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Abstract

Background: Distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) regions in clinical
biopsies constitutes a diagnostic challenge. Spatial transcriptomics (ST) is an in situ capturing method, which allows
quantification and visualization of transcriptomes in individual tissue sections. In the past, studies have shown that
breast cancer samples can be used to study their transcriptomes with spatial resolution in individual tissue sections.
Previously, supervised machine learning methods were used in clinical studies to predict the clinical outcomes for
cancer types.

Methods: We used four publicly available ST breast cancer datasets from breast tissue sections annotated by
pathologists as non-malignant, DCIS, or IDC. We trained and tested a machine learning method (support vector
machine) based on the expert annotation as well as based on automatic selection of cell types by their
transcriptome profiles.

Results: We identified expression signatures for expert annotated regions (non-malignant, DCIS, and IDC) and build
machine learning models. Classification results for 798 expression signature transcripts showed high coincidence
with the expert pathologist annotation for DCIS (100%) and IDC (96%). Extending our analysis to include all 25,179
expressed transcripts resulted in an accuracy of 99% for DCIS and 98% for IDC. Further, classification based on an
automatically identified expression signature covering all ST spots of tissue sections resulted in prediction accuracy
of 95% for DCIS and 91% for IDC.

Conclusions: This concept study suggest that the ST signatures learned from expert selected breast cancer tissue
sections can be used to identify breast cancer regions in whole tissue sections including regions not trained on.
Furthermore, the identified expression signatures can classify cancer regions in tissue sections not used for training
with high accuracy. Expert-generated but even automatically generated cancer signatures from ST data might be
able to classify breast cancer regions and provide clinical decision support for pathologists in the future.
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Background
Breast cancer is the most common cancer and the high-
est incidence of all cancers in women with an incidence
rate of over 1.6 million cases per year [1, 2]. The mortal-
ity rate is high over 90% when cancer cells spread sys-
temically and colonize at distant organs from their
tumors of origin [3]. Identification of both intra- and

inter-tumor heterogeneity in breast cancer poses a
significant challenge due to its genomic evolution that
occurs during breast cancer progression. In depth
characterization of the molecular heterogeneity is
important to improve diagnosis, define prognostic
biomarkers and for designing therapeutic strategies
[4–6]. Understanding the cellular and molecular het-
erogeneity of tissue samples continues to be a chal-
lenge for high-throughput genomic technologies [7,
8]. Phenotypic markers are widely used to study cell
heterogeneity with methods such as flow cytometry or
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immunohistochemistry [9, 10]. Bulk transcriptome
analysis is used to study cell populations providing
average expression levels for genes across large cell
populations. However, these methods provide limited
information about heterogeneous systems, including
complex tissues consisting of various cell types or for
cell types that are rare in a tissue. The molecular
identities of diverse cells are lost during transcriptome
analysis of bulk samples. Single-cell sequencing
methods identify such subpopulations, which is im-
portant to study the intratumor heterogeneity that
fosters tumor evolution. These methods need segrega-
tion of cells that disrupt the spatial context of cells
from the tissue [11–16]. The physical location or co-
ordinates of cells are important to understand tissue
functionality and corresponding pathological changes.
In the past, several methods have been developed to
generate high-quality transcriptome maintaining the
spatial information of cell localization [17–19].
Spatial transcriptomics (ST) is an in situ capturing

technique, which uses a glass slide containing oligonu-
cleotides to capture mRNAs, while maintaing the spatial
information of histological tissue sections. Following
cDNA synthesis, the resulting barcoded cDNA libraries
are sequenced using standard RNA-seq technology [20].
Specific sequence barcodes allow to assign expression
data to the positions on the slide. The efficiency of the
method to capture transcriptomes from tissues with
maintained positional information has been shown in
several studies [21, 22]. In one of these studies, spatial
gene expression profiles from breast cancer tissues were
analyzed [20]. The role of the microenvironment in pro-
moting tumor growth has proven important. The tumor
microenvironment encompasses inflammatory cells,
extracellular matrix, blood vessels, and stromal cells
interacting with tumor cells for cancer growth and pro-
gression [23].
ST allows for a wide range of applications. The

