pluripotent stem cell (iPSC) cell lines from the Hu-
man iPSC Initiative (HipSci), which was previously published by
Heaton et al. [19]. This dataset contained a mean of ∼9,000 cells
per sample, with relatively high UMI counts per cell (Supple-
mentary Table S2). We generated simulation scenarios contain-
ing no doublets, 20% doublets, and 30% doublets and evaluated
demultiplexing performance using cellSNP/Vireo with the 1000
Genomes 3′ UTRs filtered genotype reference. We observed sim-
ilar demultiplexing performance in terms of precision and recall
as in the main results for the corresponding scenarios (Supple-
mentary Fig. S4). These results provide a baseline comparison
confirming that these demultiplexing tools perform well in non-
cancer data, which is consistent with previous published results
[3, 19], as well as a confirmation that our simulation framework
can be successfully applied in both cancer and non-cancer set-
tings.

Computational runtime of genetic demultiplexing
workflow steps and genotyping tools

We evaluated the computational runtimes for the various com-
ponents in our benchmark scenarios and Snakemake work-
flow using the HGSOC data. First, we found that the computa-
tional runtimes for the various steps in the genetic demultiplex-
ing workflow vary across multiple orders of magnitude and de-
pended on whether the tool could be parallelized. The paralleliz-
able tools (Cell Ranger and cellSNP) were run using 10 processor
cores to decrease runtime, while the remaining tools used a sin-
gle core. All evaluations of runtimes were performed on a high-
performance Linux computing cluster. In the Snakemake work-
flow (Fig. 4A), the slowest steps were running Cell Ranger (∼6
hours per sample using 10 cores) and parsing the merged BAM
file containing aligned reads to combine cell barcodes into sim-
ulated doublets (∼1 day). For the cellSNP step in the workflow,
runtime depended on the choice of genotype reference list of
SNPs (Fig. 4B). In particular, filtering the genotype reference from
the 1000 Genomes Project [21] (provided by the authors of cell-
SNP/Vireo) to retain only SNPs in the 3′ UTRs reduced runtime
from ∼2.5 hours to <10 minutes (“1000GenomesUnfilt cellSNP”
vs “1000GenomesFilt cellSNP”) at the cost of only a small de-
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crease in performance (Fig. 2). The runtime shown for the cell-
SNP step in Fig. 4A corresponds to the highest-performing sce-
nario from Fig. 2 (“bulkBcftools cellSNP”).

We also evaluated computational runtimes for the genotyp-
ing tools used to generate the genotype reference lists of SNPs
from either the matched bulk RNA-seq samples or directly from
the scRNA-seq samples (Fig. 4C). Here, we found that by far the
slowest option was to use cellSNP to generate the genotype ref-
erence directly from the scRNA-seq samples (between 1 and 4.5
days per sample using 10 cores), while generating the geno-
type reference from the bulk RNA-seq samples took either ∼2
minutes per sample using cellSNP (10 cores) or ∼5 hours using
bcftools.

