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Comprehensive prediction of 
drug-protein interactions and side 
effects for the human proteome
Hongyi Zhou, Mu Gao & Jeffrey Skolnick

Identifying unexpected drug-protein interactions is crucial for drug repurposing. We develop a 
comprehensive proteome scale approach that predicts human protein targets and side effects of 
drugs. For drug-protein interaction prediction, FINDSITEcomb, whose average precision is ~30% and 
recall ~27%, is employed. For side effect prediction, a new method is developed with a precision 
of ~57% and a recall of ~24%. Our predictions show that drugs are quite promiscuous, with the 
average (median) number of human targets per drug of 329 (38), while a given protein interacts 
with 57 drugs. The result implies that drug side effects are inevitable and existing drugs may be 
useful for repurposing, with only ~1,000 human proteins likely causing serious side effects. A killing 
index derived from serious side effects has a strong correlation with FDA approved drugs being 
withdrawn. Therefore, it provides a pre-filter for new drug development. The methodology is free to 
the academic community on the DR. PRODIS (DRugome, PROteome, and DISeasome) webserver at 
http://cssb.biology.gatech.edu/dr.prodis/. DR. PRODIS provides protein targets of drugs, drugs for 
a given protein target, associated diseases and side effects of drugs, as well as an interface for the 
virtual target screening of new compounds.

Recent studies on the intrinsic characteristics of protein ligand binding pockets find that there is a lim-
ited number (~1,000) in nature1,2, whereas the number of proteins in a typical proteome (e.g., in human 
~20,000) is far larger. The implication is that a given protein target binds many ligands, and conversely, 
a ligand binds many proteins, all with similar pockets3,4. Thus, the intrinsic promiscuity of a drug is 
partly responsible for its unintended side effects5, but this also suggests that FDA approved drugs could 
be utilized for large scale repurposing. That is, a drug could bind to another protein associated with a 
disease other than its intended target. Indeed, repurposing of FDA approved drugs for new indications 
is an efficient and accelerated means of drug discovery with applications to personalized medicine5,6.

Advances in whole genome sequencing7 make the identification of drug-target interactions more 
attractive and useful5. In practice, most DrugBank drugs (including FDA approved & experimental) 
have only a single or very few identified protein targets8. Thus, for many drugs, their possible tar-
gets are unknown. To fully explore drug and protein target promiscuity, given an arbitrarily identified 
disease-causing protein target, one should find all its binding drugs and side effects. To achieve this, 
screening of all plausible drugs against the human proteome and predicting side effects of an arbitrary 
drug are necessary. In contrast to genome sequencing technology that allows for the rapid identification 
of disease associated targets, brute-force experimental screening of all FDA approved or experimental 
drugs against a large number of identified disease associated protein targets is currently infeasible5,9. This 
work attempts to achieve this goal through a computational approach.

In parallel to experimental drug repurposing approaches5, many bioinformatics and computational 
approaches for drug-disease or drug-target relation discovery have been published3,10–25. Most exploit the 
similarity between drugs17, proteins18, side effects19, interaction network12 and diseases10. For example, 
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for a given protein target, the chemical similarity of a drug to its known binding ligands was employed 
to predict possible association to a given protein target17,25. These methods require prior knowledge of a 
target protein’s or drug’s binding partners, side effects, interaction network, etc. There are also databases 
that collect experimental drug-protein interactions from the literature3,26. While a good idea in princi-
ple, in practice, the coverage of ligand and protein space of the above bioinformatics and computational 
methods are quite limited. Therefore, such methods are not yet applicable to the majority of the human 
proteome.

To address the limitation imposed by the requirement of prior knowledge of small molecule 
ligand-protein interactions, recent developments infer interactions from neighbors (evolutionarily related 
proteins)27,28 where such interactions are known. However, they have not yet been tested on a large scale, 
e.g. on DrugBank drugs8 when there are no known interactions for a given drug or a target of interest. 
Moreover, their 5 or 10 fold or leave-one-out cross validation (LOOCV) tests27,28 are dominated by 
drugs or targets with known interactions in their training library. Alternatively, as proposed earlier20, 
ref. 9 reports an ambitious initiative that applies a traditional structure-based docking approach to rank 
drug-target interactions by utilizing Google cloud computing. It extends target coverage to those proteins 
without prior knowledge of binding ligands. However, this approach is still limited by the requirement of 
having high-resolution target protein structures (available for at most only 1/3 of the human proteome9), 
and a lack of accurate scoring functions to rank docked ligands29,30.

Our recently developed and experimentally validated FINDSITEcomb ligand homology modeling 
approach31,32 has the following advantages over other state-of-the-art methods for predicting drug-protein 
interactions: (1) it does not require known interactions for a drug or protein target; (2) it does not require 
experimental or high resolution protein structures; (3) it is more efficient than traditional docking meth-
ods, and most importantly, (4) it has better accuracy for ranking drug-target interactions than traditional 
docking methods31. In practice, since FINDSITEcomb eliminates the prerequisite of having known binders 
and high-resolution protein target structures, it can screen ~86% of the protein sequences of a typical 
proteome whose structures can be reliably modeled. Once a library of target protein structures of a 
proteome is built, (e.g. the human proteome has around 20,000 unique proteins), virtual screening of 
a drug across the proteome only takes a couple of hours on a single CPU node. Thus, it is possible to 
predict interactions for millions of compounds against a typical proteome on a medium size computing 
cluster in a very short time.

Since the majority of human proteome targets have no known binders, in this work, we first focus 
on predicting drug-target interactions when neither the drug nor protein target has known binders, 
termed new drug and new target, respectively. This is the biologically important regime where many 
state-of-the-art approaches, such as SEA25, BLM21,22 and network methods24, are inapplicable. Besides 
FINDSITEcomb only a few methods, e.g. the machine learning BLM-NII28, the network-based27 and 
docking based algorithms9,20, can be applied. Here, we first benchmark FINDSITEcomb on a large set 
constructed from DrugBank8, and compare its performance against a new machine learning method 
BLM-NII28. We show that FINDSITEcomb has much better performance than BLM-NII as assessed by 
their AUC (area under the ROC curve) and Enrichment Factor (EF). We then apply FINDSITEcomb to 
screen all DrugBank drugs against the human proteome to discover new protein targets that mostly have 
no previously known or predicted ligand interactions.

