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Abstract

Objective—The roles that energy expenditure (EE) and nutrient oxidation play in a 

predisposition for weight gain in humans remains unclear.

Subjects—We measured EE and respiratory exchange ratio (RER) in non-obese obesity prone 

(OP; n=22) and obesity resistant (OR; n=30) men and women following a eucaloric diet and after 

3 days of overfeeding (1.4x basal energy).

Results—Twenty four hour EE, adjusted for fat free mass and sex, measured while consuming a 

eucaloric diet was not different between OP and OR subjects (2367 ± 80 vs. 2285 ± 98 kcals; 

p=0.53). Following overfeeding, EE increased in both OP and OR (OP: 2506 ± 63.7, p<0.01; OR: 

2386 ± 99 kcals, p<0.05). Overfeeding resulted in an increase in 24h RER (OP: 0.857 ± 0.01 to 

0.893 ± 0.01, p=0.01; OR: 0.852 ± 0.01 to 0.886 ± 0.01, p=0.005), with no difference between 

groups in either the eucaloric or overfeeding conditions (p>0.05). Nighttime RER 

(~10pm-6:30am) did not change with overfeeding in OR (0.823 ± 0.02 vs. 0.837 ± 0.01, p=0.29), 

but increased significantly in OP subjects (0.798 ± 0.15 to 0.839 ± 0.15, p<0.05), suggesting that 

fat oxidation during the night was down-regulated to a greater extent in OP subjects following a 

brief period of overfeeding, as compared to OR subjects who appeared to maintain their usual rate 

of fat oxidation. Protein oxidation increased significantly in both OP (p<0.001) and OR (p<0.01) 

with overfeeding, with no differences between OP and OR.

Conclusion—These results support the idea that overfeeding a mixed diet results in increases in 

EE and RER, but these increases in EE and RER are likely not responsible for obesity resistance. 

Adaptive responses to overfeeding that occur during the night may play a role in opposing weight 

gain.
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INTRODUCTION

We have been intrigued by the fact that many people maintain a normal weight over their 

lifetime despite living in the same obesogenic environment that promotes weight gain in 

most (1). Factors that lead to differences in weight gain between individuals are both 

behavioral and metabolic (2, 3). Identifying intrinsic metabolic characteristics that 

predispose some individuals to weight gain may help target prevention efforts to those most 

likely to gain weight over time. In addition, identifying metabolic factors that protect against 

weight gain may lay the groundwork for novel therapeutic approaches. While obesity results 

from an imbalance between energy intake (EI) and energy expenditure (EE), the relative 

importance that differences in EE play in predisposing to or protecting from excessive 

weight gain remains controversial (4-6). We wondered if changes in EE produced by a brief 

period of overfeeding might reveal adaptive responses that relate to a predisposition to 

weight gain.

Variability in substrate oxidation may be another mechanism underlying a predisposition to 

weight gain. Longitudinal data show that individuals who rely less on lipid as an energy 

substrate have a greater tendency to gain body weight and body fat relative to those who 

oxidize lipid more readily (7, 8). In particular, the ability of an individual to increase or 

maintain fat oxidation following periods of overeating may be important in that person’s 

ability to resist body fat gain over time. While a number of previous studies have examined 

the effects of long term overfeeding lasting weeks (9, 10), less is known about the metabolic 

responses to short term overfeeding in constitutionally thin individuals as compared to those 

predisposed to obesity. It is possible that individuals predisposed to obesity may not be able 

to maintain fat oxidation when faced with brief periods of overeating (e.g. 1-3 days), 

common in today’s lifestyle with vacations, holidays, celebrations, etc. The result of this 

inability to adapt to short term overfeeding would be a state of positive energy and fat 

balance which, if not compensated for by subsequent reductions in EI or increases in EE, 

would result in cumulative gains in body weight and fat.

The Energy Adaptations over Time Study (EATS) was designed to examine the role that 

adaptive responses to short term overfeeding might play in predisposing to or protecting 

against weight gain. Some of the subjects enrolled came from families where obesity was a 

problem and who identified themselves as obese prone (OP). Others came from families 

where obesity was not a problem and identified themselves as constitutively thin or obesity 

resistant (OR)(11). The aim of this portion of the EATS was to determine if EE and nutrient 

oxidation were different between OP and OR subjects either during controlled eucaloric 

feeding or following 3 days of controlled overfeeding. We hypothesized a) 24 hr EE would 

increase more in response to overfeeding in OR compared to OP subjects, and that b) in 

response to overfeeding but not eucaloric feeding, OP individuals would demonstrate a 
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greater reliance on carbohydrate and lesser reliance on fat as a fuel source as compared to 

OR subjects. The net effect of these responses would be to promote fat storage in OP as 

compared to OR individuals following short-term overfeeding.