Discussion

Pooled single-cell experimental designs before library prepara-
tion together with genetic variation–based computational sam-
ple demultiplexing are a convenient and effective strategy for
reducing library preparation costs and potential batch effects
in scRNA-seq studies. Compared to barcoding-based approaches
such as MULTI-seq [16] and cell hashing [17], demultiplexing per-
formance may be lower depending on the quality of the geno-
type reference used; however, genetic variation–based meth-
ods provide significant advantages in terms of simpler sample
preparation and cost savings during library preparation. Here,
we performed an in silico benchmark evaluation based on real
scRNA-seq tumor tissue datasets to confirm that these tools can
be effectively applied to pooled cancer samples from different
individuals. We compared 2 demultiplexing tools (Vireo [3] and
demuxlet [5]) and 5 genotype references. We selected HGSOC
and lung adenocarcinoma, 2 cancer types characterized by a rel-
atively high TMB. Previous benchmark evaluations [3, 4, 19] have
only evaluated these tools in non-cancer datasets, which are not
affected by additional mutational SNV burden that could po-
tentially obscure the natural genetic variation SNP signal used
to distinguish individuals, while previous evaluations in cancer
[22, 23] have relied on matched genotype references and focused
on cancer cell lines, which are likely to be easier to distinguish
than samples of the same cancer type from different individ-
uals. Our benchmark evaluations include high proportions of
simulated doublets (up to 30%), confirming that these tools can
be used to identify singlet cells in “super-loading” experimental
designs to achieve considerable cost savings in library prepara-
tion [5, 17, 29]. Additional analyses showed that performance re-
mained high when using subsets of SNPs from an SNP array for
the genotype reference, as well as in a baseline comparison us-
ing a healthy (non-cancer) cell line dataset [19]. However, intro-
ducing proportions of ambient RNA from simulated cell debris
or lysed cells reduced performance in terms of recall, although
this effect was minimized when using the matched bulk RNA-
seq genotype reference. This suggests that, in cancer samples
with significant proportions of ambient RNA, e.g., from cell de-
bris due to necrosis, it may be important to consider applying
experimental techniques such as straining to remove cell debris.
As an illustration of expected cost savings due to lower library
preparation costs in a multiplexed experimental design, we esti-
mated library preparation and sequencing costs for designs with
4–8 samples, using the “Cost Per Cell” online calculator provided
by the Satija Lab [29] (Supplementary Fig. S4). We assumed 4,000
desired cells per sample after demultiplexing, i.e., after discard-
ing identifiable doublets consisting of cells from multiple sam-
ples, but including the smaller number of non-identifiable dou-

blets (multiple cells from the same sample, which have the same
SNP profiles and cannot be distinguished using genetic demul-
tiplexing). These designs result in cost savings of ∼60% of the
estimated cost for the experiment when using full multiplexing
(all samples prepared as a single library and sequenced together)
compared with no multiplexing (Supplementary Fig. S4).

In our HGSOC dataset, we achieved the best demultiplex-
ing performance (and relatively efficient runtimes) when using
matched bulk RNA-seq samples to generate a genotype refer-
ence list of SNPs using bcftools [37], together with cellSNP/Vireo
[3, 38] for demultiplexing. However, using a standard list of pop-
ulation SNPs from the 1000 Genomes Project [21] (which does
not require matched bulk RNA-seq samples) provided by the
authors of cellSNP/Vireo also achieved good performance. In
this case, filtering the population SNPs to retain only SNPs in
the 3′ UTRs significantly reduced runtime, at the cost of only
slightly lower demultiplexing performance. For the lung adeno-
carcinoma dataset, performance was comparable to the match-
ing scenario in the HGSOC dataset, confirming that performance
was not seriously affected by the higher TMB and that genetic
demultiplexing can be effectively applied in this setting. Because
most other cancer types have lower TMB [25], we expect these
results to apply to most cancer types. We provide a freely avail-
able, modular Snakemake [33] workflow implementing the best-
performing scenario from our benchmark, built around cell-
SNP/Vireo [3, 38] and other freely accessible tools, as well as
additional R and shell scripts to reproduce all analyses in our
benchmark evaluations and additional analyses [34], to allow
other researchers to perform similar analyses for experimental
design, planning, and budgeting purposes in their own datasets.

