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According to the latest research, lncRNAs (long non-coding RNAs) play a broad

and important role in various biological processes by interacting with proteins.

However, identifying whether proteins interact with a specific lncRNA through biological

experimental methods is difficult, costly, and time-consuming. Thus, many bioinformatics

computational methods have been proposed to predict lncRNA-protein interactions.

In this paper, we proposed a novel approach called Long non-coding RNA-Protein

Interaction Prediction based on Improved Bipartite Network Recommender Algorithm

(LPI-IBNRA). In the proposed method, we implemented a two-round resource allocation

and eliminated the second-order correlations appropriately on the bipartite network.

Experimental results illustrate that LPI-IBNRA outperforms five previous methods, with

the AUC values of 0.8932 in leave-one-out cross validation (LOOCV) and 0.8819 ±
0.0052 in 10-fold cross validation, respectively. In addition, case studies on four lncRNAs

were carried out to show the predictive power of LPI-IBNRA.

Keywords: lncRNA, protein, interaction prediction, bipartite network, second-order correlation elimination

1. INTRODUCTION

LncRNA, a class of ncRNAs (non-coding RNAs) of more than 200 nucleotides, that do not encode
proteins, has gained increasing scientific interest in recent years (Jorge et al., 2012; Hajjari et al.,
2016). Only 2% of RNAs in the human transcriptome can encode proteins while others, called
ncRNAs, cannot. Note that most ncRNAs are lncRNAs. Compared to other ncRNAs, lncRNAs are
longer and have complex secondary or higher-order structures (Bonasio and Shiekhattar, 2014),
and their genes often have independent regulatory elements such as promoters and enhancers
(Ulitsky and Bartel, 2013). There is increasing evidence that lncRNAs are related to the regulation of
gene expression levels such as epigenetic regulation, transcriptional regulation, and multiple levels
of post-transcriptional regulation (Sarah and Jeff, 2013), but only a few functions and mechanisms
of lncRNA have been studied (Maarabouni et al., 2008; Lee et al., 2016). Moreover, interactions of
lncRNAs with other molecules also have become hot spots in oncology research over the past years.
The studies found that an important way for lncRNAs to function is by interacting with proteins
(Khalil and Rinn, 2011). LncRNAs play a broad and important regulatory role in various processes
such as tumorigenesis, cancer progression and metastasis by interacting with proteins. Thus, the
prediction and identification of lncRNA-protein interactions can further reveal lncRNA-related
functions and is beneficial for the study on the pathogenesis of complex diseases at the molecular
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level (Faghihi et al., 2008; Chen and Yan, 2013; Cui et al., 2013; Li
et al., 2013; Chen et al., 2016a,c, 2017b, 2018c).

Numerous biological experimental methods were exploited
to confirm protein-related RNAs (Ule et al., 2005; Galgano
and Gerber, 2011; Zambelli and Pavesi, 2015). However, such
experimental methods are laborious, time-consuming, and costly
(Huang et al., 2012). Recently, various computational methods
have been proposed to address the challenges in bioinformatics
(He et al., 2018a,b; Zou et al., 2018), such as lncRNA-protein
(Hu et al., 2017; Shen et al., 2019a,b), miRNA-disease (Chen and
Huang, 2017; Chen et al., 2018a,b,d,e,f; Jiang et al., 2018a,b; Xie
et al., 2018), drug-target (Chen et al., 2016b; Wang et al., 2017;
Wu et al., 2018) and microbe-disease associations predictions
(Chen et al., 2017a; Peng et al., 2018). The methods for inferring
lncRNA-protein associations can roughly be classified into two
types: the machine learning methods and the network-based
methods. The so-calledmachine learningmethods usually use the
biological features of lncRNAs and proteins, and then employ a
supervised classifier to identify whether proteins have potential
interactions with a specific lncRNA (Zhan et al., 2018). For
example, Bellucci et al. (2011) proposed to utilize secondary
structure, hydrogen bonding and van derWaals contributions for
feature integration, which has a beneficial effect for inferring the
binding propensity of protein and ncRNA. Protein and lncRNA
sequence information is utilized in Muppirala et al. (2011),
with the employment of a support vector machine (SVM) and
random forest (RF). Suresh et al. (2015) proposed an SVM-based
method named RPI-Pred, which uses high-order 3D structural
features and sequences of the lncRNA and protein. Hu et al.
(2018) developed a method called HLPI-Ensembl, adopting the
ensemble strategy based on extreme gradient boosting (XGB),
SVM and RF. However, the main drawback of these methods
is the insufficiency of negative samples of lncRNA-protein
interactions. The lack of negative samples may cause the unstable
performance of the supervised classifier. Moreover, selecting
appropriate features to predict lncRNA-protein interactions is
not an easy task.

