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A B S T R A C T   

Exposure-response curves are among the most widely used tools of quantitative health risk assessment. However, 
we propose that exactly what they mean is usually left ambiguous, making it impossible to answer such 
fundamental questions as whether and by how much reducing exposure by a stated amount would change 
average population risks and distributions of individual risks. Recent concepts and computational methods from 
causal artificial intelligence (CAI) and machine learning (ML) can be applied to clarify what an exposure- 
response curve means; what other variables are held fixed (and at what levels) in estimating it; and how 
much inter-individual variability there is around population average exposure-response curves. These advances 
in conceptual clarity and practical computational methods not only enable epidemiologists and risk analysis 
practitioners to better quantify population and individual exposure-response curves but also challenge them to 
specify exactly what exposure-response relationships they seek to quantify and communicate to risk managers 
and how to use the resulting information to improve risk management decisions.   

Introduction: What does an exposure-response curve mean? 

Exposure-response curves are among the most widely used tools of 
quantitative health risk assessment. Debates over their shapes, espe-
cially at low exposure concentration levels, have occupied countless 
journal articles and thousands of hours of deliberation in regulatory risk 
assessments and policy-making. Whether the expected number of 
adverse health effects per unit of exposure to a substance is estimated to 
be a linear, sublinear, supralinear, or threshold function may determine 
how much exposure to it is allowed. Acknowledging the enormous effort 
and large-scale collaborations that have gone into preparing such 
exposure-response curves, this paper turns to a fundamental interpretive 
question: What does an exposure-response curve mean? We propose that, 
despite their widespread acceptance in peer-reviewed reports and arti-
cles and use in informing applied public health risk assessments and 
regulatory scientific processes, what exposure-response functions mean 
is usually left importantly ambiguous at a fundamental conceptual and 
definitional level. They leave unanswered such fundamental questions 
as  

• How, if at all, would a proposed change in exposure change average 
population risk? (This is different from quantifying the estimated 
level of population risk for different observed or estimated levels of 
exposure, as discussed next.)  

• How would it change individual risks?  
• What is the distribution of individual exposure-response curves 

around a population average exposure-response curve?  
• What factors are assumed to be held fixed in preparing an exposure- 

response curve? At what levels are they assumed to be held fixed? 
Are these assumptions realistic?  

• In reality, how much do other factors (including unmeasured ones) 
differ for different observed levels of exposure? How do these dif-
ferences affect the exposure-response curve?  

• By how much would interventions that reduce pollution change 
other causally relevant variables (e.g., temperature, income, co- 
pollutants, co-morbidities, etc.) that also affect the response in an 
exposure-response curve? 

Without answers to these questions, it is (or should be) hard for the 
recipients of an exposure-response curve to guess what it might mean or 
how, if at all, it should be used to inform risk management decisions. 

The following sections seek to clarify these ambiguities and present 
methods for resolving them. To do so, they draw on concepts and 
methods that have been developed in causal artificial intelligence (CAI) 
and machine learning (ML) to support reasoning about how some vari-
ables depend on others and how changing some variables causes the 
probability distributions of others to change. 
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Exposure-response regression curves describe responses at 
different observed exposures 

A curve showing the conditional expected value of observed re-
sponses for each observed level of an exposure variable is called a 
regression curve. Regression curves can be estimated from observational 
data on exposures, response rates, and covariates by well-developed 
techniques. These include regression models relating exposure to 
continuous or discrete response variables; non-parametric smoothing 
regression models (e.g., spline or LOESS curves) if appropriate para-
metric regression models are unknown; and proportional hazards and 
other survival data analysis methods if the response variable is the time 
until an event such as death or diagnosis with a disease [27]. Regression 
curves are widely treated as if they had a causal interpretation: that 
reducing exposure would reduce the risk of response as described by the 
regression curve. However, in general, a regression curve does not 
predict the interventional causal effects caused by interventions that 
change exposure, but rather it describes the average responses for 
different observed levels of exposure under the conditions for which 
data were collected (undisturbed by potential future interventions) 
[7,12,22,31]. 