Our study has several limitations. While the best-performing
benchmark scenario achieves excellent recall, precision is some-
what lower. While most doublet calls from cellSNP/Vireo in this
scenario were true identifiable doublets, additional true identifi-
able doublets were incorrectly called as singlets, reducing preci-
sion for each demultiplexed sample. Although downstream dou-
blet detection tools [6–10] could be applied to remove any re-
maining doublets, we found that this did not perform well in an
initial analysis. Further work could consider a systematic eval-
uation of downstream doublet detection tools in the context of
cancer, to complement previous results in non-cancer data [42].
In this study, we have built our Snakemake workflow around
the best-performing tools (cellSNP/Vireo [3, 38] for demultiplex-
ing and using matched bulk RNA-seq samples for genotyping)
and compared against demuxlet [5] and baseline scenarios (no
doublets), but we have not performed a comprehensive bench-
mark evaluation of all available tools, such as additional tools for
demultiplexing (e.g., scSplit [4], souporcell [19], and freemuxlet
[20]). However, we have implemented the Snakemake workflow
to be modular so that other users can substitute alternative tools
if they prefer. We also investigated the use of salmon alevin [43]
for pseudoalignment of scRNA-seq reads (instead of Cell Ranger)
but found that this was not compatible with the demultiplexing
tools because pseudoalignment occurs at the transcriptomic in-
stead of genomic level. However, future developments may en-
able conversion between transcriptomic and genomic aligned
reads, and we have included alternative code scripts for salmon
alevin within our code repository. Our evaluations considered
only 2 tumor types (HGSOC and lung adenocarcinoma), and per-
formance may differ for other cancer types or tissues. However,
since we were able to demonstrate good performance in lung
adenocarcinoma, one of the highest TMB cancers, we anticipate
that these results will also be applicable for other cancer types,
which will generally have lower TMB. For the lung adenocar-
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cinoma dataset, matched bulk whole-exome sequencing data
were also available for these 6 samples, which could be used to
further improve performance using additional genotyping tools.
Future work could also consider generating additional experi-
mental data to further benchmark these tools, instead of relying
on in silico evaluations, although in this case it may be difficult
to generate a reliable ground truth.

More fundamentally, due to the reliance on genetically dis-
tinct SNP profiles, genetic demultiplexing tools work well for
human samples from unrelated individuals, but performance
is expected to decrease for genetically similar samples such as
hereditary related human populations [19] or inbred mice, and
these methods are not applicable to samples from the same
individual [3]. Without a sample-specific genotype reference,
it is also not possible to assign cells to specific donors, since
the donor identities of inferred genotypes are arbitrary. Simi-
larly, genetic demultiplexing does not allow the identification of
doublets consisting of cells from the same individual, although
these are only a subset of total doublets, and they decrease as
a proportion of total doublets with increasing number of mul-
tiplexed samples. We also have not considered the question of
identifying doublets consisting of distinct cell types (from either
the same or different individuals), which may be identified us-
ing downstream analysis tools. For some experiments, a use-
ful design strategy may also be to combine genetic-based and
barcoding-based multiplexing, e.g., multiple treatments on sam-
ples from the same individual. Our Snakemake workflow can be
used to demultiplex up to ∼12 pooled samples without a geno-
type reference (limited by the demultiplexing algorithm Vireo);
beyond this, the demultiplexing performance of the Vireo algo-
rithm has been shown to decrease [3]. For larger experiments, if
matched bulk RNA-seq samples are not available, multiple sam-
ple pools could be used, with demultiplexing done separately
for each pool [3]. Splitting an experiment across multiple pools
and demultiplexing within each pool also represents an oppor-
tunity to implement improved experimental designs to reduce
batch effects and confounding. Finally, the Snakemake workflow
is relatively computationally intensive and requires access to a
high-performance Linux computing cluster or server.

Methods
Benchmark evaluations and workflow

We begin by describing in detail our benchmark evaluation
framework, and we note that our additional Snakemake [33]
workflow is built around the combination of tools that resulted
in the best performance from the benchmark evaluation. Specif-
ically, the benchmark and workflow make use of several freely
available tools, including Cell Ranger [35], samtools [36], bcftools
[37], Unix string manipulation tools (sed and awk), cellSNP [38],
and Vireo [3]. The Snakemake workflow is designed to be modu-
lar, allowing other alternative or new tools to be substituted. All
code for the benchmark evaluation and Snakemake workflow is
freely available on GitHub [34].