Apart from the aforementioned methods, there are other
approaches for potential lncRNA-protein interaction prediction,
with the employment of network analysis algorithms. For
instance, Li et al. (2015) presented a method called LPIHN,
which constructs a heterogeneous network, and implements a
random walk with restart on the heterogeneous network. In
order to improve prediction performance, some recent network-
based methods use recommender algorithms to infer lncRNA-
protein interactions. For example, Ge et al. (2016) proposed a
method called LPBNI, which only uses known lncRNA-protein
interactions and implements the two-step propagation on a
bipartite network. Zhao et al. (2018b) introduced an approach
based on the bipartite network called LPI-BNPRA, which
infers lncRNA-protein interactions by constructing bias ratings
for lncRNAs and proteins, using agglomerative hierarchical
clustering. By implementing two-round resource allocation
on bipartite networks, these approaches achieved impressive
results. But predictive validity of these investigations remains
insufficient due to the existence of high-order correlations,
which might have a negative effect on the lncRNA-protein

interaction prediction. For example, the proteins directly
correlated by the same lncRNA, could also be indirectly
correlated by other media proteins, resulting in correlation
redundancy. Properly eliminating the redundancy induced by
the second-order correlation might further enhance the accuracy
of the prediction. This inspired us to develop an effective
network-based recommender algorithm for lncRNA-protein
interaction prediction.

Motivated by the effectiveness of high-order correlation
elimination in the study of Qiu et al. (2014), we propose a novel
method named LPI-IBNRA for inferring new lncRNA-protein
interactions. LPI-IBNRA uses known lncRNA-protein and
protein-protein interactions, and lncRNA expression similarity,
and then eliminates second-order correlations on the bipartite
network appropriately to enhance the prediction accuracy.
Compared with previous machine learning methods, our method
does not require negative samples. Compared with many existing
network-based methods (Ge et al., 2016; Zhao et al., 2018b), our
method yields comparable or even better results due to second-
order correlation elimination. Both 10-fold cross validation and
LOOCV were carried out to assess the prediction ability of
the proposed method. Experimental results illustrated that LPI-
IBNRA outperformed five other methods by achieving higher
AUC values. In addition, case studies on four lncRNAs further
demonstrated the predictive power of LPI-IBNRA. Therefore, we
conclude that LPI-IBNRA is feasible and effective for inferring
potential lncRNA-protein interactions.

2. MATERIALS AND METHODS

2.1. Human LncRNA-Protein Interactions
The known ncRNA-protein interaction dataset was downloaded
from the NPInter v2.0 database (Yuan et al., 2014). We limited
the organism to “Homo sapiens” and the type of ncRNAs to
“NONCODE”, in order to filter ncRNAs and their interacting
proteins. The lncRNAs were further filtered from these ncRNAs,
through a human lncRNA dataset from the NONCODE 4.0
database (Xie et al., 2014). We deleted duplicate interactions.
Considering the sample requirement of LOOCV, we removed
the lncRNAs and proteins that have only one interaction. We
then obtained 4796 distinct experimentally confirmed lncRNA-
protein interactions, containing 26 proteins and 1105 lncRNAs.
We denoted np as the number of known proteins, nl as
the number of known lncRNAs, and matrix I ∈ R

np∗nl

as the adjacency matrix of protein-lncRNA interactions. The
interaction between protein pi and lncRNA lj could be denoted
as follows:

I(pi, lj) =
{

1 if pi interacts with lj

0 otherwise.
(1)

2.2. Protein-Protein Interaction Score
Matrix and Similarity Matrix
Protein-protein interactions (PPI) were obtained from the
STRING 9.1 database (Franceschini et al., 2013), which included
weighted protein-protein interactions through co-expression
data, genomic context predictions, automated text mining,
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and high-throughput lab experiments. We then deleted the
redundant PPI data, and obtained 214 PPI data, and the
corresponding interaction scores based on the known lncRNA-
protein dataset. The symmetric matrix AP was denoted as an
interaction score matrix based on PPI data, where AP(pi, pj) is
the interaction score between proteins pi and pj. AP could then
be standardized as follows:

AP′(pi, pj) =
AP(pi, pj)

√

R(pi)R(pj)
, (2)

where R(pi) is the sum of the elements in i-row of AP.
Considering the hypothesis that similar proteins tend to

exhibit a similar interaction and non-interaction pattern with
lncRNAs (Zheng et al., 2017), we calculated the protein similarity
with the utilization of Gaussian kernel interaction profiles. We
denoted X(pi) as the ith row vector of matrix I, in which the
nonzero values occur at the indices where the corresponding
lncRNA have one interaction with a protein pi. Then the
similarity between proteins pi and pj based on Gaussian kernel
interaction profiles could be calculated as follows:

KP(pi, pj) = exp(−βp

∥

∥X(pi)− X(pj)
∥

∥

2
), (3)

where the adjustment coefficient βp for the kernel bandwidth is
defined as follows:

βp = β ′
p/(

1

np

np
∑

i=1

∥

∥X(pi)
∥

∥

2
). (4)

2.3. LncRNA-LncRNA Similarity Matrix
LncRNA expression profiles were downloaded from the
NONCODE 4.0 database (Xie et al., 2014). After removing the
superfluous data, we obtained the expression profiles of 1,105
lncRNAs in 24 human tissues or cell types. Then the Pearson
correlation coefficient (PPC) was applied for the calculation
of lncRNA expression similarity between each pair of lncRNA
expression profiles (Wang et al., 2010; Ganegoda et al., 2013;
Tang et al., 2014). We denoted E(i) = {ei1, ei2, . . . , ei24} and
E(j) = {ej1, ej2, . . . , ej24} as the expression profiles of li and lj.
The expression similarity AL(li, lj) between lncRNAs li and lj was
calculated as follows:

AL(li, lj) =
∣

∣

∣

∣

∣

cov(E(i),E(j))

σE(i) × σE(j)

∣

∣

∣

∣

∣

, (5)

where AL(li, lj) denotes the absolute value of PCC between li and
lj, cov(E(i),E(j)) is the covariance between E(i) and E(j), σE(i) and
σE(j) are standard deviations of E(i) and E(j), respectively.

We denoted X(pi) as the ith column vector of matrix I,
in which the nonzero values occur at the indices where the
corresponding protein has one interaction with the lncRNA
li. Similar to the aforementioned protein case, the Gaussian
interaction profile kernel similarity for lncRNAs could be
computed as follows:

KL(li, lj) = exp(−βl

∥

∥X(li)− X(lj)
∥

∥

2
), (6)

where

βl = β ′
l/(

1

nl

nl
∑

i=1

∥

∥X(li)
∥

∥

2
). (7)

2.4. Integrated Similarity Matrix for
Proteins and LncRNAs
Note that the Gaussian interaction profile kernel similarity is
an association information-based measurement, which can be
utilized to complement protein-protein interactions and lncRNA
expression similarity. Motivated by the study of Chen (2015),
we constructed the integrated protein similarity matrix SimP and
integrated the lncRNA similarity matrix SimL as follows:

SimP(pi, pj) =
{

AP′(pi ,pj)+KP(pi ,pj)

2 if AP′(pi, pj) 6= 0

KP(pi, pj) otherwise,
(8)