transcriptome is measured for the whole tissue section
by sequencing that allows to compare different areas
within that tissue section [20, 21]. For example, intratu-
mor heterogeneity can be addressed by contrasting data
from ST spots within one tumor or between different
tumors [24]. Another application can be the identifica-
tion of cancer subtypes and the simultaneous
identification of the corresponding RNA biomarkers.
Furthermore, known reference data such as genomic
variation, for example SNPs from GWAS studies, can be
cross-referenced against RNA biomarkers with the po-
tential to assign possible functions for variants in poorly
annotated genomic regions. In this concept study, we
have applied computational machine learning algorithms
to four ST datasets to characterize cancer regions in
histological breast cancer tissue sections.

Methods
Data processing
For the study, we used four publicly available ST breast
cancer datasets [20].

Read alignment, annotation, and quantification
The ST sequencing results in paired-end reads. Read
one (R1) contains the spatial barcode and the unique
molecular identifier (UMI). Read two (R2) contains the
transcript sequence information. All the datasets were
processed using the ST Pipeline version 1.3.5 with de-
fault settings [20, 25]. The human genome hg38 and its
corresponding annotation file were used for mapping
and for assigning sequence reads to genes (annotation)
[25]. The general statistics for the breast cancer datasets
are shown in Additional file 1: Table S1.
The ST Pipeline generates a BED file containing the

sequence reads mapped to genomic positions together
with the spatial locations (the ST spots) of all the reads.
All the transcripts annotated to the gene Malat1 were
removed due to its overexpression and internal priming.
We developed an open-source computational pipeline
that uses the BED file to compute ST tag clusters (ST-
TCs) for all the ST spots. Based on the transcription
termination site (TTS) profiling, we computed TTS
regions (ST-TCs) by peak calling of the transcripts
genomic positions using the parametric clustering
method paraclu [26], which was widely used for similar
data in the FANTOM projects [26–28]. The ST-TC
peaks and their corresponding expressions were visual-
ized using the ZENBU interactive visualization tool [29].
The pipeline then computes the expression count matri-
ces for each dataset, where the rows represent the ST
spots (including X and Y coordinates on the ST slide)
and the columns represent the ST-TCs with their ex-
pression values [20, 25].
We developed a Python open-source tool for unsuper-

vised classification of ST spots based on the ST-TC
expression profiles using the sklearn framework [30].
Datasets were filtered removing spots and ST-TCs with
low expression (expressed in very few spots or very few
ST-TCs, respectively). Expression count matrices were
normalized with the size factors computed using
DESeq2 [31]. A pseudocount of 1 was added prior to
log2 transformation of the counts.

Unsupervised classification of ST spots based on ST-TC
expression patterns
Dimensionality reduction was performed using principal
component analysis (PCA). PCA is a dimensionality
reduction technique that simplifies the complexity in
high-dimensional data (such as gene expression data) by
transforming the data into fewer dimensions while
retaining important trends and patterns [32]. Further,
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ST spots with close proximity in the principal compo-
nent space were grouped into three groups (clustered
with Ward2 method) based on euclidean distance. The
clustered ST spots were plotted onto the hematoxylin
and eosin (H&E)-stained images with specific colors
representing the respective clusters. This grouping of the
ST spots by the PCA does not take advantage of any ex-
pert knowledge of the histology samples and is therefore
referred to as unsupervised classification.

Manual identification of cancer subtype-specific ST spots
We classified (annotated) ST spots based on the morph-
ology observed in H&E-stained histological tissue sec-
tions. The ST spots covering a minimum of 20 cells in
the tissue section were selected. We identified subtype-
specific ST-TCs (gene expression signatures) for non-
malignant, ductal carcinoma in situ (DCIS), or invasive
ductal carcinoma (IDC) regions (the three classes in ma-
chine learning terminology) using differential expression
analysis (DESeq2, log2 fold-change > 2, false discovery
rate < 0.01).