A point of departure: Correlation vs. causality 

The interpretation of a regression-based exposure-response curve is 
usually straightforward: it shows the model-predicted average level of 
the response variable in a population for each level of the exposure 
variable. All such plots involve assumptions.These range from the 
assumption that definitions and measurements of variable are stable 
enough to make plots informative to the assumption that patterns 
relating values of variables in past data will persist in future data. Visual 
interpretations of plots are often subjective, as is the decision of what to 
plot when there are many variables. Exposure-response curves are most 
easily interpreted if the population consists of individuals with accurate 
individual-level exposure, covariate, and response data, but this ideal 
level of granularity is seldom available. Regression-based exposure- 
response data can also be developed from other types of data such as 
time series showing daily deaths in an exposed population. 

The limitations of regression models are equally straightforward. A 
regression model does not explain why average population response 
rates are different for different levels of exposure. It does not explain or 
predict how or whether average population response rates would change 
in response to an intervention that changes exposure levels [22]. It is 
common practice to misinterpret the slope of a regression curve as 
describing the change in average response that would be caused per unit 
of change in exposure, but even under ideal conditions (correctly 
specified model, no errors-in-variables), the slope only describes the 
different average response rates observed at different levels of exposure. 
As demonstrated by Simpson’s Paradox, this information about differ-
ences in observed response rates for different levels of exposure does not 
necessarily have any implications for how, if at all, changing exposure 
would change response rates (ibid). For example, average daily con-
sumption of baby aspirin among people over 65 years old may be 
significantly positively associated with increased heart attack risk 
(because people at higher risk of heart disease, on doctor’s orders, might 
increase their consumption of baby aspirin), and yet reducing such 
consumption might increase heart attack risk, so that change in exposure 
is negatively associated with change in heart attack risk. 

It is widely appreciated among epidemiology theorists and statisti-
cians that regression coefficients do not distinguish between correlation 
and causation or between direct and indirect (mediated) causal effects of 
some variables on others. For example, suppose that eq. (1) describes an 
observed exposure-response relationship (on some appropriate exposure 
and response scales) for a population. 

Response = 100+ 0.5*Exposure (1) 

How would reducing Exposure from an initial level of 100 to a final 
level of 0 change Response, assuming that no other relevant variables 
change? A common misinterpretation of exposure-response models 
among some practitioners is that regression eq. 1 implies that reducing 
Exposure from 100 to 0 would reduce Response from 150 to 100. In re-
ality, model 1 has no implications for how or whether changing Exposure 
would change Response. For example, suppose that (perhaps unknown to 
the analyst) the underlying causal model relating past values of Exposure 
and Response is described by the pair of structural eqs. 2a and 2b with 
initial values of 100 for Exposure and Poverty. (The causal interpretation 
of a structural equation model is that changing an independent variable 
on its right side causes the dependent variable on the left to adjust to 
restore equality.) Eqs. 2a and 2b are chosen so that together they imply 
eq. 1. Then exogenously reducing Exposure from 100 to 0 (without 
changing Poverty, so that the historical relationship in 2a is superseded 
by the intervention) would increase risk (meaning the expected value of 
Response in the exposed population in eq. 2b) from 150 to 200. 

Exposure = 1*Poverty (2a)  

Response = 100+Poverty − 0.5*Exposure (2b) 

By contrast, if the underlying causal model has structural eq. 3 in 
place of eq. 2b, then reducing Exposure from 100 to 0 without changing 
Poverty would indeed decrease risk from 150 to 100: 

Response = 100+ 0*Poverty+ 0.5*Exposure (3) 

Finally, if it has eq. 4 instead of eq. 2b, then reducing Exposure from 
100 to 0 without changing Poverty would have no effect on risk. 

Response = 100 + 0.5*Poverty + 0*Exposure (4) 

Model 1 does not reveal which, if any, of these (or other observa-
tionally equivalent) underlying causal models is correct. No matter how 
well it fits past data, an empirical regression-based exposure-response 
model such as model 1 cannot provide a sound basis for predicting how 
or whether reducing Exposure would change Response [12,22,31]. The 
same is true for more sophisticated models; for example, as noted by 
Martinussen [20] for Cox proportional-hazards models, “the Cox hazard 
ratio is not causally interpretable as a hazard ratio unless there is no 
treatment effect or an untestable and unrealistic assumption holds.” 