We next turn to an examination of drug side effects, an indispensable aspect of drug discovery. 
While there are computational studies that assign side effects to protein targets and predict drug side 
effects25,33–35, their precision has not been systematically benchmarked. In fact, they require that their 
protein targets bind at least five known drugs with experimentally determined side effects33. Thus, they 
cannot infer side effects for the majority of human targets lacking experimentally known drug-protein 
interactions. To address these issues, drug side effects are inferred from predicted targets whose asso-
ciated side effects are extracted from known drug-side effect relations using an empirical rule. Then, a 
killing index, κ , that predicts the likelihood of serious side effects is introduced. We show that κ  correlates 
with an approved drug’s probability of being withdrawn, illicit and investigational, classifications often 
due to serious side effects. Thus, these predictions offer the promise of discovering potential new targets 
for and side effects of existing or new drugs.

Results
Our goal is to benchmark and present the DR. PRODIS knowledgebase shown in Fig. 1. The central idea 
is to infer the properties of a target drug or a target protein, such as their interaction partners, associated 
diseases and side effects for a drug from similar drugs or proteins (that may in fact be evolutionary very 
distant) found in databases. At the heart of the knowledgebase is the interaction data between proteins 
and small-molecule compounds. The data is predicted by FINDSITEcomb. Thus, for the human proteome, 
we first evaluate the performance of the FINDSITEcomb for its ability to predict drug-protein interactions 
and compare its performance against one of the best extant methods, BLM-NII28. We then present results 
for the virtual target screening of DrugBank drugs against the human proteome and describe promising 
examples of drug repurposing to treat a variety of diseases. We next examine the ability to predict drug 
and protein target side effects across the human proteome. Finally, we combine predictions and known 
information about predicted drug-target interactions and drug and target side effects in the DR. PRODIS 
webserver and knowledgebase.
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Prediction of drug-protein interactions.  Comparison of FINDSITEcomb with BLM-NII on the DrugBank 
set.  We undertook a large-scale test of the ability to predict DrugBank drug-target interactions. To cre-
ate a realistic scenario, we exclude interactions of targets and drugs from the library that have a sequence 
identity >  a specified cutoff to the given target or that have a Tanimoto Coefficient36, TC >  0.99 to a 
known small molecule binder (this can exclude molecules that differ very little to the given drug). Since 
molecules having a TC >  0.85 likely have similar bioactivity37, a TC cutoff of 0.99 could possibly just 
include many molecules having similar bioactivity to the testing drug. However, as pointed in ref. 38 the 
TC =  0.85 cutoff myth is not generally true. Furthermore, in the tested DrugBank data, pairwise drug 
TC values within a given protein target range from 0.28 to 1.00, with an average of 0.61. Only about 14% 
of the molecules have a pairwise TC >  0.85. Thus, in practice a TC cutoff of 0.99 does not result in the 
majority of molecules having guaranteed similar bioactivity to the template drug that is used as a seed 
in virtual screening. On ranking the targets of a given drug, we first assess the results by the AUC as 
calculated per drug. We note that most drugs only have a few true targets in our test set (3,814 or 68% 
of the 5,639 DrugBank drugs have only one target). Thus, we use the Enrichment Factor (EF) as defined 
similar to that used in virtual ligand screening31 to assess performance:

EF
Number of true positive protein targets within the top 100x

Number of true positives by randomly selecting same number of protein targets 1x =
%

( )

EFx is the enrichment factor within the top x fraction (or 100x%) of screened targets relative to 
random selection. A true positive is an experimentally known binding target protein. That is, here, a 
protein target found among the drug-target relationships annotated in DrugBank for the given drug 
based on published experimental data. For x =  0.01, EF0.01 ranges from 0 to 100 (100 means that all true 
positives are within the top 1% of the screened targets). A value of EFx >  1 means the method is better 
than random.

Table  1 compares FINDSITEcomb with SVM BLM-NII on the 5,639 DrugBank drugs for predicting 
protein targets with two different sequence identity cutoffs, 95% and 30%. The 30% cutoff assesses the 

Figure 1.  An illustration of the DR. PRODIS approach. 
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ability to predict protein targets when no closely homologous templates are used for interaction infer-
ence. At a 95% sequence identity cutoff, FINDSITEcomb with an average AUC =  0.824 is significantly 
better than SVM BLM-NII, whose average AUC =  0.628. The number of drugs whose AUC is better 
than random (AUC =  0.5) by FINDSITEcomb is 4,948 (88%) compared to 3,798 (67%) by SVM BLM-NII. 
FINDSITEcomb has an EF0.01 enrichment factor of 38.05 vs. EF0.01 =  4.74 by SVM BLM-NII. Within the 
top 1% of the 3,576 screened targets, FINDSITEcomb has 2,583 (46%) drugs having at least one true tar-
get compared to 354 (6.3%) from SVM BLM-NII. Table 1 also includes the average rank of true targets: 
627 for FINDSITEcomb vs. 1333 for SVM BLM-NII, respectively. While the performance of both meth-
ods diminishes when a 30% sequence identity cutoff is imposed, the performance of FINDSITEcomb is 
still significantly better. FINDSITEcomb has an EF0.01 =  14.04, with 1117 drugs having results better than 
random versus SVM BLM-NII which has an EF0.01 =  4.36, with 332 drugs better having an EF0.01 better 
than random.

One of many examples of a successful prediction by FINDSITEcomb is for DB00231 (Temazepam) that 
has 20 known targets. When a 95% sequence cutoff is applied, all 20 known protein targets are predicted 
within the top 1% (top 36 of 3,576) targets. When a 30% sequence cutoff is used, 17 of the known targets 
are within the top 1%.

Dependence of FINDSITEcomb ‘s performance on the mTC cutoff value.  Here, we examine the dependence 
of precision and recall on the mTC cutoff value with precision and recall defined as

Precision
Number of true positive predictions

Total number of predictions 2
=

( )

Recall
Number of true positive predictions

Total number of true targets 3
=

( )

Figure 2a,b show the average per drug relationship between precision and recall and the mTC cutoff 
for a target sequence cutoff of 95%. When mTC cutoff exceeds a given (high) threshold, some drugs will 
have no predicted protein target; thus, their contributions to the average abruptly drop to zero and the 
average precision starts to drop as well.