MATERIALS AND METHODS

Subjects

Non-obese men and women ages 25-35 years were empirically classified as OR or OP based 

on personal and family weight history. OR subjects defined themselves as “constitutionally 

thin” based on their perception of difficulty gaining weight despite not expending any effort 

to maintain their weight. These individuals responded to advertisements for “naturally thin 

people”, reported no history of ever being overweight and self-reported a sense that their 

weight regulation was “different” from other people. They also reported having no 1st 

degree relatives with a BMI >30 kg/m2. OP subjects reported having to work to maintain 

their weight by being conscientious about their food intake and/or activity, but were not 

actively attempting to lose weight and were weight stable for at least 3 months prior to being 

studied. These subjects also reported at least one 1st degree relative with BMI >30 kg/m2.

Preliminary assessments

At baseline, all subjects underwent a physical examination and biochemical testing to 

exclude medical illness. Subjects were excluded if they took medications known to affect 

weight or lipid metabolism. They completed questionnaires to exclude eating disorders 

(12-14) or psychological dysfunction (15, 16). To assess habitual physical activity, subjects 

wore a pedometer (Digi-Walker, New-Lifestyles, Inc. Lee’s Summit, MO) for 1 week. Data 

on physical activity levels in these subjects using a physical activity monitoring system has 

been previously reported (11). Body composition was measured by DXA (Hologic 

Discovery-W, Bedford, MA). Resting EE was measured by hood indirect calorimetry 

(ParvoMedics Model: TrueOne 2400, Sandy, UT) and 24-hour energy expenditure by whole 

room calorimetry (17). The energy requirements for free living eucaloric feeding were 

determined based on REE derived from the average of 1) direct measurement by hood 

indirect calorimetry and 2) an estimation using the following equation: [(23.9 x FFM in kg) 

+ 372], where FFM was measured by DXA (18). The REE determined from those 2 methods 

was then multiplied by an activity factor (1.4-1.65), which was based on subjects’ average 

steps taken during the week of baseline pedometer monitoring. To determine energy 

requirements for the chamber stays during the experimental interventions, TEE was directly 

measured during a “baseline” 23-hr stay in the room calorimeter (independent of and before 

the study periods reported). This value for TEE in the chamber was compared to the “free 

living” TEE estimated by the method outlined above. TEE in the room calorimeter was 

found to be about 8% less than the TEE calculated from free living TEE values. Therefore, 

subjects were fed 8% fewer calories on the day that they were in the calorimeter.

Study Design

Subjects were studied on the Clinical Translational Research Center (CTRC) at the 

University of Colorado Anschutz Medical Campus on two occasions separated by at least 1 

month. For the first 4 days of each study period, subjects consumed a eucaloric “run-in diet” 
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(20% protein, 34% fat, 46% carbohydrate) to ensure energy and nutrient balance. For the 

next 3 days, participants consumed, in random order, either a controlled eucaloric (EU) diet 

or a controlled hypercaloric diet (OF) containing 1.4 X estimated energy needs. The 

macronutrient content of each study diet was the same as that of the lead in diet and was 

consumed under free-living conditions. During each study period, we confirmed that 

subjects consumed only food and beverages provided by the CTRC metabolic kitchen.

Calorimetry Days

On the third day of each controlled diet period, subjects spent 23 hours in the whole-room 

calorimeter. The CTRC’s whole-room calorimeter was used to measure substrate oxidation 

and 24-h EE. Data on EE and substrate oxidation collected over the 23-h time window 

(0800-0700) were extrapolated to 24 h for purposes of data analysis. During each stay in the 

calorimeter, subjects consumed a diet estimated to achieve energy balance or to produce a 

40% overfed state. O2 consumption and CO2 production were determined from the air flow 

rates and differences in gas concentrations between air entering and air exiting the 

calorimeter, as previously described (19). Energy expenditure and substrate oxidation were 

calculated from O2 consumption and RER based on equations described by Jequier et al. 