In our benchmark evaluation, we considered 2 genetic de-
multiplexing algorithms: (i) Vireo [3] together with cellSNP [38],
and (ii) demuxlet [5] as an alternative genetic-based demulti-
plexing tool. We evaluated 5 scenarios for obtaining the geno-
type reference list of SNPs used in the demultiplexing algo-
rithm: (i) list of population SNPs from the 1000 Genomes Project
[21] provided by the authors of cellSNP/Vireo, (ii) list of popu-
lation SNPs from the 1000 Genomes Project with an additional
filtering step to retain only SNPs in the 3′ UTRs for faster run-

time (this strategy is appropriate for 3′-tag sequencing protocols
but could also be adapted for 5′-tag or full-transcript sequenc-
ing), (iii) sample genotyping from matched bulk RNA-seq sam-
ples using bcftools [37], (iv) sample genotyping from matched
bulk RNA-seq samples using cellSNP [38], and (v) sample geno-
typing from scRNA-seq samples using cellSNP [38]. Scenario (ii)
was used for both datasets (HGSOC and lung adenocarcinoma),
and the remaining scenarios were applied to the HGSOC dataset
only. Scenarios (iii) and (iv) require matched bulk RNA-seq sam-
ples, while scenarios (i) and (v) have slow runtimes. Specifically,
for the HGSOC dataset, we evaluated performance across several
combinations of methods for genotyping and demultiplexing
(labeled “genotypeMethod demultiplexingMethod” in Results).
For the lung adenocarcinoma dataset, we used the list of popu-
lation SNPs from the 1000 Genomes Project provided by the au-
thors of cellSNP/Vireo, filtered to retain only SNPs in the 3′ UTRs.

For the main benchmark evaluations, we used 2 cancer
datasets. The first dataset consists of 3 UMI-based scRNA-seq
HGSOC samples measured on the 10x Genomics platform [44],
obtained from separate, unrelated individuals at the Huntsman
Cancer Institute at the University of Utah. We also obtained
matched bulk RNA-seq samples from the same 3 individuals
for sample genotyping. The raw data are available by controlled
access via the Database of Genotypes and Phenotypes (dbGaP)
(phs002262.v1.p1), and processed gene count tables are available
from the Gene Expression Omnibus (GEO) (GSE158937). The sec-
ond dataset consists of 6 UMI-based scRNA-seq higher-TMB lung
adenocarcinoma samples measured on the 10x Genomics plat-
form, previously published by Kim et al. [39]. Raw data for all
samples in this study are available by controlled access from the
European Genome-phenome Archive (EGA) (EGAD00001005054).
For our study, we used 6 samples identified as having TMB
>25 mutations/Mb (see [39], Fig. 2D, and Methods). Table 1 and
Supplementary Table S2 provide a summary of the scRNA-seq
datasets.

Performance was evaluated in terms of precision and recall
for demultiplexing each scRNA-seq sample. We also recorded
computational runtime for each step in the workflow and bench-
mark scenarios. Recall is defined as the proportion of true sin-
glet cells for each sample that are identified as singlets and as-
signed to the correct sample. Precision is defined as the propor-
tion of identified cells for each sample that are true singlet cells
from the correct sample. Runtime was evaluated using the Unix
“date” command. We used R version 4.1 for random number gen-
eration and evaluation steps performed in R, and created figures
using ggplot2 [45].

For our benchmark evaluation, we developed 3 in silico simu-
lation scenarios for each dataset—containing either no doublets,
20% simulated doublets, or 30% simulated doublets. Doublets
were simulated by combining cell barcode labels from random
sets of 2 cells in the raw sequencing reads mapped using Cell
Ranger [35], so that either 20% or 30% of the final barcodes rep-
resent doublets. For example, starting with 15,202 original cells
in the HGSOC dataset, 3,508 randomly selected cells were com-
bined with 3,508 other cells to create simulated doublets, leaving
11,694 final cell barcodes, of which 3,508 (30%) represent dou-
blets. The 30% doublets scenario represents the upper end of
our planned strategy for a “super-loading” experimental design,
i.e., loading multiplexed cells at extremely high concentration
to reduce library preparation costs and subsequently removing
identifiable doublets [5, 17, 29]; the 20% doublets scenario repre-
sents an intermediate super-loading scenario; and the no dou-
blets scenario serves as a best-case baseline scenario to evaluate
performance of the demultiplexing tools.
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Ambient RNA from simulated cell debris