Since we lack a complete list of all true drug targets, the precision shown in Fig.  2a is actually the 
“observed precision” rather than the true precision of the prediction. As shown in Supplementary 
Information, the more known targets a drug has, the more likely it is that the true and “observed” pre-
cision are close to each other. Therefore, to estimate the true precision, we should examine drugs having 
more known targets. Figure 3 shows the dependence of the “observed precision” on the number of known 
targets for an mTC =  0.90 (corresponding to a P-value =  5.66 ×  10−3, see Supplementary Information) 
and 95% sequence identity cutoffs. When the number of known targets ≥ 10, the “observed precision” 
approaches ~30%. This is about three times the observed precision in Fig.  2a. Thus, ~30% should be 
close to the true precision. It is also consistent with the average 30.6% precision found in ligand virtual 

Method FINDSITEcomb SVM BLM-NII 
95% target sequence cutoff 

AUC (number of drugs > 
0.5) 0.824 (4948) 0.628 (3798) 

EF0.01 (number of drugs > 1) 38.05 (2583) 4.73 (354) 
EF0.05 (number of drugs > 1) 10.80 (3452) 3.23 (1126) 
EF0.1 (number of drugs > 1) 6.13 (3810) 2.53 (1722) 
Average rank of true targets 627 1333 

30% target sequence cutoff 
AUC (number of drugs > 

0.5) 0.690 (4256) 0.564 (3296) 

EF0.01 (number of drugs > 1) 14.04 (1117) 4.36 (332) 
EF0.05 (number of drugs > 1) 5.32 (1923) 2.53 (948) 
EF0.1 (number of drugs > 1) 3.51 (2421) 1.97 (1425) 
Average rank of true targets 1109 1561 

Table 1.   Comparison of FINDSITEcomb with SVM BLM-NII on the 5639 DrugBank set. aBold numbers 
indicate the better results of the compared methods. Numbers in parentheses are the number of drugs 
satisfying the AUC or EFx cutoffs in column one.

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
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Figure 2.  Average per drug: (a) precision vs. mTC cutoff; (b) recall vs. mTC cutoff for the DrugBank set in 
benchmarking mode.

Figure 3.  Dependence of “observed” protein target prediction precision on the number of known targets 
at mTC cutoff = 0.90 and 95% sequence cutoff. 
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screening on the 102 protein DUD-E benchmark set39 with a mTC cutoff of 0.9. 30% precision is signif-
icantly better than that by random selection (precision ~0.0632%). At a 0.90 mTC cutoff, from Fig. 2b, 
the recall is ~27%. At a moderate cutoff of 0.70, recall is 55%, but the observed precision falls to 2.3%. 
In Supplementary Information, a test on 51 molecules against the yeast proteome shows similar results.

Virtual target screening of DrugBank drugs against the human proteome.  The benchmark on the DrugBank 
set (as well as a “gold standard” set shown in Supplementary Information) shows that FINDSITEcomb 
is more accurate than BLM-NII for virtual target screening. We next apply FINDSITEcomb to screen 
DrugBank drugs across the entire human proteome to facilitate the discovery of new uses of existing 
drugs. We built a target structure library consisting of 97% (32,579) of all human proteins from the NCBI 
database (see Methods). We excluded exceedingly long protein sequences with more than 2,500 resi-
dues or sequences > 1000 residues that cannot be parsed into smaller segments. Of these, 27,896 (86%) 
proteins have at least one segment modeled with a predicted TM-score ≥  0.440,41, a threshold when the 
predicted structure is significantly similar to the corresponding native structure (P-value of 3.4 ×  10−5)42. 
In this regime, virtual screening is likely to be successful31.

Next, all 5,639 DrugBank drugs were screened against this library in prediction mode (all interactions 
in the binding libraries are allowed). With an mTC cutoff of 0.90, the normalized distribution of drugs 
vs. the number of predicted interacting protein targets in the human proteome is shown in Fig. 4a. The 
average (median) number of predicted protein targets is 329 (38) per drug. Thus, most drugs likely have 
multiple targets. Similarly, Fig. 4b shows the distribution of protein targets vs. the number of interact-
ing drugs. The average (median) number of drug interactions per protein is 57 (55). Thus, most pro-
teins likely interact with many drugs. Finally, to avoid the effect of overrepresented targets in the target 
library, we clustered the protein targets into 13,404 clusters at a 30% sequence identity threshold. The 

Figure 4.  For the human proteome: (a) predicted drug distribution vs. the number of target interactions; 
(b) predicted target distribution vs. number of drug interactions for DrugBank drugs.
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distributions of drug-cluster interactions shown in Figure S1 are similar to Fig.  4. On average, a drug 
interacts with 141 protein clusters, and a protein target cluster interacts with 57 drugs.

Repurposing of drugs to treat new diseases.  The above results once again demonstrate the likely prom-
iscuity of drugs and protein targets found in our earlier work1. The promiscuity of a drug is particularly 
useful for repurposing it to treat new diseases. By the term “new disease”, we mean that the treatment 
of the particular disease is not the original intended use of the drug. Our predictions of new targets 
could potentially reveal new drug uses as well as side effects. On average, we predict 32.7 (140) genetic 
disease (somatic cancer) related targets for each drug. Of these only 7.4 (14.4) targets are identical to 
DrugBank targets (with ≥  95% sequence identity). Around 80% (90%) of the predicted genetic disease 
(somatic cancer) related targets have not been considered as primary targets of existing drugs. Thus, our 
predictions could be useful for personalized medicine in the post genomic era when a disease (somatic 
cancer) is likely caused by mutations of a specific protein target, which does not have known drugs that 
restore the mutated protein’s molecular function to wild type.

Here, we present some successful examples of drugs predicted to target proteins involved in 
common and rare diseases. An antibiotic DB00997 (Doxorubicin) is commonly used to produce 
regression in disseminated neoplastic conditions like acute lymphoblastic leukemia and acute myelo-
blastic leukemia8. Our predictions show that it likely targets hepatoma-derived growth factor that causes 
hepatocellular carcinoma. Delcath Systems, Inc. has sponsored this as an orphan treatment of hepato-
cellular carcinoma (see http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/
HowtoapplyforOrphanProductDesignation/ucm216147.htm). Drug DB01229 (Paclitaxel) is commonly 
used in the treatment of Kaposi’s sarcoma and cancer of the lung, ovarian, and breast8. Our predictions 
show that it binds to BCL2-antagonist/killer 1 which causes colorectal cancer, prostate cancer, pancreatic 
cancer, and tubulin, gamma 1 that causes cortical dysplasia, complex, with other brain malformations. 
According to the FDA web site, MediGene AG has sponsored it for treatment of pancreatic cancer and 
Protherics, Inc. for brain cancer.