(20). Protein oxidation was estimated from 24-h urinary nitrogen excretion, and 

carbohydrate and fat oxidation were estimated using NP-RER values (21). Values for all 

indices were averaged over 1-minute intervals and recorded to a data file.

On the study day, breakfast (25% of daily energy) was given to subjects at 0730, which was 

considered time zero, and consumed within 20 min. Participants then entered the calorimeter 

at 0800 h. Lunch and dinner were given at 1200 and 1700 (both meals contained 30% of 

daily energy), with a snack (15% of daily energy) given at 2000. All meals were consumed 

within 30 min of being served. The subjects went to bed at 2200 and subjects exited the 

chamber at 0700 h the following morning. In order to approximate normal activity levels 

outside the calorimeter, each subject performed two bouts of stepping. The objective of this 

exercise was to increase the EE of the subject in the calorimeter to roughly the same level 

that he/she would normally experience under free-living conditions. Specifically, starting at 

1430 and then again at 1630 h, subjects performed 10-min of walking, followed by 10 min 

of sitting quietly, then 10 min of stepping and finally 10 min of sitting. Rates of walking and 

stepping were specified and constant for all subjects.

Statistical Analyses

Data were analyzed using SPSS version 19.0 (Cary, NC). A repeated measures analysis of 

variance (ANOVA) was used to examine differences in macronutrient oxidation and EE 

during the OF and EU study periods among OP and OR subjects, with p-values identified 

for interactions and main effects of group (OP vs. OR) and diet phase (EU vs. OF). For 

significant interactions, Bonferroni post-hoc tests were performed to determine within group 

differences between conditions. If the interaction terms were non-significant, then the main 

effects of group and diet phase were evaluated. Energy expenditure was adjusted for sex and 

FFM, while RER was adjusted for age, FFM and sex, based on these variables being 

independently correlated to the outcome variables. Adjusted means and standard errors for 

energy expenditure (EE) and RER were reported for the total 24h period, during the night, 
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and during the daytime in both EU and OF study periods. Values for EE during the daytime 

and nighttime periods were extrapolated to 24h. In making sex-based comparisons, FFM 

was used as a covariate in the ANOVA. For correlation analysis, we used bivariate 

Pearson’s correlation analysis, using a two-tailed test of significance.

The daytime period began when subjects entered the calorimeter, and it ended when the 

nighttime period began, which was at approximately 10:00 pm, but was individually 

determined from the calorimetry data by examining the drop and stabilization of EE 

(presumably when subjects were asleep) and rise and stabilization of EE (presumably when 

subjects awoke), which occurred at roughly 6:30 am. A half hour time period in the middle 

of the night (~2:00am-2:30am, based on elevated EE) was excluded, as subjects were 

awakened for a blood sample; we therefore also analyzed the time from 3:30am-5:00am 

(referred to below as “late night”) since sleep was uninterrupted during this time. The 

statistical significance was set at p<0.05, with two-tailed tests used for changes in EE and 

RER.

RESULTS

Subject characteristics are displayed in Table 1. Fifty-two subjects (22 OP, 30 OR) 

completed both EU and OF study periods, with no drop outs once subjects were initially 

enrolled in the study. Subjects in the two groups were non-obese (BMI <27kg/m2 for all 

subjects) and matched with regards to age, fat-free mass, and RMR (Table 1). Obesity prone 

subjects had significantly higher FM, trunk fat, percent body fat and BMI compared to OR 

subjects (p<0.05) although the mean BMI in the OP group (23.5 ± 2.6) was well below the 

cutoff for overweight. Body weight did not change between the eucaloric (66.63kg ± 1.6) 

and overfed (66.57kg ± 1.6) study periods for all subjects (p>0.05), with no differences 

between OP and OR for the change in body weight between study periods (p>0.05).