Supervised classification of ST spots with machine
learning
We used machine learning technique to learn expression
signatures (train a model) for non-malignant, DCIS, or
IDC regions. The regions were identified in two ways, by
supervised expert annotation of the H&E images and in-
dependently in an unsupervised way by PCA. The identi-
fied expression signatures were used to characterize ST
spots in ST experiments (testing of the model) which
were withheld during model training.
For this, we developed a Python open-source tool (see

references to tools) for supervised classification of ST
spots using a multi-class support vector machine with
the sklearn framework [30]. The tool requires one or
multiple datasets for training and one dataset for testing.
To assess the accuracy of the testing, the annotation of
the test dataset needs to be known (so called ground
truth) and provided as separate files. The training and
test datasets are pre-processed and normalized as de-
scribed in the unsupervised classification. The training
datasets together with the ST spot labels were used to
train a model using multi-class support vector machine
(MC-SVM) method [33]. We chose default values for
the hyper-parameters and used a linear kernel due to its
simplicity with three classes. The trained model was
then used to predict ST spot classes in the ST data (data
not used in the training model) withheld during model
training. The ST spots in the test dataset were plotted
back onto the H&E-stained tissue image. The result of
one test consists of associations of ST spots to classes.
This association is given in terms of probabilities for
each ST spot to each class. The probabilities might be

interpreted as how much a cell type was represented
in an ST spot in a mixed population of cells. The
performance of the test result can be assessed by
comparing to the known results using the F1-score,
which is calculated based on true positive (TP) and
true negative (TN) results. The F1-score ranges from
1.0 for perfect prediction to zero and can also be
expressed in percent.

Results
Spatial transcriptomics datasets and gene annotation
The spatial transcriptomics (ST) technology places histo-
logical tissue sections on ST glass slides composed of
1007 ST spots covering the slide. Following tissue
permeabilization, polyadenylated transcripts are cap-
tured on the slide and 3′ end sequencing libraries are
produced containing spatial barcodes, determining
where on the slide each transcript was captured [20].
Here, we developed a data processing and data analysis

workflow for ST data, which extends the previously
employed gene model centric expression analysis [20].
In brief, the 3’end sequencing reads were mapped to the
reference genome and grouped into ST tag clusters (ST-
TCs) using peak calling (Additional file 2: Figure S1)
(see also “Methods” for more details). The resulting ST-
TCs were annotated by associating them to nearby
genes. In this way, more than one ST-TC might corres-
pond to the same gene or an ST-TC might not be
associated to any gene at all corresponding to non-
annotated genomic regions. Data analysis was performed
based on the ST-TCs independent of any gene model.
The association of ST-TCs to genes was used for inter-
pretation of results.
From four publicly available ST datasets of breast

cancer tissue [20] processed together, we obtained a
total of 979 ST spots covering the tissue samples, which
corresponded to a total of 25,179 ST-TCs associated to
13,153 ENSEMBL genes. These ST-TCs corresponds to
protein coding genes or non-protein coding genes or
were not associated to any gene (non-annotated) (Add-
itional file 1: Table S2). A total of 9369 ST-TCs were as-
sociated to exactly one gene, 3784 genes to more than
one ST-TC, and 33 genes to 10 or more ST-TCs (Add-
itional file 1: Table S3).

Breast cancer expression signatures derived from expert
annotated tissue sections
Hematoxylin and eosin (H&E)-stained histological tissue
sections are routinely examined and classified by pathol-
ogists. We manually annotated the four breast cancer ST
experiments and selected a total of 194 ST spots consist-
ing of non-malignant regions, ductal carcinoma in situ
(DCIS) regions, and invasive ductal carcinoma (IDC)
regions (Fig. 1, Table 1A). These three regions are
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referred to as the classes. We conducted differential
expression analysis (log2 fold-change > 2, FDR < 0.01,
see “Methods”) to identify an expression signature of
ST-TCs specifically expressed in any of these abovemen-
tioned three regions/classes. We obtained a total of 798
ST-TCs corresponding to 678 protein coding genes (696
ST-TCs), 23 non-coding genes (23 ST-TCs), and 79
non-annotated ST-TCs. This expression signature
correctly classified 190 out of the 194 ST spots in the
four available ST datasets (Fig. 2a).
The differentially expressed transcripts can be