While FINDSITEcomb is one of the best methods for predicting drug-protein target interactions, still 
the majority of its predictions (~70%) are likely false positives. Thus, it should be viewed as a “look here, 
not there” means of prioritizing which experiments should be done.

Prediction of drug and target side effects across the human proteome.  Benchmarking results.  Using 
predicted human targets of a given drug and the inferred target-side effect relations, we predict the side 
effects of the given drug as the union of side effects from all of its protein targets. We first perform a 
consistency test by examining how well our inferred target-side effect relations can reproduce known 
input side effects: i.e. all known drug-side effect relations are utilized to build target/side effect relations, 
which is used to predict the input drug’s side effects. We then test the predictive power of our method 
in a jackknife test: All, but one, of a drug’s side effects are utilized to build target/side effect relations, we 
then predict the side effects of the left out drug.

To examine the usefulness of the FINDSITEcomb predicted drug-target relations in the inference of 
protein target side effects, the above tests are also carried out using only experimental drug-protein target 
binding information as provided by STITCH326. The resulting average precision and recall for the 996 
SIDER2 set43 are compiled in Table 2. In the first row of Table 2, we only use known (viz. experimental) 
drug-protein interactions, whereas in the second row we only use FINDSITEcomb predicted drug-protein 
target interactions with no cutoffs applied. The consistency test gives zero false positives due to the 
deterministic nature of the inference rule. Around 30% of side effects can be recalled using either pre-
dicted or experimental drug-target relations. The similarity of results lends additional confidence to 

 Consistency Test Jackknife test 
Precision Recall Precision  Recall 

Experimental drug-
target binding 

100% 29.0% (668) 58.4% 16.6% (671) 

Predicted drug-target 
binding 

100% 32.0% (704) 56.5%  23.6% (740)  

Experimental drug-
target & statistics 

from Ref33 (P-
value<1× 10-3) 

19.1% 58.3% (907)a - - 

Table 2.   Assessment of drug side effect prediction for 996 drugs. aNumbers in parentheses are number of 
drugs having a side effect prediction.

http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/HowtoapplyforOrphanProductDesignation/ucm216147.htm
http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/HowtoapplyforOrphanProductDesignation/ucm216147.htm
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
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our predictions of such drug-target interactions. Missed side effects reflect the incompleteness of target 
collection/prediction of the drug.

In the jackknife test, for either experimental known or predicted drug protein interactions, with respect 
to the consistency test, both precision and recall decrease. Comparing the use of predicted drug-target 
interactions with experimental drug-target interactions, there is only a slight drop in precision in the 
jackknife test from 58.4% to 56.5%, whereas recall increases from 16.6% to 23.6%! Using predicted 
drug-target relations also increases the number of drugs having predictions from 671 to 740. Again, the 
increase is likely due to fact that there are more correct drug-target relations, on average, present in the 
predicted than experimental relationships. Thus, using the FINDSITEcomb predicted drug-target relations 
gives a favorable contribution to drug side effect prediction. Although our drug side effect predictions 
give a binary classification and do not rank side effects, we note that at the same ~24% recall rate, the 
machine learning approach in ref. 35 has a precision of ~30% in its fivefold cross validation; much less 
than our precision of 56.5%.

In Table  2, we also compare results for reproducing input drug-side effects using experimentally 
determined drug-target relations and the statistical method described in ref. 33. With a conservative 
P-value cutoff of 1 ×  10−3, the precision is only 19.1% with a recall of 58.3% due to the large number of 
false positive predictions by the statistical method. Decreasing the P-value cutoff does not significantly 
improve the precision, but recall decreases rapidly. Our method for reproducing the input has five times 
the precision, yet only reduces the recall by half.

Drug and target side effect predictions for the human proteome.  Using predicted drug-target relations 
and all experimental 996 drug side effects from SIDER243, we inferred side effects for 14,934 human 
protein targets. The distribution of the number of side effects of a protein target is shown in Fig.  5. 
This distribution obeys a power law, consistent with the result from a statistical method33. 2,573 protein 
targets have one side effect. The majority of protein targets have ≤  4 side effects. The average (median) 
number of side effects per protein target is 11.6 (3.5). Six targets have the maximum number of 339 side 
effects. Consistent with the recall rate of 23.6%, 877 of 4,192 distinct side effects appear in at least one 
target. The most frequent side effects are nausea, vomiting, diarrhea, appearing in 10,755, 9,255 and 7,515 
targets, respectively.

Drug side effects are predicted for all DrugBank drugs using the above FINDSITEcomb predicted 
drug-target relations and the above inferred target-side effect relations. 4,975 drugs have side effect pre-
dictions, with the number of side effects ranging from 1 to 849. On average, 85 side effects are predicted 
for a given drug. An example of side effect prediction is presented for DB00136 (Calcitriol) that is used to 
treat vitamin D deficiency. Our method predicts 33 side effects, such as anorexia, nausea, vomiting, poly-
uria, polydipsia, weakness and pruritus that are consistent with DrugBank annotations. Another example 
is the DB00563 (Methotrexate), which is used for treating gestational choriocarcinoma, chorioadenoma 
destruens and hydatidiform mole (a rare mass or growth that forms inside the womb at the beginning of 
a pregnancy). We recover 114 (56%) of the 203 known side effects with 100% precision that are reported 
in the SIDER2 database. These include sudden death & death. Both side effects come from the drug’s 
interaction with protein target transmembrane protein 222 encoded by the TMEM222 gene. The function 
of this gene is, unfortunately, unknown.

Drug killing index.  1,165 protein targets are inferred to have serious side effects such as death, stroke, 
cancer, and heart failure. Drugs that bind to these proteins will likely have serious side effects. Depending 
on whether the drug is an agonist or antagonist to the target, the serious side effect may or may not 
occur. 2,456 of 5,639 or 44% of molecules from DrugBank are predicted to have a killing index κ  >  0, 

Figure 5.  Number of protein targets vs. the number of side effects. 
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whereas only 192 of the 1,187 (or 16%) FDA approved drugs (non-nutraceuticals) have a κ  >  0. Thus, 
κ  can discriminate between an arbitrary small molecule and an FDA approved one. Eliminating drugs 
having κ  >  0 still gives an 84% recall rate for FDA approved drugs. κ  is highly correlated with promiscu-
ity (the number of protein targets a drug binds to) with a Pearson’s Correlation Coefficient (CC) =  0.89.