Energy Expenditure

Table 2 displays EE for all subjects during the two diet phases. Energy expenditure was not 

significantly different between OP and OR subjects during the eucaloric or overfed study 

periods (p>0.05), and there was no significant group x diet interaction (p>0.05). Short term 

overfeeding led to a significant increase in EE for both OP (p<0.01) and OR (p=0.04) 

subjects for both 24h EE and EE during daytime hours (OP: p<0.01; OR: p=0.02). However, 

nighttime and late night EE did not significantly change following overfeeding in either 

group (p>0.05). The frequency distribution of the change in 24h EE for OP and OR is shown 

in Figure 1. There was no difference in the distribution of change in 24h EE between OP and 

OR (+139 ± 48 vs. +101 ± 44 kcals, respectively, p=0.6). Since overfeeding for several 

weeks can lead to an increase in lean body mass (10), we examined the relationships 

between 24hEE and protein oxidation. While a significant correlation was found between 

24h EE and 24h protein oxidation in both the EU (OP: r=0.6, p<0.01; OR: r=0.4, p<0.05) 

and OF (OP: r=0.7, p=0.001; OR: r=0.6, p<0.001) periods in both groups, we found no 

correlation between the change in 24h EE and the change in protein oxidation in either OP 

or OR subjects (r-value was less than 0.1, p>0.6 for both groups) or in the group taken as a 

whole.
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Differences between energy expenditure in men and women were also examined after 

controlling for FFM. There was not a significant sex x diet phase interaction (p=0.28) for 

24h EE; nor were there significant differences between sex during the eucaloric (M: 2244 

±102; W:2382 ±87 kcals, p>0.05) study period; however during the overfed period, females 

had greater 24h EE compared to males (M: 2289 ± 80; W: 2575± 68 kcals, p<0.01) when all 

females were compared to all males. We found that when men were compared to women 

within each obesity risk group, there were no sex-based differences in the OP group, and the 

OR group only differed in night time EE during the OF condition, with women having 

significantly greater night time EE than men (1594 ± 67 vs. 1321 ± 60, p<0.05).

Pedometers were worn in the calorimeter to measure physical activity. There was a 

significant group x diet interaction (p<0.05) for number of steps taken while in the 

calorimeter. OP subjects significantly decreased their steps in the room calorimeter in the 

overfed as compared to the eucaloric study phases (EU: 5385±400; OF: 4409±460 steps, 

p=0.02), while OR subjects did not significantly change their total steps taken from 

eucaloric to overfed study periods (5081± 331to 5176±282 steps, respectively, p=0.78). 

However, steps taken by OP subjects did not significantly differ from OR in the eucaloric 

(p=0.56) or overfed study periods (p=0.07). In addition, men and women did not differ in 

the number of steps taken while in the calorimeter or in the change in daily steps taken 

between the EU and OF conditions (p>0.05).

These results indicate that overfeeding does not result in greater increases in EE in OR as 

compared to OP subjects, suggesting that increases in EE following overfeeding do not 

contribute to obesity resistance.

Macronutrient oxidation

Short term overfeeding led to significant changes in RER (Table 3). Overfeeding resulted in 

higher non-protein RER for both OP and OR subjects during the total 24h period compared 

to the eucaloric study period, with no significant group x diet phase interaction (p=0.94), and 

no differences between groups for either diet phase (p>0.05). For RER during the daytime, 

there was not a significant group x diet interaction (p=0.96) or main effect of group 

(p=0.66), but there was a significant main effect of diet phase, with RER increasing with 

overfeeding (p=0.01). This change in RER with overfeeding was not statistically significant 

in OP, (p=0.14), but did reach statistical significance in OR subjects (p=0.04), with no 

differences between OP and OR during either study period. RER during the nighttime 

increased significantly with overfeeding only in OP (p=0.04) but not in OR (p=0.31), 

although the interaction was not significant (p=0.26). For late night (3:30-5am) RER, there 

was not a significant group x diet interaction (p=0.49) or main effect of group (p=0.43), but 

there was a significant main effect of diet phase, with RER increasing with overfeeding 

(p=0.01). The late night RER increased significantly with overfeeding only in OP (p=0.03) 

and not in OR (p=0.20).

Substrate oxidation was calculated from oxygen consumption and RER using previously 

described equations (20). Figure 2 shows that overfeeding led to a significant increase in 

carbohydrate oxidation over a 24h period in OP (1017.9±79.7 vs. 1394.1±100.0 kcals, 

p<0.01) and OR (968.9±91.4 vs. 1239.9±74.0 kcals, p<0.01) subjects, with no difference 
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between OP and OR for either study phase (p>0.05). Protein oxidation (as estimated by 

urinary urea nitrogen excretion) also significantly increased with overfeeding in both groups 

(OP: 423.7±22.7 vs. 527.4±26.3 kcals, p<0.001; OR: 467.3±20.8 vs. 544.5±22.7 kcals, 

p<0.01), with no difference between OP and OR in either study phase (p>0.05) (Figure 2). 