SimL(li, lj) =
AL(li, lj)+ KL(li, lj)

2
. (9)

2.5. LPI-IBNRA
The flow chart of LPI-IBNRA is shown in Figure 1. At first, we
denoted SP ∈ R

np∗nl as the resource score matrix based on
protein similarity, SL ∈ R

np∗nl as the one based on lncRNA
similarity. These two matrices were computed as follows:

SP(pi, lj) =







∑np

k=1
SimP(pi ,pk)I(pk,lj)

∑np

k=1
SimP(pi ,pk)

if I(pi, lj) = 1

0 otherwise,
(10)

SL(pi, lj) =







∑nl
k=1 I(pi ,lk)Sim

L(lk,lj)
∑nl

k=1 Sim
L(lk,li)

if I(pi, lj) = 1

0 otherwise,
(11)

where SP(pi, lj) represents the score between protein pi and
lncRNA lj based on protein similarity, and SL(pi, lj) represents
the score between protein pi and lncRNA lj based on
lncRNA similarity.

Then the integrated resource score matrix was initialized as
the weighted sum of SP and SL as follows:

Sini = γ SP + (1− γ )SL, (12)

where parameter γ ∈ [0, 1] is a scalar controlling the relative
contributions of protein similarity and lncRNA similarity in Sini.
Following the general setting, we set the parameter γ = 0.5 in
this paper, making SP and SL equally weighted.

The final score matrix can be obtained by updating the Sini
column by column. In other words, the calculation process can be
partitioned into nl runs, each of which corresponds to a specific
lncRNA. Thus, at the beginning of the kth run, the score for
protein pi interacting with the given lncRNA lk can be initialized
as follows:

s0(pi) = Sini(pi, lk). (13)
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FIGURE 1 | The flowchart of LPI-IBNRA method.

Then the 1st-round of our allocationmodel is to allocate the score
of the lncRNA lk from the protein pi, which can be calculated as
follows:

s1(pi, lk) =
Sini(pi, lk)s0(pi)

d(pi)
, (14)

where d(pi) = ∑nl
x=1 Sini(pi, lx) is obtained by a summing

operation over all initial scores from lncRNAs interacting with
protein pi.

The score of lncRNA lk can be obtained by summing scores
over all proteins connected with lk:

s1(lk) =
np
∑

j=1

s1(pj, lk) =
np
∑

j=1

Sini(pj, lk)s0(pj)

d(pj)
. (15)

In the 2nd-round, resource scores were allocated in a similar
way as the first round. The score allocated from the lncRNA lk to

the protein pi was calculated as follows:

s2(pi, lk) =
Sini(pi, lk)s1(lk)

d(lk)
, (16)

where d(lk) =
∑np

y=1 Sini(py, lk) is the sum of initial scores from

all proteins interacting with lncRNA lk.
The score of protein pi was allocated from all lncRNAs that

interacted with pi as follows:

s2(pi) =
nl

∑

k=1

Sini(pi, lk)s1(lk)

d(lk)
=

nl
∑

k=1

Sini(pi, lk)

d(lk)

np
∑

j=1

Sini(pj, lk)s0(pj)

d(pj)
.

(17)

As described from Equation (13) to (17), we first initialized the
score of protein pi from the given lncRNA lk and then updated
it by a two-round resource allocation. An example is given in
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Figure 2. We defined Sfin ∈ R
np∗nl as the final resource score

matrix, which can be represented as follows:

Sfin(pi, lk) = s2(pi). (18)

S can also be computed in a vectorized form as:

ESfin = W ESini, (19)

where ESfin is a column vector of Sfin, ESini is a column vector of
Sini, and W ∈ R

np∗np is the weight matrix. Then Equation (17)
can also be represented as:

s2(pi) =
np
∑

j=1

W(pi, pj)s0(pj), (20)

where

W(pi, pj) =
1

d(pj)

nl
∑

k=1

Sini(pi, lk)Sini(pj, lk)

d(lk)
. (21)