Assumption-dependent causal interpretations of exposure-response 
regression models 

In response to such limitations, many investigators have proposed 
using simplifying assumptions to interpret regression coefficients caus-
ally. For example, it is often convenient to assume that there are no 
unmeasured confounders (such as Poverty in the preceding example). 
Likewise, it is often convenient to assume that any observed differences 
in response rates between two populations, or between response rates at 
two different times for the same population, or between the rates of 
changes in response rates in a more-exposed population compared to a 
less-exposed population, are caused solely by differences in exposures. A 
major limitation of such assumption-based causal interpretations is that 
the simplifying assumptions used to draw causal conclusions often prove 
to be mistaken [7,31]. Assuming that an empirical exposure-response 
model such as eq. 1 that describes observations can also be interpreted 
as a causal structural model such as eq. 3 to predict the effects of in-
terventions simply assumes away, without resolving,the basic distinc-
tion between associational and causal relationships [22]. It does not 
overcome the fundamental methodological challenge that differences are 
not changes and that seeing is not doing (ibid). In practice, treating 
regression models and other associational models such as Global Burden 
of Disease (GBD) or population attributable fraction (PAF) models as if 
they were causal models that can be used to predict effects on responses 
of changing exposures sometimes leads to failed predictions and 
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unsound policy advice, such as that a 70% reduction in particulate 
pollution in Ireland would cause detectable reductions in all-cause 
mortality rates [31] or that increasing consumption of certain vita-
mins would reduce lung cancer risk instead of increasing it [16]. 

Heterogeneity in individual risks 

Regression-based exposure-response curves describe average re-
sponses for different levels of exposure in a population rather than 
describing distributions of individual response risks. For example, sup-
pose that an exposure-response model shows that, under current expo-
sure conditions, there is a 10% probability of disease over a certain time 
interval. Does this mean that each individual has a 10% probability of 
disease, or that 10% of the population has a 100% probability of disease 
and the rest 0%, or that half the population has a 20% probability and 
the other half has zero, or something else? The exposure-response curve 
does not give an answer. Uncertainty bands around it are typically for 
the estimated average response at each level; they do not describe the 
distribution of individual risks around this average. Yet, the answer may 
matter to policymakers and the public. A smaller risk that is more 
broadly distributed in the population may raise different levels of 
concern and support for regulation than a larger risk focused in a smaller 
subset of the exposed population, especially if the subset is identifiable e. 
g., only active smokers, or only children with asthma, or only elderly 
people with COPD. Exposure-response curves omit such information. 
The limitations of using averages for decision-making are well docu-
mented [26]. Extending exposure-response curves to provide informa-
tion about distributions of individual risks may be essential for well- 
informed decision-making. 

Ambiguous regression coefficients: Inference vs. intervention 

The sign and magnitude of the slope of an exposure-response 
regression coefficient often depend on an investigator’s selection of in-
dependent variables to include in the model [12]. For example, suppose 
that structural eqs. 5a and 5b describe how exposure, poverty, and 
response are related. Eq. 5a implies that Poverty = 2*Exposure. 
Substituting 2*Exposure for Poverty in eq. 5b yields eq. 5c. (Rewriting eq. 
(5a) as Poverty = 2*Exposure would make for a simpler exposition, but 
the form Exposure = 0.5*Poverty preserves the structural equation 
(causal) interpretation that causality flows from right to left, i.e., 
changing the right-hand side variable Poverty would change the left- 
hand side variable Exposure, but changing Exposure would not change 
Poverty.) Eq. 5c is the regression equation relating Response to Exposure 
when only those two variables are measured, i.e., when Poverty is an 
unmeasured (latent) variable or is simply not included in the model. 