Fat oxidation decreased with overfeeding in OP (911.3±88.2 vs. 650.2±81.3 kcals, p=0.01) 

and OR (898.3±100.9 vs. 674.8±71.7 kcals, p=0.02), also with no difference between OP 

and OR in either study phase (p>0.05) (Figure 2).

Differences between RER in men and women were examined after controlling for FFM. We 

found that when all men were compared to all women, there was no significant sex x diet 

phase interaction or main effect of sex (p>0.05), and there were no significant differences in 

24h RER or for any time segment throughout the day (p>0.05). In addition, there were no 

significant differences in men or women in the change in RER for any time point (p>0.05).

These results suggest that overfeeding a mixed diet leads to an overall increase in RER in 

both OP and OR groups, with small differences seen in the changes during the day vs 

nighttime. However, there were no significant differences between OP and OR at any time 

over the entire 24h period. These differences between study phases indicate that more 

carbohydrate, more protein, and less fat were oxidized throughout the day when subjects 

were overfed compared to what was oxidized when subjects were in energy balance. OR 

subjects did not have a change in their RER during the nighttime when the eucaloric study 

period was compared to the overfed period; whereas, OP subjects did not significantly alter 

their daytime RER with overfeeding (changes in protein oxidation were only measured for 

the 24h period, not day vs night). Taken together, we found that there are only modest 

differences in macronutrient oxidation with overfeeding in OP and OR subjects, and these 

slight differences in response to overfeeding may be attributable to differences in substrate 

oxidation during the day vs. night time.

DISCUSSION

The main findings of this study are that non-obese individuals who are prone or resistant to 

obesity consuming a eucaloric diet do not significantly differ in their EE or macronutrient 

oxidation. Following a period of short-term overfeeding, 24 h EE increased in all subjects 

which is consistent with what previous overfeeding studies have shown (22, 23). In contrast 

to what was originally hypothesized, following overfeeding, 24 h EE did not increase to a 

greater extent in OR as compared to OP subjects. Short term overfeeding also resulted in an 

increase in RER and urinary nitrogen excretion, suggesting an increase in carbohydrate and 

protein oxidation and a decrease in fat oxidation in both OP and OR subjects as compared to 

levels observed during the eucaloric diet phase. These findings are consistent with what has 

previously been shown with overfeeding a mixed diet (22, 24). It has been shown that when 

obese individuals are overfed, they have a greater suppression of fat oxidation than lean 

overfed subjects (25). However, this is the first set of data to show that non-obese 

individuals who are prone or resistant to obesity have a similar change in fuel utilization 

over 24h following short-term overfeeding. Taken together these data do not support the 

idea that OR individuals have unique metabolic adaptive responses to overfeeding that help 

them prevent weight gain. However, when daytime and nighttime periods were examined 
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separately, a somewhat different picture was seen. While 24h fat oxidation fell in all 

subjects following overfeeding, there was no decrease in nighttime fat oxidation in OR 

subjects with overfeeding. These results suggest that OP individuals may have a shift in 

metabolism at night that results in lower fat oxidation following a period of overfeeding 

compared to individuals resistant to obesity. Of note, protein oxidation during the night was 

not specifically measured in this study, and to our knowledge, no studies have examined 

how nocturnal protein metabolism responds to overfeeding in obese or obese prone subjects. 

Although the differences in the responses in nocturnal metabolism to overfeeding in OP and 

OR individuals were small in comparison to the energy and fat load delivered during the 

period of overfeeding, these changes along with other maladaptive responses, including 

changes in protein oxidation, may contribute to future weight gain in OP individuals 

following overfeeding.

The role that differences in EE play in weight gain is controversial (26). Studies in Pima 

Indians initially suggested that low EE predisposes to weight gain (27, 28). This relationship 

was also found in individuals with mutations in the MC4R (29) and were also initially found 

in children born to obese parents (30). However, more recently this relationship has not been 

found in a number of populations prone to weight gain(31-33). Counter intuitively a number 

of well-done studies have found that higher levels of EE are associated with weight gain (5, 

34). We wondered whether short term overfeeding would bring out differences between OP 

and OR individuals that might not have been seen when studies were conducted in a 

eucaloric state. Previous studies have shown that EE increases to a variable degree following 

overfeeding and that some of the observed differences might be related to changes in 

spontaneous physical activity (9). In a prior analysis of direct measures of physical activity 

from this same cohort of subjects, we found minimal evidence for this view (11). Overall we 

did not find evidence in support of the view that changes in EE in response to overfeeding 

protect against weight gain, a view held by many constitutively thin individuals.