To further show that the predicted killing index is meaningful, we present the relationship between the 
fraction of FDA approved drugs being withdrawn, illicit or investigational versus killing index in Fig. 6. 
The fraction of problematic drugs increases from 28% for all FDA approved drugs to 51% for approved 
drugs having a killing index ≥ 20. Thus, the killing index is correlated with the probability of an approved 
drug being withdrawn, illicit or investigational (CC =  0.75), that is usually related to serious side effects.

DR. PRODIS drug, protein, disease and side effect webserver.  A web service for FINDSITEcomb 
based virtual target screening has been implemented using the above human target protein library at 
http://cssb.biology.gatech.edu/dr.prodis/. To facilitate navigation of the search results, all interacting tar-
gets and drugs are URL cross-linked. The two major functionalities are: (a) an interface for searching the 
pre-computed DRugome, PROteome, and DISeasome (DR. PRODIS) knowledgebase constructed from 
the above virtual target screening of DrugBank drugs against Human proteome. For each protein target, 
DR. PRODIS provides information about disease-causing genetic mutations, somatic cancer driver muta-
tions, inferred side effects, predicted bound DrugBank drugs, predicted protein structures and putative 
drug binding sites. For each DrugBank drug, the knowledgebase provides side effects, killing index and 
human protein targets. (b) virtual target screening for new compounds against the human proteome. A 
given drug’s 2D or 3D structure is required as input and the protein target library can be selected from 
Human, as well as three other proteomes, p. Falciparum, m. Tuberculosis and yeast, whose analyses are 
beyond the scope of this paper. Predictions are available for manual review on our web server or for 
download. If the human target library is selected, for each small molecule, its predicted side effects, killing 
index, and a URL link for each target to the DR. PRODIS database will also be provided. This service 
will be useful for discovering protein targets and possible side effects of potentially interesting molecules 
or for designed new drug molecules.

Discussion
In this paper, we developed a comprehensive approach to predicting drug-protein interactions that allows 
us, with an acceptable precision and recall of ~30%, to predict for a given drug in DrugBank or a novel 
small molecule ligand, its possible side effects, killing index, and protein targets in the human proteome. 
Conversely, for a given protein in the human proteome, in the majority of cases, we provide its predicted 
structure and binding sites, predicted FDA approved and experimental drugs that might bind to the 
protein, possible side effects, as well as diseases associated with non-synonymous amino acid mutations. 
On average, we predict that a given drug binds 329 targets, and each protein binds about 57 drugs. 
Consistent with previous fundamental work on the number of distinct ligand binding sites1, we again 
find that promiscuous drug protein interactions are quite likely. Even if our predictions are off by a factor 
of 10, such promiscuity has to be accounted for in the process of drug discovery; but concomitantly, it 
can be used for the large scale repurposing of FDA approved drugs.

We next developed a simple approach to side effect prediction. Comprehensive benchmarks suggest 
that we can predict drug side effects with a precision of about 57% and a recall of about 24%. We also 
show that a drug’s promiscuity is highly correlated with the derived killing index, which in turn is cor-
related with a drug being FDA approved or being withdrawn if it is approved. The unification of the 

Figure 6.  Dependence of the cumulative fraction of drugs being withdrawn, illicit & investigational on 
killing index. 

http://cssb.biology.gatech.edu/dr.prodis/
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DRugome, PROteome, and DISeasome information is available to the academic community at the DR. 
PRODIS database and webserver.

Comparison with the state-of-the-art sequence-based machine learning approach BLM-NII28 for 
drug-protein target interaction prediction shows that FINDSITEcomb has consistently better performance. 
Most existing methods such as the SEA25, BLM21, network24 and many others3,5,10,11,16,23,44 cannot provide 
such comprehensive predictions due to their requirement of known interactions.

Competing traditional structure-based docking methods can provide protein target coverage for 
only 1/3 of human proteome and require very large scale cloud computing resources9. In contrast, 
FINDSITEcomb covers 86% of the human protein, is far more computationally efficient and is applicable 
to predicted as well as experimental structures. Most importantly, FINDSITEcomb 31 performs significantly 
better than structure-based docking methods for ligand virtual screening on the relatively small DUD 
benchmark set45. We would expect that FINDSITEcomb also performs better than docking methods for 
protein target virtual screening9.

With the above advantages in mind, there are also disadvantages of current knowledge based 
approach that employs the ideas of homology modeling applied to ligand identification: (a) it cannot 
predict absolute binding affinity. Rather, the predicted drug-protein interactions are meaningful for rela-
tive ranking. (b) There are no ligand bound poses in the DrugBank & ChEMBL binding libraries; rather 
they merely provide information as to which ligands bind which template. Thus, for this component 
of FINDSITEcomb, we can infer which ligands likely bind to the target protein but not necessarily the 
binding pose. In contrast, when the binding template is from the PDB, binding poses are predicted as 
in FINDSITE46,47. We further describe the procedure to predict such poses along with some examples in 
Supplementary Information. We are currently working on addressing both limitations.

In summary, we have developed a comprehensive approach to drug-protein target-disease-side effect 
prediction that while not perfect, has sufficient predictive value to guide experimental studies, and clini-
cal repurposing of FDA approved drugs. It should be noted that the predicted drug-protein interactions, 
side effects & killing index provided by the current approach, as well as any other bioinformatics tool 
should serve as guides as to which experiments should be done rather than absolute rules.

Materials and methods
Preparation of target and template libraries for FINDSITEcomb.  Modeling of the structures in the 
human proteome.  To apply FINDSITEcomb for predicting unknown targets of a drug by virtual target 
screening, we built a target library consisting of structural models of the human proteome (from ftp://ftp.
ncbi.nih.gov/genomes/H_sapiens/protein/, early 2012). To model long multi-domain proteins, we divide 
their sequences into smaller segments (each segment itself could contain multiple domains) using the 
automated sequence parsing procedure shown in Figure S2. After parsing each target sequence, the struc-
ture of each segment is independently modeled using TASSERVMT-lite41. The top ranked model, given 
by SPICKER clustering48 on the low energy trajectories from the TASSER simulation49, is the predicted 
structure for each segment.