In the lncRNA-protein interaction network, the proteins
interacting with the same lncRNA are considered to be directly

correlated, i.e., having the low-order correlation, while higher-
order correlations between these proteins might also arise from
indirect associations. Such high-order correlations might have
a negative effect on the lncRNA-protein interaction prediction.
Based on the studies of Zhou et al. (2009) and Liu et al. (2010),
we eliminated second-order correlations in an appropriate way
to further enhance the accuracy of the prediction:

W′ = W + αW2, (22)

where the parameter α ∈ (−1, 0). The final score matrix
for inferring potential lncRNA-protein interactions can then be
calculated as follows:

S′fin = W′Sini. (23)

After the calculations, we can recommend proteins to the given
lncRNA lk in descending order by the kth column of S′

fin
.

2.6. Performance Evaluation
We evaluated the classification performance of the proposed LPI-
IBNRA method by applying two types of classification schemes,
i.e., LOOCV and 10-fold cross validation. The performance

FIGURE 2 | The basic idea of LPI-IBNRA. First, two resource score matrices which are computed based on protein similarity and lncRNA similarity, respectively, are

combined to construct the initial integrated resource score network. Secondly, each protein gains its initial score from a specific lncRNA. Next, in two-round resource

allocation, the score is allocated from proteins to lncRNAs, and then propagated back to proteins. Finally, the weight matrix is optimized by second-order correlation

eliminations to obtain the final scores of proteins.
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of LPI-IBNRA was evaluated in terms of several widely-used
indicators, including precision (PRE), sensitivity (SEN), accuracy
(ACC), F1 score, and Matthews correlation coefficient (MCC),
expressed as follows:

PRE = TP

TP + FP
, (24)

SEN = TP

TP + FN
, (25)

ACC = TP + TN

TP + TN + FP + FN
, (26)

F1 Score = 2× TP

2× TP + FP + FN
= 2× PRE× SEN

PRE+ SEN
, (27)

MCC = (TP + TN)− (FP + FN)√
(TN + FN)× (TN + FP)× (TP + FN)× (TP + FP)

.

(28)

where TP, TN, FP, and FN count the number of true positives,
true negatives, false positives, and false negatives, respectively.

As a popular method for performance evaluation, the receiver
operating characteristic (ROC) curve was also utilized in our
experiments. The area under the ROC curve (AUC) = 1
indicates perfect performance, while AUC= 0.5 indicates random
performance. The precision-recall curve (PR curve) and the area
under the PR curve (AUPR) are also used to reduce the negative
influence of false positive data on the method performance.
The larger the AUC and AUPR is, the better performance the
evaluated method has.

3. RESULTS

3.1. Comparison With Other Methods
We used the aforementioned 4,796 known human lncRNA-
protein interactions to carry out the above-mentioned two cross
validation schemes. In each LOOCV trial, each known lncRNA-
protein interaction was used as a test sample while the rest
were used as training samples. To analyze the influence of
parameter α on the performance of LPI-IBNRA, we applied

FIGURE 3 | (A)The AUC values of LPI-IBNRA method with different values of α. (B) ROC curves of lncRNA-protein interaction predictions by all compared methods in

LOOCV. (C) Precision-recall curves of all compared methods. (D) ROC curves of lncRNA-protein interaction predictions by all compared methods in 10-fold cross

validation.
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LOOCV for the selection of parameter α. As shown in Figure 3A,
the performance of LPI-IBNRA drops a lot when α is smaller
than –0.70. When α is larger than –0.70, the performance of LPI-
IBNRA decreases slightly. Thus, the parameter α is set to –0.70
due to the optimal performance.