The idea that reduced levels of fat oxidation are causally related to weight gain has also 

gained traction recently (35, 36). Studies in Pima Indians support this view (37) as do some 

studies carried out in reduced obese individuals (38). However, studies in groups at risk for 

weight gain do not support this hypothesis (39). We previously conducted studies in animal 

models of obesity which led us to the idea that reductions in the oxidation of dietary fat (40) 

especially following a period of passive overfeeding (41) predispose to weight gain. Here 

again we reasoned that a period of overfeeding might bring out differences in fat oxidation 

between OP and OR individuals. The traditional view is that if fat is not oxidized it would 

be stored promoting an increase in fat mass. However, this assumes that energy intake or fat 

intake does not change. For energy balance to occur there must be communication between 

the periphery and the central nervous system about the state of energy/nutrient balance (42). 

For a reduction in fat oxidation to be causally related to weight gain, it would have to be a 

sign of a metabolic alteration that results in a reduction in the accuracy of information on the 

peripheral state of energy balance to the brain.

The present study suggests that the metabolic differences between OP and OR individuals 

either in the eucaloric state or following short term overfeeding are modest. These results 

may highlight the role that adaptive responses to overfeeding that occur during day vs. night, 
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including relative differences in fat oxidation, may play in opposing weight gain. A number 

of studies have highlighted the adverse effects of reduced sleep time and shift work on 

weight and metabolic health (43). However the exact role that sleep plays in maintaining 

normal metabolism is not clear. Virtually all tissues of the body express clock genes that 

regulate circadian rhythms (44). Presumably these genes regulate metabolic processes in 

response to the typical pattern of food consumption during daytime and fasting during the 

night. While the body needs to respond quickly to acute metabolic challenges like bouts of 

exercise and meal ingestion during the day, the nighttime is a period of relative stability 

during which the body may integrate the net changes in energy balance that occurred during 

the previous day and “reset” the internal state in preparation for the next day. It may be that 

important insights into the adaptive responses to energy imbalance, will come from studies 

of metabolic processes and hormones at night.

There are a number of important limitations of the current study. While a strength of the 

study is that we measured metabolic responses to overfeeding in people who were not yet 

obese but had a propensity to gain weight or remain thin, the methods used to categorizing 

subjects as OP or OR may not be entirely accurate. Much of the categorization relied on the 

subjects’ perception of their tendency to gain weight or not. We are following these 

individuals’ weight prospectively over time, and we have already seen individuals who were 

initially categorized as OP who made a conscious decision to lead a healthy lifestyle to 

minimize weight gain so that they would not develop the health problems that they had seen 

family members endure. Conversely, several OR subjects have undergone life events, such 

as changes in employment and family issues, that resulted in substantial weight gain. These 

events demonstrate that longitudinally determined weight gain may not be a better reflection 

of a biological predisposition than subjects’ own sense of their predisposition to weight gain. 

A second limitation is the fact that urine was collected continuously over 24 h for urea 

nitrogen and not separated as daytime and nighttime samples; therefore, we cannot comment 

on diurnal variations in protein oxidation which may in part explain differences seen in 

nutrient oxidation between day and night. A final limitation is the restrictions on physical 

activity imposed by the room calorimeter. Differences in physical activity could 

significantly impact 24 h EE in free living individuals. However, as noted above, we did not 

find evidence of this in direct measures of physical activity conducted in these subjects in 

free-living conditions.

In summary, the results of this study support the idea that overfeeding results in increases in 

EE which partially offset the positive energy balance associated with overfeeding. The 

results confirm the important impact that positive energy balance plays in nutrient 

preference promoting carbohydrate and protein oxidation and concomitantly reducing fat 

oxidation. The results do not support the widely held belief that constitutively thin people 

have higher metabolic rates and respond to overfeeding with protective increases in EE and 

fat oxidation. The main differences between OP and OR subjects identified following 

overfeeding occurred in diurnal and nocturnal metabolism. It may be that future studies 

should focus on the impact of states of energy imbalance on nocturnal or diurnal metabolism 

and related hormones and the role that these changes play in the regulation of body weight.
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Figure 1. 
Frequency Distribution for change in 24h EE (24h EE in OF-EU study phases) in Obese 

Prone (OP) and Obese Resistant (OR) subjects.
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Figure 2. 
Macronutrient Oxidation over 24h in Obese Prone (OP) and Obese Resistant (OR) subjects 

in the Eucaloric (EU) and Overfed (OF) study periods. $ p<0.001, *p<0.01, # p<0.05 for EU 

vs. OF within obesity group for each macronutrient.
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Table 1

Subject Characteristics. Values are means ± SD.