In practice, we built structure models for 32,579 human proteome protein targets. Of these, 27,896 or 
85.6% have at least one segment with a predicted TM-score40 to native ≥  0.4. The TM-score is a structural 
similarity measure with values between 0 and 140. Two proteins are structurally related if they share a 
TM-score ≥  0.40 (P-value of 3.4 ×  10−5)42. Earlier, large scale, ligand virtual screening benchmarking 
shows that for a target with a model TM-score ≥  0.4 to native, FINDSITEcomb gives a better enrichment 
factor than random selection31.

Methods for predicting drug-protein target interactions.  FINDSITEcomb.  Our previously devel-
oped and experimentally validated FINDSITEcomb ligand homology approach is used to predict possible 
drug-target interactions31,32. For a given drug/compound with a 2D or 3D structure and a target protein 
sequence or experimental structure, three scores are computed independently by: (1) FINDSITEfilt 50 that 
infers binding sites and ligands of a target from threading identified holo proteins in the PDB database 
that have bound ligands; (2) FINDSITEX 41 that improves performance for those targets with few or 
no threading identified holo PDB templates by predicting the structures of virtual holo templates and 
extracting their known ligands from the ChEMBL51 and the DrugBank8 drug-target databases.

For each component, comparison of the inferred representative ligand set of the target (since they 
are inferred from template, they are called “template ligand”) to the input drug/compound is carried out 
using the mTC score defined by:
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where Nlg is the number of template ligands from representative set; TC is the Tanimoto Coefficient52 of 
two 1,024-bit fingerprints53,54 from the template ligand and drug/compound, respectively. Ll and Llib are 
the template ligand and drug/compound, respectively; w is a weight parameter. We set w =  0.1 to give 
more weight when the template ligands are true ligands of the target. The best score from each of the 
three component approaches is selected.
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Structure-pocket and structure-structure comparison procedures.  In FINDSITEcomb, as mentioned above, 
template ligands are inferred from similarities of structure-pocket or structure-structure comparisons 
between target and template proteins. A pocket structure of a given PDB template consists of the Cα 
atoms of residues, any of whose heavy atoms lie within 4.5 Å of the ligand heavy atoms and additional Cα 
atoms that are found within 8 Å of the ligand heavy atoms. A heuristic alignment method31 is employed 
for structure-pocket comparison: (1) exhaustive comparison of sequence order dependent triplets of Cα 
atoms of the target structure and the template pocket; (2) if the corresponding triplet distances are within 
1 Å of each other, the corresponding 3 residues are used as a seed alignment to do an optimal superpo-
sition by minimizing the root mean squared deviation (RMSD); (3) after this structural superposition, 
those residues within 1 Å of each other in the target and the template become the new seed alignment; 
(4) the alignment procedure is iterated until the set of aligned residues is unchanged. The alignment 
is ranked by a score depending on both structure and sequence similarities of the aligned residues. 
Structure-structure comparison is done using fr-TMalign55 ranked by summation of the BLOSUM62 
substitution matrix56 scores over the aligned residues.

Here, we need to compare a target of multiple segment structures (domains) to a library PDB pocket 
or a library template of multiple segments. The best scoring pocket for each target-template segment pair 
is chosen for ranking. The problem is that a single target segment could in principle dominate pocket 
selection. A better procedure would include all target protein segments and their identified template 
ligands. This more general approach is currently being examined57. Another issue is that a pocket might 
only exist when the global fold of all target/template segments form58, e.g. it can be created when two 
protein domains pack against each other. The consequence of these approximations is that our predicted 
number of protein targets per drug is likely a lower bound.

BLM-NII Implementation.  To compare the performance of FINDSITEcomb with BLM-NII28 to predict 
drug-target interactions, when both drug and target have no known interactions, we implemented our 
own, improved version of BLM22 (bipartite local model). Because BLM cannot predict interactions 
between new drugs and new targets, BLM-NII uses neighbor information to extend its applicability. 
We used the same drug and target similarity matrices downloaded along with the gold standard set 
(see Supplementary Information) and employed SVMlight (http://svmlight.joachims.org/) Support Vector 
Machine (SVM) regression59 to train the local models for each drug-target interaction. SVM is used in 
the original BLM22 method, whereas a regularized least squares (RLS) is used in BLM-NII28. Ref. 28 
includes a network-based similarity matrix whose contribution can be controlled. In our implementa-
tion, for simplicity and efficiency, we do not use the network-based similarity matrix.

Benchmark sets for the assessment of drug-protein interactions.  DrugBank benchmark set.  To test 
methods in a realistic target virtual screening scenario, i.e., finding the true targets of given drug from 
a library of targets, we use a large set constructed from all DrugBank drug-target relations that con-
tain interactions between 5,639 (1,250 FDA approved +  4,389 experimental) drugs and 3,576 targets 
for which we can model, and 12,744 known drug-target interactions. Only 256 drug-target pairs are 
singletons (both drug and target have only one known interaction). We artificially make all interactions 
singletons for benchmarking purposes; that is, we exclude from the binding libraries or training set all 
known interactions of the drug and protein target whose interaction is being predicted.

Drug and target side effect predictions.  Drug & target side effects.  A particular drug side effect is 
assumed caused by binding to a particular protein target, with the totality of drug side effects being the 
sum of all their protein target side effects. That is, if protein target (T1) binds to drugs (D1, D2, …, Dk)
(k >  1), all sharing common side effects (S1, S2, …, Sn), then these side effects are associated with protein 
T1. Once protein-side effect relations are inferred, they are used for predicting the side effects of a target 
drug. The predicted side effects of a drug are the union of side effects from all its binding targets.

Protein target side effects are inferred from drug-side effect relations provided by the SIDER2 data-
base (http://sideeffects.embl.de/)43. SIDER2 has 99,423 drug-side effect pairs involving 996 drugs and 
4,192 distinct side effects (~100 side effects/drug). Predicted drug-target relations are provided by 
FINDSITEcomb. Experimental drug-target binding information obtained from the STITCH3 database 
(http://stitch.embl.de/)26 are used to benchmark the approach.

Killing index of a drug.  To quantify the likelihood of drug having toxic side effect, we define the killing 
index of a drug as its number of targets with serious side effects. These side effects are: death, sudden 
death, sudden cardiac death, cardiac death, cancer, hemorrhagic strokes, heart failure, and congestive heart 
failure.