regarded as marker signature for the three classes and in
turn each class specifically expressed some of the marker
transcripts (Fig. 2b, Additional file 3: Figure S2). For
example, the analysis identified the non-coding gene
LINC00657 as upregulated in DCIS and IDC regions
compared to non-malignant regions (Fig. 2b). Several
studies have identified the oncogenic role of LINC00657
by knockdown experiments, which significantly sup-
pressed tumor cell growth and proliferation. The study
showed its role in genome stability by inactivating an
RNA binding protein that represses the stability and
translation of mRNAs to which they bind [34–37]. We
further performed gene ontology enrichment analysis of
the gene signatures (798 transcripts). The analysis
highlighted enrichment of gene sets for adherens junc-
tion (GO:0005912), cell-substrate junction (GO:
0030055), anchoring junction (GO:0070161), and focal
adhesion (GO:0005925) in all three analyses

(Additional file 4: Figure S3). Adhesion complexes in-
clude adherens junctions, tight junctions, and gap junc-
tions and are important for integration of signaling
cascades. Disruption of these complexes might lead to
impairment of normal tissue function and actuate patho-
physiological disorders [38, 39].

ST signature transfer of expert annotated breast cancer
sections using a support vector machine
Machine learning has been frequently used for cancer
prediction and prognosis. The method employs statis-
tical, probabilistic, and optimization techniques to learn
from known examples in order to recognize patterns in
large complex datasets. Application examples range from
general disease diagnosis to precision medicine [40] and
include various clinical studies where outcomes were
predicted for various cancer types and for cancer suscep-
tibility [8, 41–43].
We first trained a machine to learn expression signa-

tures based on ST-TC expression data for ST spots
manually annotated to the classes non-malignant, DCIS,
or IDC. For this, we used a multi-class (three classes)
support vector machine (MC-SVM) which performs
classification by constructing hyperplanes in a multidi-
mensional space. Our workflow for the four breast can-
cer ST datasets used three datasets to train the
machine (the machine generates a model) and the
fourth dataset was used for validating or testing the
model. This process of training on three datasets and

Fig. 1 ST spots selected from four breast cancer histological tissue sections. ST spots selected from four contiguous histological sections from the
same breast cancer samples with non-malignant (green), ductal carcinoma in situ (blue) and invasive ductal carcinoma (orange) regions

Table 1 The number of ST spots from breast cancer tissue samples obtained by (A) manual annotation by pathologists and (B)
automated annotation by PCA

(A) Number of manually selected Breast cancer ST spots (B) Number of automatically identified breast cancer ST spots

Datasets Non-malignant DCIS IDC Non-malignant DCIS IDC

1 20 21 20 133 34 75

2 20 18 17 152 36 53

3 15 17 10 165 24 63

4 13 10 13 147 34 63

Sum 68 66 60 597 128 254
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validating on the fourth dataset was conducted four
times in total and is often referred to as cross-
validation technique [44]. The prediction accuracy of
the model was assessed using the F1-score (see
“Methods”) from the manually classified ST spots ex-
cluded for training. ST spots with unclear identity
were not assigned to any class. The ST-TC expression
data from the three training datasets for the same
class were combined and then ST-TC expression sig-
natures were identified in two ways: (i) 798 breast
cancer signature ST-TCs differentially expressed be-
tween any of the three classes were used for model
training, or (ii) all 25,179 ST-TCs were used for
model training. The first signature can be regarded as
a minimum signature containing only the most rele-
vant ST-TCs for the signature.