Obese Prone (OP) Obese Resistant (OR)

Males Females Males Females

n 8 14 16 14

Age 28.6 ± 2.2 28.4 ± 2.2 28.1 ± 2.9 27.9 ± 2.2

BMI (kg/m2) 24.8 ± 1.6 22.7 ± 1.8 21.7± 2.2# 19.6 ± 1.7°

Fat Free Mass (kg) 62.8 ± 2.6 44.6 ± 4.4 60.0 ± 7.2 41.4 ± 4.8

Fat Mass (kg) 14.8 ± 4.4 19.1 ± 4.8 11.0 ± 3.2* 12.9± 2.4°

Trunk fat (kg) 7.4 ± 2.7 8.3 ± 2.7 5.1 ± 1.6* 4.9 ± 1.2°

Body Fat (%) 18.8 ± 4.9 29.6 ± 4.7 15.3± 3.2* 23.7± 4.0°

Trunk Fat (% of body fat) 49.0 ± 5.4 42.9 ± 3.9 46.5 ± 2.2 38.5 ± 4.6

RMR (kcal/day) 1734 ± 126 1438± 180 1716 ± 246 1354 ± 186

Calorie intake EU 2684 ± 117 2143 ± 261 2689± 323 2000 ± 186

Calorie intake OF 3483 ± 396 3138 ± 391 3239 ± 368 3165± 369

*
p<0.05,

#
p<0.01

°
p<0.001 significant difference between obesity group, within sex
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Table 2

Energy Expenditure (EE) in the whole-room calorimeter for the total 24h period, during daytime period only, 

during the nighttime, and late night (3:30am-5am) for Obese Prone (OP) and Obese Resistant (OR) subjects in 

the Eucaloric (EU) and Overfed (OF) study periods. Values are means and standard errors extrapolated to 24 

hours. Late night values were not extrapolated to 24h.

Total EE
(kcal)

Daytime EE
(kcal)

Night time
EE (kcal)

Late night
EE (kcal)

Obese Prone-EU 2372 ±66 2904 ± 78 1361 ± 60 81.4 ± 3.8

Obese Prone-OF 2482 ± 51# 3069 ± 75# 1448 ± 43 82.9 ± 2.6

 Percent change +4.6% ± 2.0 +5.7% ± 2.0 +6.4% ± 5.3 +1.8% ± 5.6

Obese Resistant-EU 2283 ± 58 2781 ± 68 1376 ± 52 79.7 ± 3.3

Obese Resistant-OF 2393 ± 44* 2909 ± 65* 1456 ± 38 85.1 ± 2.3

 Percent change +4.8% ± 2.5 +4.6% ± 2.2 +5.8% ± 4.6 +6.7% ± 4.0

*
p<0.05

#
p<0.01 for EU vs. OF within obesity group
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Table 3

Respiratory Exchange Ratio (RER) in the whole-room calorimeter for the total 24h period, during daytime 

period only, during the nighttime, and late night (3:30am- 5am) for Obese Prone (OP) and Obese Resistant 

(OR) subjects in the Eucaloric (EU) and Overfed (OF) study periods. Values are means and standard errors.

24H RER Daytime RER Night time
RER

Late night
RER

Obese Prone-EU 0.857 ± 0.01 0.870 ± 0.01 0.798 ± 0.15 0.795 ± 0.01

Obese Prone-OF 0.893 ± 0.01* 0.896 ± 0.02 0.839± 0.15# 0.841 ± 0.02#

Obese Resistant-EU 0.852 ± 0.01 0.865 ± 0.01 0.823 ± 0.13 0.812 ± 0.01

Obese Resistant-OF 0.886 ± 0.01* 0.898 ± 0.01# 0.837 ± 0.14 0.833 ± 0.01

*
p<0.05

#
p<0.01 for EU vs. OF within obesity group
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