Data Availability.  All benchmark data sets, structural models of the human proteome, and the results 
of our method as applied to the benchmark sets and the human proteome are available at http://cssb.
biology.gatech.edu/dr.prodis/.

References
1.	 Gao, M. & Skolnick, J. A Comprehensive Survey of Small-Molecule Binding Pockets in Proteins. Plos Comput. Biol. 9, e1003302 

(2013).

http://svmlight.joachims.org/
http://sideeffects.embl.de/
http://stitch.embl.de/
http://cssb.biology.gatech.edu/dr.prodis/
http://cssb.biology.gatech.edu/dr.prodis/


www.nature.com/scientificreports/

1 2Scientific Reports | 5:11090 | DOI: 10.1038/srep11090

2.	 Skolnick, J. & Gao, M. Interplay of physics and evolution in the likely origin of protein biochemical function. PNAS 110, 
9344–9349 (2013).

3.	 von Eichborn, J. et al. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res. 39, D1060–1066 
(2011).

4.	 Paolini, G., Shapland, R., van Hoorn, W., Mason, J. & Hopkins, A. Global mapping of pharmacological space. Nat Biotechnol. 24, 
805–815 (2006).

5.	 Li, Y. & Jones, S. Drug repositioning for personalized medicine. Geome Med. 4, 27–50 (2012).
6.	 Arnott, S. in Oxford Handbook of Nucleic Acid Structure (ed S. Neidle) 1–38 (Oxford University Press, 1999).
7.	 Durbin, R. M. et al. A map of human genome variation from population scale sequencing. Nature 467, 1061–1073 (2010).
8.	 Wishart, D. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. . Nucl. Acid. Res. 34, 

D668–672 (2006).
9.	 Reardon, S. Project ranks billions of drug interactions. Nature 503, 449 (2013).

10.	 Gottlieb, A., Stein, G. Y., Ruppin, E. & Sharana, R. PREDICT: a method for inferring novel drug indications with application to 
personalized medicine. Mol. Syst. Biol. 7, 496–414 (2011).

11.	 Luo, H. et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-
protein interactome. Nucl. Acid. Res. 39, W492-498 (2011).

12.	 Cheng, F. et al. Predicting of drug-target interactions and drug repositioning via network-based inference. Plos Comput. Biol. 8, 
e1002503 (2012).

13.	 Hurle, M. R. et al. Computational Drug Repositioning: From Data to Therapeutics. Clinical Pharmacology & Therapeutics 93, 
335–341 (2013).

14.	 Loging, W., Rodriguez-Esteban, R., Hill, J., Freeman, T. & Miglietta, J. Cheminformatic/bioinformatic analysis of large corporate 
databases: Application to drug repurposing. Drug Discovery Today: Therapeutic Strategies 8, 109–116 (2011).

15.	 Sleigh, S. & Barton, C. Repurposing Strategies for Therapeutics. Pharm Med 24, 151–159 (2010).
16.	 Xu, K. & Cote, T. R. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. 

Brief Bioinform. 12, 341–345 (2011).
17.	 Keiser, M. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).
18.	 Kinnings, S. et al. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug 

and extensively drug resistant tuberculosis. Plos Comput. Biol. 5, e1000423 (2009).
19.	 Campillos, M., Kuhn, M., Gavin, A., Jensen, L. & Bork, P. Drug target identification using side-effect similarity. Science 321, 

263–266 (2008).
20.	 Chen, Y. & Zhi, D. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small 

molecule. Proteins 43, 217–226 (2001).
21.	 Yamanishi, Y., Araki, M., Gutteridge, A. & Honda, W. Prediction of drug-target interaction networks from the integration of 

chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008).
22.	 Blekley, K. & Yamanish, Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25, 

2397–2403 (2009).
23.	 Yamanishi, Y., Kotera, M., Kanehisa, M. & Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological 

data in an integrated framework. Bioinformatics 26, i246–i254 (2010).
24.	 Laarhoven, T. v., Nabuurs, S. & Marchioro, E. Gaussain interaction profile kernel for predicting drug-target interaction. 

Bioinformatics 27, 3036–3043 (2011).
25.	 Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–368 (2012).
26.	 Kuhn, M. et al. STITCH 4: integration of protein–chemical interactions with user data. Nucl. Acid. Res. 42, D401–D407 (2014).
27.	 Laarhoven, T. v. & Marchioro, E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor 

profile. Plos One 8, e66952 (2013).
28.	 Mei, J., Kwoh, C., Li, X. & Zheng, J. Drug-target interaction prediction by learning from local information and neighbors. 

Bioinformatics 29, 238–245 (2013).
29.	 Kim, R. & Skolnick, J. Assessment of programs for ligand binding affinity prediction. Journal of Computational Chemistry 29, 

1316–1331 (2008).
30.	 Ballester, P. J. & Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to 

molecular docking. Bioinformatics 26, 1169–1175 (2010).
31.	 Zhou, H. & Skolnick, J. FINDSITEcomb: A Threading/Structure-Based, Proteomic-Scale Virtual Ligand Screening Approach. 

Journal of Chemical Information and Modeling 53, 230–240 (2013).
32.	 Srinivasan, B., Zhou, H., Kubanek, J. & Skolnick, J. Experimental validation of FINDSITEcomb virtual ligand screening results 

for eight proteins yields novel nanomolar and picomolar binders. Journal of Cheminformatics 6, 16–29 (2014).
33.	 Kuhn, M. et al. Systematic identification of proteins that elicit drug side effects. Mol. Syst Biol. 9, 663 (2013).
34.	 Iwata, H. et al. Inferring protein domains associated with drug side effects based on drug-target interaction network. BMC 

Systems Biology 7, S18 (2013).
35.	 Yamanishi, Y., Pauwels, E. & Kotera, M. Drug side-effect prediction based on the integration of chemical and biological spaces. 