Selected breast cancer expression signature
From the manually selected ST spots of the four breast
cancer datasets (Table 1A), we used 798 differentially
expressed breast cancer signature ST-TCs to train the
model. We selected 133 ST spots from the three breast
cancer datasets 2, 3, and 4 (48 non-malignant spots, 45
DCIS spots, 40 IDC spots) to train the model. The
model was then used to classify the ST spots of dataset 1

and to validate the accuracy of the prediction using the
F1-score. The MC-SVM model classified the selected ST
spots of the dataset 1 with an accuracy of 0.93, 1.00, and
0.92 for non-malignant, DCIS, and IDC spots, respect-
ively (Fig. 3a, Table 2A). Three non-malignant ST spots
were misclassified as IDC. We followed our workflow
and conducted the same training/ testing cross-
validation procedure for the remaining three datasets
(train on three, test on the remaining) and obtained F1-
scores in the range of 0.95–1.00 (Fig. 3a, Table 2A).

All expressed transcripts without selection
We further tested the performance of the MC-SVM
classifier for the same 133 ST spots without performing
prior differential expression analysis. Here, we used all
25,179 ST-TCs for model training of the selected ST
spots. The classifier identified ST spots in dataset 1 with
an accuracy of 0.95, 0.98, and 0.97 for non-malignant,
DCIS, and IDC spots, respectively (Fig. 3b, Table 2B).
One DCIS and one IDC ST spot were misclassified. For
the remaining datasets, the model classified the regions
with F1-scores in the range of 0.97–1.00 (Fig. 3b,
Table 2B). Compared to the model based on differen-
tially expressed ST-TCs, this model based on all ST-TCs
predicted the ST spots with slightly higher accuracy.

Fig. 2 a Hierarchical clustering based on breast cancer expression profiles of differentially expressed 798 ST-TCs. The three group includes non-
malignant, ductal carcinoma in situ and invasive ductal carcinoma regions. Columns are clustered by ST spots and rows are clustered by ST-TCs. b
Examples of differentially expressed tag clusters among three breast cancer regions are shown in a pirate plot. The Y-axis is represented in log2
normalized counts
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Unsupervised identification of breast cancer signatures
We then evaluated whether the annotation of ST spots
we performed manually could be performed by an un-
supervised procedure in which no expert knowledge is
provided and without selecting specific ST spots. For
this, we combined all ST spots of all four available ST
datasets (242, 241, 252, and 244 ST spots from datasets
1, 2, 3, and 4, respectively). We applied principal compo-
nent analysis (PCA) on the data matrix consisting of 25,
179 ST-TCs and 979 ST spots to place ST spots with
similar expression close to each other in a 2-dimensional

representation (the two first principal components) of
the 25,179 dimensional expression space (Fig. 4a). To
identify groups of ST spots in the PCA possibly corre-
sponding to the three classes, we performed hierarchical
clustering analysis (HCA) on the first two principal com-
ponents and were able to identify three distinct groups
of 979 ST spots (Table 1B, Fig. 4a) (see “Methods”).
Given a number of expected clusters (n = 3 classes),
HCA groups the ST spots on the 2-dimensional PCA
plot such that each ST spot belongs to one cluster. Map-
ping these three groups of ST spots onto the four

Fig. 3 A, B, C: ST spots selected (manual (A, B) and automated selections (C)) from four histological tissue sections for training and testing are
shown in the left box. The SVM model-predicted ST spots are shown in the right box. The spot colors represent non-malignant ST spots (green),
ductal carcinoma in situ ST spots (blue), and invasive ductal carcinoma ST spots (orange)

Table 2 Classification results (F1-scores) for testing ST-TC signatures with MC-SVM. The column “Dataset” indicates the sample on
which the model was tested while the three remaining datasets were used for model training

(A) Manually selected ST spots with DE ST-
TCs

(B) Manually selected ST spots with all ST-
TCs

(C) ST spots from unsupervised clustering with all
ST-TCs

Dataset Non-mal. DCIS IDC Non-mal. DCIS IDC Non-mal. DCIS IDC

1 0.93 1.00 0.92 0.95 0.98 0.97 0.96 0.97 0.93

2 1.00 1.00 1.00 0.98 1.00 0.97 0.96 0.91 0.92

3 0.97 1.00 0.95 1.00 1.00 1.00 0.95 0.96 0.86

4 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97 0.93

Avg 0.97 1.00 0.96 0.98 0.99 0.98 0.95 0.95 0.91
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stained tissue images (Fig. 4b) revealed an overall accur-
ate classification (186 of 194, 96%) with the ST spots for
which expert annotation was available (Additional file 1:
Table S4).