Five previous approaches were used for comparison in the
experiments, including collaborative filtering (CF), random walk
with restart (RWR), LPBNI, LPIHN, and LPI-BNPRA. LPBNI,
LPIHN, and LPI-BNPRA are network-based methods that infer
potential lncRNA-protein interactions, while CF and RWR have
been used as benchmark methods in Ge et al. (2016) and Wen
et al. (2017). RWR is often utilized as a powerful tool for network-
based methods to forecast association (Zhao et al., 2018a,c; Zhu
et al., 2018), while CF is a well-known recommender algorithm
which can infer the information from similar neighborhoods (Fu
et al., 2014; Zeng et al., 2017). In our experiments, RWR was
implemented to make predictions based on the protein-protein
similarity network, while a simple version of the CF algorithm
was adopted to calculate the prediction scores between lncRNAs
and proteins.

Here, we reproduced these methods on the same dataset
by ourselves. See Figures 3B,C and Table 1 for the results of
LOOCV. We can see from Figure 3B that our proposed method
achieved an AUC of 0.8932, which exhibited a considerable
improvement over the five previous methods (i.e., 12.81% for CF,
10.71% for RWR, 1.56% for LPBNI, 2.00% for LPIHN and 3.39%
for LPI-BNPRA). In addition, the comparison of these methods,
in terms of precision vs. recall, is presented in Figure 3C. It
can be seen that LPI-IBNRA almost achieved a higher precision
than the other methods at every recall value. Moreover, LPI-
IBNRA outperformed the other methods in terms of AUPR, PRE,
SEN, ACC, F1 score and MCC, which is presented in Table 1.
As shown in Figure 3D, in 10-fold cross validation, LPI-IBNRA
achieved an AUC of 0.8819 ± 0.0052 and was superior to the
comparison methods, including CF (0.7655 ± 0.0069), RWR
(0.7800 ± 0.0076), LPBNI (0.8695 ± 0.0047), LPIHN (0.8591 ±
0.0044), and LPI-BNPRA (0.8413± 0.0351).

The aforementioned results indicate that in both LOOCV and
10-fold cross evaluation, LPI-IBNRA outperforms other methods
in terms of the AUC values. The outstanding performance of

TABLE 1 | Performance evaluation of all compared methods in LOOCV in terms of several widely-used indicators.

Methods AUC AUPR PRE SEN ACC F1-score MCC

LPI-IBNRA 0.8932 0.7098 0.8778 0.3580 0.8845 0.5273 0.5152

CF 0.7651 0.5249 0.7941 0.1922 0.8568 0.3225 0.3452

RWR 0.7861 0.5500 0.8316 0.2460 0.8658 0.3949 0.4063

LPBNI 0.8776 0.6624 0.8526 0.2882 0.8729 0.4474 0.4496

LPIHN 0.8732 0.5892 0.7518 0.1522 0.8501 0.2642 0.2933

LPI-BNPRA 0.8593 0.6148 0.8200 0.2271 0.8627 0.3701 0.3855

TABLE 2 | The top five ranked proteins for lncRNA DLEU2, CRHR1-1T1, LRRC75A-AS1, and SNHG5.