J. Chem Inf. Model 52, 3284–3292 (2012).
36.	 Rogers, D. J. & Tanimoto, T. T. A Computer Program for Classifying Plants. Science 132, 1115–1118 (1960).
37.	 Patterson, D. E., Cramer, R. D., Ferguson, A. M., Clark, R. D. & Weinberger, L. E. Neighborhood Behavior: A Useful Concept 

for Validation of “Molecular Diversity” Descriptors. Journal of Medicinal Chemistry 39, 3049–3059 (1996).
38.	 Maggiora, G., Vogt, M., Stumpfe, D. & Bajorath, J. Molecular Similarity in Medicinal Chemistry. Journal of Medicinal Chemistry 

57, 3186–3104 (2014).
39.	 Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and 

Decoys for Better Benchmarking. J. Med. Chem. 55, 6582–6594 (2012).
40.	 Zhang, Y. & Skolnick, J. A scoring function for the automated assessment of protein structure template quality. Proteins 57, 

702–710 (2004).
41.	 Zhou, H. & Skolnick, J. FINDSITEX: A Structure-Based, Small Molecule Virtual Screening Approach with Application to All 

Identified Human GPCRs. Molecular Pharmaceutics 9, 1775–1784 (2012).
42.	 Xu, J. & Zhang, Y. How significant is a protein structure similarity with TM-score =  0.5? Bioinformatics 26, 889–895 (2010).
43.	 Kuhn, M., Campillos, M., Letunic, I., Jensen, L. & Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst 

Biol. 6, 343 (2010).
44.	 Cobanoglu, M. C., Liu, C., Hu, F., Oltvai, Z. N. & Bahar, I. Predicting Drug–Target Interactions Using Probabilistic Matrix 

Factorization. J Chem Inf Model 53, 3393–3409 (2013).
45.	 Huang, N., Brian, K. S. & Irwin, J. J. Benchmarking Sets for Molecular Docking. J. Med. Chem. 49, 6789–6801 (2006).
46.	 Brylinski, M. & Skolnick, J. FINDSITE: A threading-based method for ligand-binding site prediction and functional annotation. 

Proc Natl Acad Science 105, 129–134 (2008).



www.nature.com/scientificreports/

13Scientific Reports | 5:11090 | DOI: 10.1038/srep11090

47.	 Brylinski, M. & Skolnick, J. FINDSITELHM: a threading-based approach to ligand homology modeling. PLoS computational 
biology 5, e1000405 (2009).

48.	 Zhang, Y. & Skolnick, J. SPICKER: A Clustering Approach to Identify Near-Native Protein Folds Journal of Computational 
Chemistry 25, 865–871 (2004).

49.	 Zhang, Y. & Skolnick, J. Automated structure prediction of weakly homologous proteins on genomic scale. Proc. Natl. Acad. Sci. 
(USA) 101, 7594–7599 (2004).

50.	 Bernstein, F. C. et al. The Protein Data Bank: A Computer-based Archival File for Macromolecular Structures. J. Mol. Biol. 112, 
535–542 (1977).

51.	 Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucl. Acid. Res. 40, D1100–1107 (2012).
52.	 Tanimoto, T. T. An elementary mathematical theory of classification and prediction. IBM Interanl Report (1958).
53.	 Anonymous. (Daylight Chemical Information Systems,Inc, Aliso Viejo, CA, 2007).
54.	 Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today 11, 1046–1053 (2006).
55.	 Pandit, S. & Skolnick, J. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-

score. BMC Bioinformatics 9, 531–541 (2008).
56.	 Henikoff, S. & Henikoff, J. G. Amino Acid Substitution Matrices from Protein Blocks. PNAS 89, 10915–10919 (1992).
57.	 Gao, M. & Skolnick, J. APoc: large-scale identification of similar protein pockets. Bioinformatics 29, 597–604 (2013).
58.	 Gao, M. & Skolnick, J. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism 

for pocket formation. PNAS 109, 3784–3789 (2012).
59.	 Vladimir, N. V. The Nature of Statistical Learning Theory. Springer, 1995. (Springer, 1995).

Acknowledgements
The authors thank Dr. Bartosz Ilkowski for managing the cluster on which this work was conducted. 
Funding: This work is supported by grant Nos. GM-37408 and GM-48835 of the Division of General 
Medical Sciences of the National Institutes of Health.

Author Contributions
H.Z., M.G. and J.S. wrote the main manuscript text. H.Z. and M.G. prepared figures. All authors reviewed 
the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhou, H. et al. Comprehensive prediction of drug-protein interactions and 
side effects for the human proteome. Sci. Rep. 5, 11090; doi: 10.1038/srep11090 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Comprehensive prediction of drug-protein interactions and side effects for the human proteome

	Results

	Prediction of drug-protein interactions. 
	Comparison of FINDSITEcomb with BLM-NII on the DrugBank set. 
	Dependence of FINDSITEcomb ‘s performance on the mTC cutoff value. 
	Virtual target screening of DrugBank drugs against the human proteome. 
	Repurposing of drugs to treat new diseases. 

	Prediction of drug and target side effects across the human proteome. 
	Benchmarking results. 
	Drug and target side effect predictions for the human proteome. 
	Drug killing index. 

	DR. PRODIS drug, protein, disease and side effect webserver. 

	Discussion

	Materials and methods

	Preparation of target and template libraries for FINDSITEcomb. 
	Modeling of the structures in the human proteome. 

	Methods for predicting drug-protein target interactions. 
	FINDSITEcomb. 
	Structure-pocket and structure-structure comparison procedures. 
	BLM-NII Implementation. 

	Benchmark sets for the assessment of drug-protein interactions. 
	DrugBank benchmark set. 

	Drug and target side effect predictions. 
	Drug & target side effects. 
	Killing index of a drug. 

	Data Availability. 

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ An illustration of the DR.
	﻿﻿Figure﻿ 2﻿﻿.﻿﻿ ﻿ Average per drug: (a) precision vs.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Dependence of “observed” protein target prediction precision on the number of known targets at mTC cutoff = 0.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ For the human proteome: (a) predicted drug distribution vs.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Number of protein targets vs.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Dependence of the cumulative fraction of drugs being withdrawn, illicit & investigational on killing index.
	﻿Table 1﻿﻿. ﻿  Comparison of FINDSITEcomb with SVM BLM-NII on the 5639 DrugBank set.
	﻿Table 2﻿﻿. ﻿  Assessment of drug side effect prediction for 996 drugs.



 
    
       
          application/pdf
          
             
                Comprehensive prediction of drug-protein interactions and side effects for the human proteome
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11090
            
         
          
             
                Hongyi Zhou
                Mu Gao
                Jeffrey Skolnick
            
         
          doi:10.1038/srep11090
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep11090
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep11090
            
         
      
       
          
          
          
             
                doi:10.1038/srep11090
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11090
            
         
          
          
      
       
       
          True
      
   