For the scenarios containing ambient RNA from simulated cell
debris or lysed cells, we selected a percentage of cell barcodes
(10%, 20%, or 40%) after doublet creation and assigned all se-
quencing reads from these cell barcodes to other randomly se-
lected cell barcodes, in each of the no doublets, 20% doublets,
and 30% doublets scenarios. The debris percentages (10%, 20%,
and 40%) were selected to be in the higher range of previously
published results for non-cancer data [19], since ambient RNA is
expected to be relatively abundant in complex or necrotic sam-
ples [41] such as cancer.

Subset of SNPs from SNP array

For the simulated SNP array analyses, we selected a widely used
SNP array (Infinium Multi-Ethnic Global-8 v1.0 array from the
MEGA Consortium) and calculated the overlapping sets of SNPs
between the total 1.7 million SNPs from the array and our exist-
ing genotype references (see Supplementary Table S1 for a sum-
mary of the overlapping set sizes). Then, we reran our bench-
mark evaluations using the subsets of SNPs from the overlaps
as the genotype references.

Healthy (non-cancer) cell line data

For a baseline comparison with healthy (non-cancer) data, we
combined sequencing reads from 5 samples of induced pluripo-
tent stem cell (iPSC) cell lines from the Human iPSC Initia-
tive (HipSci), which were previously published by Heaton et al.
[19], and added the same percentages of doublets (no doublets,
20% doublets, or 30% doublets) as in our main analyses. The
raw data are available from the European Nucleotide Archive
(ENA) (ERS2630502-ERS2630506). Compared to our cancer sam-
ples, these samples contained relatively higher numbers of cells
per sample, as well as higher UMI counts per cell (details are
provided in Supplementary Table S2).

Single-cell RNA sequencing of ovarian tumors

De-identified HGSOC samples were processed after cryopreser-
vation in liquid nitrogen where tissue chunks were stored in
RPMI medium with 10% fetal bovine serum and 10% DMSO. Sam-
ples were thawed and dissociated to single cells using the Mil-
tenyi Human Tumor Dissociation Kit and the GentleMACS disso-
ciator. Samples were incubated on the GentleMACS at 37◦C for
1 hour with the setting of 1,865 rounds per run. A 70-μm MACS
smart strainer was used to deplete cell doublets before loading
onto the 10x Genomics Chromium Controller. Library prepara-
tion was performed using the 10x Genomics 3′ Gene Expression
Library Prep v3 and libraries were sequenced on an Illumina No-
vaSeq instrument.

Availability of Source Code and Requirements

Project name: snp-dmx-cancer
Project home page: https://github.com/lmweber/snp-dmx-can
cer
Operating system: Linux
Programming language: Shell, R
Other requirements: High-performance computing cluster with
Sun Grid Engine scheduler
License: MIT

All code and scripts to reproduce the benchmark evaluations,
supplementary analyses, generate figures in the manuscript,
and run the Snakemake workflow are freely accessible from
GitHub [34]. An archival copy of our GitHub repository is avail-
able via the GigaScience database GigaDB [46]. All tools used
within the benchmark evaluations and workflow are freely
available, as described in the Methods. Software versions used
were Cell Ranger 4.0.0, bcftools 1.10.2-91-g365d117, demuxlet
3ab507c, cellsnp-lite 1.2.0, and Vireo 0.5.0.

Data Availability

Raw and processed sequencing data generated in this study
(HGSOC dataset) are available from the Database of Genotypes
and Phenotypes (dbGaP) (raw data consisting of FASTQ files, ac-
cession phs002262.v1.p1) and Gene Expression Omnibus (GEO)
(processed data files containing gene count tables, accession
GSE158937). The lung adenocarcinoma dataset was previously
published by Kim et al. [39] and is available from the Euro-
pean Genome-phenome Archive (EGA) (EGAD00001005054). The
healthy (non-cancer) iPSC cell line data were previously pub-
lished by Heaton et al. [19] and are available from the European
Nucleotide Archive (ENA) (ERS2630502-ERS2630506).