LncRNA Protein Confirmed? Rank CF RWR LPBNI LPIHN LPI-BNPRA

DLEU2 ENSP00000290341 Confirmed 1 7 1 1 3 1

DLEU2 ENSP00000258729 Confirmed 2 17 2 2 1 6

DLEU2 ENSP00000381031 Confirmed 3 1 6 3 5 7

DLEU2 ENSP00000371634 Confirmed 4 16 3 6 2 8

DLEU2 ENSP00000254108 Confirmed 5 10 4 4 4 2

CRHR1-IT1 ENSP00000254108 Confirmed 1 11 4 3 2 2

CRHR1-IT1 ENSP00000240185 Confirmed 2 2 9 2 11 7

CRHR1-IT1 ENSP00000350028 Confirmed 3 1 10 8 12 10

CRHR1-IT1 ENSP00000381031 Confirmed 4 12 11 9 5 8

CRHR1-IT1 ENSP00000220592 Confirmed 5 5 1 4 10 6

LRRC75A-AS1 ENSP00000385269 Confirmed 1 6 1 1 1 1

LRRC75A-AS1 ENSP00000254108 Confirmed 2 7 2 2 2 2

LRRC75A-AS1 ENSP00000381031 Confirmed 3 8 4 3 6 3

LRRC75A-AS1 ENSP00000350028 Confirmed 4 9 6 7 12 9

LRRC75A-AS1 ENSP00000258962 Confirmed 5 1 10 5 16 5

SNHG5 ENSP00000290341 Confirmed 1 1 1 1 4 1

SNHG5 ENSP00000350028 Confirmed 2 2 10 4 6 3

SNHG5 ENSP00000240185 Confirmed 3 7 11 3 13 4

SNHG5 ENSP00000254108 4 3 2 2 1 2

SNHG5 ENSP00000381031 Confirmed 5 4 8 5 10 6
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LPI-IBNRA demonstrates its stable and satisfying abilities in
inferring potential lncRNA-protein interactions. The superior
performance of the proposed method could be attributed to
second-order correlation elimination, which is more suitable for
our task and can lead to better prediction performance.

3.2. Case Studies
In addition, four case studies have been carried out to further
evaluate the effectiveness of LPI-IBNRA. The interactions
in our benchmark dataset were obtained in NPInter v2.0
which was established in 2013. NPInter was then upgraded to
NPInter v3.0 in 2016 (Hao et al., 2016), which includes newly
discovered lncRNA-protein interactions. Thus, we predicted
novel lncRNA-protein interactions based on known interactions
in the benchmark dataset, then confirmed our predictions in
NPInter v3.0. For each lncRNA, the proteins ranked within
the top 5 were considered as potential proteins that interact
with the given lncRNA. Case studies were carried out on four
lncRNAs, including lncRNA DLEU2, CRHR1-1T1, LRRC75A-
AS1 and SNHG5.

Table 2 shows the prediction results and whether there were
confirmations for these lncRNAs. It indicates that five (DLEU2),
five (CRHR1-1T1), five (LRRC75A-AS1), and four (SNHG5)
out of the top five predicted lncRNA-interacted proteins, were
confirmed by NPInter v3.0. The rankings of these lncRNA-
protein interactions in other benchmark method predictions
are also listed in Table 2. It can be observed that several novel
interactions did not have high rankings in the predictions of other
methods, and these interactions are likely to be ignored by these
methods. Therefore, LPI-IBNRA has great potential to predict
new lncRNA-protein interactions.

4. DISCUSSION AND CONCLUSION

In this article, we proposed a novel method LPI-IBNRA for
predicting lncRNA-protein interactions, based on the known
lncRNA-protein interactions, lncRNA expression similarity
and protein-protein interactions. We integrated the known
interactions and similarity as the initial resource scores
for a two-round resource allocation of a bipartite network
recommendation. Furthermore, we optimized the weight
matrix by eliminating second-order correlations appropriately,
to obtain the final result of lncRNA-protein interaction

prediction. We finally acquired gratifying and reliable prediction
performance in LOOCV, 10-fold cross evaluation and case
studies. Thus, we believe that LPI-IBNRA can make reliable
predictions and might guide future experimental studies on
lncRNA-protein interactions.

LPI-IBNRA has the following improvements over several
previous methods in predicting lncRNA-protein interactions.
First, with the employment of the bipartite network
recommender algorithm, we utilized the known lncRNA-
protein interactions to construct a bipartite network between
lncRNAs and proteins, and then allocated the resource scores
via interaction edges between lncRNA nodes and protein
nodes. Therefore, the negative sample set is not required in
our methods. Second, we assigned weights to each edge on the
bipartite network, which is distinct from most former bipartite
network methods. Thus, the resource scores would not be evenly
distributed during the resource allocation process. Finally, we
eliminated second-order correlations on the bipartite network
appropriately, to enhance prediction accuracy.

Although impressive results have been achieved, there is still
much room for improvement in our method. At first, though
known lncRNA-protein interactions have been more than before,
it is still very difficult for the proposedmethod to obtain adequate
results based on the prediction. Moreover, as the resource
allocation of the bipartite network recommendation algorithm is
based on known lncRNA-protein interactions, LPI-IBNRA is not
suitable to predict interactions of lncRNAs without any known
interacted protein.
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