ST signature transfer of automatically classified ST spots
We used the three groups of ST spots resulted from the
unsupervised identification and performed the cross-
validation workflow. The machine was trained on the
combined three breast cancer datasets 2, 3, and 4 and
validated on the dataset 1 resulting in an average F1-
score of 0.94 (Fig. 3c, Table 2C). The same training and
validation procedure was repeated for the remaining
three datasets for which we obtained F1-scores in the
range of 0.86–0.97 (Fig. 3c, Table 2C).

Discussion
In this concept study, we have derived cancer expression
signatures from spatial transcriptomics (ST) data, trained
with one machine learning algorithm (MC-SVM) and
evaluated the performance of the model to identify can-
cer regions. Four independent ST datasets were available
and used in this study. Expert pathologist annotation of
the H&E-stained tissue images provided classification of
194 ST spots of ductal carcinoma in situ (DCIS), inva-
sive ductal carcinoma (IDC), and non-malignant tissue
regions for all four experiments. We derived ST expres-
sion signatures for each of the three classes consisting of

distinct sets of transcripts (798 ST-TCs) (Fig. 2a). In
addition to protein coding gene-associated ST-TCs, ST-
TCs for non-coding genes (23 out of 798, 2.9%), and
non-annotated transcripts (79 out of 798, 9.9%) contrib-
uted to the expression signature. The extent of the con-
tribution of non-coding transcripts was not evaluated in
this study. The most differentially expressed non-coding
or non-annotated TCs were predominantly expressed in
DCIS and IDC regions emphasizing their potential role
in cell proliferation and differentiation [36, 45–47]. The
ST expression signature was able to classify ST spots
with very high accuracy (190 out of 194, 97.9%) to non-
malignant, DCIS, and IDC tissue regions.
In the past, various supervised machine learning algo-

rithms were used in clinical studies to predict clinical
outcomes based on expression signatures from bulk can-
cer samples, distinguishing DCIS from IDC or for
extracting cell type-specific information from gene ex-
pression profiling from heterogeneous samples using de-
convolution techniques [40, 41, 48–58]. These methods
used a minimal set of differentially expressed and cell
type-specific genes requiring specific analyses to obtain
this subset. In this context, we continued with 194 ST
spots from manual expert annotation and assessed the
classification ability of a support vector machine (MC-
SVM) to learn the three annotated classes based on the
expression signature (small set of 798 transcripts/ ST-
TCs) as well as on the complete set of all transcripts

Fig. 4 a The Principal component analysis and hierarchical clustering of 979 ST spots selected from four breast cancer tissue sections. b The
clustered ST spots are plotted back to the corresponding histological tissue sections
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(ST-TCs). Classification results from both approaches
gave comparable results of 97.7% and 98.3%, respectively
(Table 2A, B). These results overall demonstrated the
power of ST-TCs to classify cancer regions in breast can-
cer tissue sections. The smaller ST-TCs signature set gave
comparable results to using the full set of ST-TCs. Classi-
fication on a smaller number of selected features might
appear advantageous in terms of reduced model complex-
ity. On the other hand, inclusion of all features would sim-
plify the overall workflow by removing the selection
process and might make it applicable in more complex
workflows with fewer steps. The model which used all ST-
TCs can also take advantage of features of the expression
profiles that are not among the signature features identi-
fied by the differential expression analysis of the ST-TCs.
Our further analysis employed unsupervised classifica-