Additional Files

Supplementary Figure S1. Performance evaluations for bench-
mark scenarios including ambient RNA from simulated cell
debris. Top-performing and computationally efficient scenar-
ios for HGSOC dataset (A–C) and lung adenocarcinoma dataset
(D–F), across 3 proportions of simulated doublets (no dou-
blets, 20% doublets, 30% doublets), after introducing ambi-
ent RNA from simulated cell debris by assigning all reads
from 20% of final cell barcodes to other randomly selected
cell barcodes. Performance is evaluated in terms of preci-
sion (y-axis) and recall (x-axis) for recovering the sample
identities of true singlet cells from each scRNA-seq sample.
Benchmark scenarios are labeled by color and with the nam-
ing scheme “genotypeMethod demultiplexingMethod.” Sam-
ples within each dataset are identified with shapes. Axis limits
range from 0 to 1 for all panels.
Supplementary Figure S2. Performance evaluations for bench-
mark scenarios including ambient RNA from simulated cell
debris. Top-performing and computationally efficient scenar-
ios for HGSOC dataset (A–C) and lung adenocarcinoma dataset
(D–F), across 3 proportions of simulated doublets (no dou-
blets, 20% doublets, 30% doublets), after introducing ambi-
ent RNA from simulated cell debris by assigning all reads
from 40% of final cell barcodes to other randomly selected
cell barcodes. Note that unlike Fig. 3 and Supplementary Fig.
S1, demuxlet is not included for the HGSOC dataset, since
this tool did not successfully run with this higher proportion
of ambient RNA. Performance is evaluated in terms of pre-
cision (y-axis) and recall (x-axis) for recovering the sample
identities of true singlet cells from each scRNA-seq sample.
Benchmark scenarios are labeled by color and with the nam-
ing scheme “genotypeMethod demultiplexingMethod.” Sam-
ples within each dataset are identified with shapes. Axis limits
range from 0 to 1 for all panels.
Supplementary Figure S3. Performance evaluations for bench-
mark scenarios using subset of SNPs from SNP array as genotype
reference. Top-performing and computationally efficient scenar-
ios for HGSOC dataset (A–C) and lung adenocarcinoma dataset

https://github.com/lmweber/snp-dmx-cancer
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(D–F), across 3 proportions of simulated doublets (no doublets,
20% doublets, 30% doublets), when using a subset of SNPs from
an SNP array (Infinium Multi-Ethnic Global-8 v1.0 array from the
Multi-Ethnic Genotyping Array [MEGA] Consortium) overlapping
with either the 1000 Genomes Project filtered (“1000Genomes-
FiltMEGA”), 1000 Genomes Project unfiltered (“1000GenomesUn-
filtMEGA”), or bulk RNA-seq (“bulkBcftoolsMEGA”) reference as
the genotype reference for demultiplexing. Performance is eval-
uated in terms of precision (y-axis) and recall (x-axis) for recov-
ering the sample identities of true singlet cells from each scRNA-
seq sample. Benchmark scenarios are labeled by color and with
the naming scheme “genotypeMethod demultiplexingMethod.”
Samples within each dataset are identified with shapes. Axis
limits range from 0 to 1 for all panels.
Supplementary Figure S4. Performance evaluations for healthy
(non-cancer) cell line dataset. Top-performing and computa-
tionally efficient scenario from main results (“1000Genomes-
Filt cellSNPVireo”) for healthy (non-cancer) induced pluripotent
stem cell (iPSC) cell line dataset sourced from [19], consisting of
5 samples, across 3 proportions of simulated doublets (A–C) (no
doublets, 20% doublets, and 30% doublets). Performance is eval-
uated in terms of precision (y-axis) and recall (x-axis) for recov-
ering the sample identities of true singlet cells from each scRNA-
seq sample. Benchmark scenarios are labeled by color and with
the naming scheme “genotypeMethod demultiplexingMethod.”
Samples within each dataset are identified with shapes. Axis
limits differ between y-axis and x-axis for improved visibility
and are the same in all panels.
Supplementary Figure S5. Illustration of expected cost savings
from multiplexed experimental design prior to library prepara-
tion. The figure shows the total of estimated library preparation
and sequencing costs, with either no multiplexing or full multi-
plexing (all samples prepared as a single library and sequenced
together), for experiments with 4, 6, or 8 samples. The calcula-
tions assume 4,000 desired cells per sample after demultiplex-
ing, after discarding identifiable doublets consisting of cells from
multiple samples; library preparation costs of $2,000 per sample
or multiplexed set of samples; sequencing costs of $1,500 per 400
million reads with an additional 30% cost due to unaligned reads
and adapters; and ∼20,000 reads per cell. Calculations were per-
formed using the “Cost Per Cell” online calculator provided by
the Satija Lab [29].
Supplementary Table S1. Number and percentage of SNPs in
sets overlapping between the available genotype references
(bulk RNA-seq from 3 HGSOC samples, 1000 Genomes filtered
to 3′ UTRs, 1000 Genomes unfiltered, and MEGA SNP array). The
bulk RNA-seq and 1000 Genomes filtered references are used for
the main results.
Supplementary Table S2. Summary of HGSOC, lung adenocar-
cinoma [39], and healthy induced pluripotent stem cells (iPSC)
cell line [19] datasets. Number of cells per sample, median genes
detected per cell, and median unique molecular identifier (UMI)
counts per cell are shown for each dataset. Median genes de-
tected and median UMI counts per cell were higher for the
cell line dataset than for the HGSOC and lung adenocarcinoma
datasets.
Supplementary Table S3. Confusion matrix for singlet, dou-
blet, and unassigned calls for the top-performing scenario (cell-
SNP/Vireo with bulk RNA-seq genotype reference) for 30% dou-
blets scenario for HGSOC dataset (matching the precision-recall
values in the main results shown in Fig. 2C). Calls by Vireo
are shown in columns (singlets: donor0, donor1, donor2 in ar-
bitrary sample order; doublets; unassigned), and true labels
from the simulation are shown in rows (singlets: X2, X3, X4;

non-identifiable doublets from the same sample: X2-X2, X3-
X3, X4-X4; identifiable doublets: dbl-X2-X3, dbl-X2-X4, dbl-X3-
X4). Doublets consisting of 2 cells from the same sample are
non-identifiable because these cells contain the same germline
SNPs.
Supplementary Table S4. Confusion matrix for singlet, doublet,
and ambiguous calls for demuxlet (with bulk RNA-seq geno-
type reference) for 30% doublets scenario for HGSOC dataset
(matching the precision-recall values in the main results shown
in Fig. 2C). Calls by demuxlet are shown in columns (sin-
glets: X2, X3, X4; doublets; ambiguous), and true labels from
the simulation are shown in rows (singlets: X2, X3, X4; non-
identifiable doublets from the same sample: X2-X2, X3-X3, X4-
X4; identifiable doublets: dbl-X2-X3, dbl-X2-X4, dbl-X3-X4). Dou-
blets consisting of 2 cells from the same sample are non-
identifiable because these cells contain the same germline
SNPs.
Supplementary Table S5. Summary of doublets identified by ap-
plying a downstream doublet detection tool (scDblFinder) to de-
multiplexed cells after applying top-performing and computa-
tionally efficient demultiplexing tools (cellSNP/Vireo with bulk
RNA-seq reference for HGSOC dataset; cellSNP/Vireo with 1000
Genomes 3′ UTRs filtered reference for lung adenocarcinoma
dataset), for 20% and 30% doublets scenarios. scDblFinder was
run using default settings, and clusters representing doublets
identified using thresholds of 70 (HGSOC) and 10 (lung adeno-
carcinoma) differentially expressed genes per cluster based on
inspection of elbow plots. False-positive and false-negative dou-
blet calls are shown in bold font.
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