tion of ST spots for identifying cancer regions. The
resulting three distinct classes corresponded to the three
expert annotated regions. The classification performance
of the machine learning model (93.7%) was less accurate
compared to the expert selected ST spots (97.7% and
98.3%, Table 2). The larger number of ST spots used by
the unsupervised classification (979 unsupervised) might
add variances in the data and complicate the classifica-
tion task. Interestingly, for DCIS, the overall prediction
accuracy is higher compared to IDC (Table 2). IDC re-
gions might be more heterogeneous and might possibly
contain other cell types such as fibroblasts.
We envision that in the coming years we will see

simplification, further standardization, and reduced
pricing for the ST protocol leading to extensive ST
sequencing of samples of various cancer types. Here,
the automated classification might become a power-
ful tool to support clinical pathologists in identifying
cancer signatures. Moreover, the routine expert an-
notation of tissue sections might be used by an
expert system to improve cancer signatures with in-
creasing amounts of available data as well as in par-
allel to identify cancer subtypes with improved
resolution. While the dataset employed is comprised
of 979 sequencing libraries from four breast cancer
ST experiments and constitutes the largest available
ST breast cancer dataset so far, inclusion of add-
itional individuals and breast cancer samples might
be required to arrive at a cancer classifier for clinical
usability.
The ST datasets are composed of sequencing data and

corresponding detailed morphology of the stained tissue
slides. In this work, we focused on the application of
machine learning methods to the sequencing data. Ma-
chine learning has very successfully been applied to the
classification of image data. We see great potential for a
strategy applying machine learning to ST image data for
detecting cancer regions while at the same time using

machine learning to maximize the power of a corre-
sponding expression signature.
Breast cancer manifests with subtypes that have differ-

ent treatment responses and clinical outcomes. Identify-
ing tumor heterogeneity in breast cancer regions is
crucial for determining specific disease states and for
starting suitable treatments early. Our application of a
standard machine learning method to ST data clearly
distinguished healthy and diseased areas in the tissue
and most importantly identified regions containing both
DCIS and IDC regions. We believe that detailed
characterization of these regions might give us an insight
into gene expression changes during the progression of
breast cancer. More ST datasets containing such transi-
tions might allow us to obtain detailed expression signa-
tures and possibly a more detailed understanding of
breast cancer progression. A more fine-grained reso-
lution of the ST spots will enable higher resolution and
allow detection of the transition between DCIS and IDC.
This might pave the way towards the identification of
new biomarkers specific to disease subtypes and hence
cancer therapies for more personalized medicine. Hist-
ology is an efficient, effective, and relatively inexpensive
diagnosis for breast cancer. We see the potential that ST
technology might become a clinically usable comple-
ment to histology as the clinical gold standard.

Conclusions
We report the application of one machine learning method
to spatial transcriptomics data for the detection of DCIS
and IDC cancer regions in individual breast tissue sections.
We envision that computer-guided detection of cancer re-
gions in spatial transcriptomics data will in the near future
provide a clinical decision support for pathologists.
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Additional file 1: Table S1. Mapping statistics of four breast cancer
datasets. Table S2. ST tag clusters and associated genes for four ST
datasets together. Table S3. Number of ST tag clusters per gene for four
ST datasets. Table S4. The characteristics of the unsupervised ST breast
cancer signatures. ST-TCs with at least one count were considered.

Additional file 2: Figure S1. Data driven and gene model independent
data processing mapped ST sequencing reads (A) are grouped into ST
tag clusters (ST-TCs) by peak calling (B).

Additional file 3: Figure S2. Volcano plot representation of differentially
expressed ST-TCs. The tag clusters. Expression profiles of a) Non-malignant
versus DCIS, b) DCIS versus IDC, c) Non-malignant versus IDC. The x-axis rep-
resents log2 expression fold change and the y-axis represents log10 p-value.
The pirate plot of normalized log expression values for the differentially
expressed tag clusters highlighted (examples) in volcano plot.

Additional file 4: Figure S3. Top 25 Enriched GO terms represented in
dot plot. The size of the dots represent the number of genes associated
with the given GO term and the color of the dots represent the P-
adjusted values.
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