Exposure = 0.5*Poverty (5a)  

Response = 100+ 0.5*Poverty − 0.5*Exposure (5b)  

Response = 100+ 0.5*Exposure (5c) 

Thus, when only Exposure is included as an independent variable on 
the right side of the regression model as a predictor of Response, its 
regression coefficent is 0.5, and hence is positive (eq. 5c). But if both 
Poverty and Exposure are included as independent variables on the right 
side of the regression model for Response, the regression coefficent for 
Exposure becomes − 0.5, and hence is negative (eq. 5b). This illustrates 
that the sign of a regression coefficient can depend on the selection of 
independent variables. The interpretation of the positive regression 
coefficient 0.5 for Exposure as a predictor of Response in eq. 5c is that 
when Exposure is observed to have a higher value, one can infer (via eq. 
5a) that Poverty has a higher value, and can therefore predict (via eq. 5b) 
that Response will have a higher value. However, this inference has no 
implications for predicting the effects of an intervention that changes 

Exposure (without changing Poverty). Such an intervention acts through 
eq. 5b. It renders eq. 5a irrelevant. If Exposure is set to a new level by an 
exogenous intervention, it is no longer determined endogenously via eq. 
5a, which can therefore be excised from the analysis – a form of “graph 
surgery” used to model the effects of interventions [18]. 

The regression coefficient for exposure in an exposure-response 
regression model such as eq. 1 typically reflects a mixture of inference 
and intervention effects and its sign and magnitude can depend on a 
modeler’s choices about which other independent variables to include in 
the model (such as Poverty in this example) [12]. These considerations 
imply that regression coefficients are not suitable in general for pre-
dicting how or whether an intervention that changes exposure will affect 
the risk of response [20]. Regression models focus on creating curves 
that optimize measures of departure of data from a model rather than 
predicting the effects of potential future changes in exposure. This 
distinction is well-recognized in machine learning, which assesses the 
predictive accuracy of models using a train-and-test paradigm (e.g., 
using cross-validation rather than traditional statistical fit criteria such 
as AIC, BIC, or adjusted R-squared values) [17,27]. The desire to predict 
the effects of interventions has led to recent innovations in heteroge-
neous treatment effect (HTE) analysis, including causal tree and causal 
forest algorithms that modify standard machine learning (ML) algo-
rithms to predict changes in risk due to different exposures, rather than 
estimating levels or differences in risk between differently exposed in-
dividuals [3,5,15,17]. The following sections explore how ML ideas can 
be applied to create exposure-response curves that have valid causal 
interpretations. 

Logistic regression vs. non-parametric exposure-responsecurves 

To fix ideas concretely, we use a dataset in which mortality risk in-
creases with exposure. To keep the discussion general and conceptual, 
we refer to the exposure variable simply as “exposure” without speci-
fying units. (For the curious reader, however, the example dataset is for 
blood lead levels measured in μg/dL and mortality during the follow-up 
period for male non-smokers in the NHANES III dataset. It is described 
further by Cox [9].) Fig. 1 shows a logistic regression model fit to the 
exposure-response data. 

A fundamental challenge in interpreting such a curve is the 

Fig. 1. A logistic regression curve for mortality vs. exposure.  
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possibility of confounding: perhaps people with higher levels of expo-
sure tend to be older, or less educated, or to have lower incomes than 
people with lower levels of exposure, and perhaps such differences 
contribute to the differences in mortality risk estimated for different 
levels of exposure. (Indeed, all of these associations hold in this 
example.) A second fundamental challenge is that the best-fitting model 
in a specific parametric class of models (e.g., logistic regression) may not 
describe the data very accurately. 

Controlling for observed confounders with partial dependence 
plots (PDPs) 

An empirical exposure-response curve shows the average response 
rates observed at different levels of exposure (presumably in different 
populations or subpopulations or at different times) without super-
imposing a model-based curve (such as the logistic regression curve in 
Fig. 1). If exposure levels are known and discrete and data is abundant 
enough to allow accurate estimates of response rates for each exposure 
level, then such a curve has the advantage over a regression model that it 
does not depend on modeling assumptions. It has the disadvantage that 
it does not control for the levels of other variables that may have 
different values for people with different exposures. This is unacceptable 
if we want to see how exposure alone affects mortality risk while holding 
other variables fixed. For example, Fig. 2 plots mean age against expo-
sure (rounded to the nearest integer). It is clear that exposure is posi-
tively associated with age. A similar plot shows that exposure is also 
positively associated with mortality risk. To isolate the effect of expo-
sure alone on mortality risk, therefore, it is necessary to control for 
potential confounding by age (and also by other confounders such as 
income and education, both of which are negatively associated with 
exposure and mortality risk). We would like to control for the levels of 
these other variables without making potentially invalid modeling as-
sumptions such as that they affect mortality risk through a multivariate 
logistic regression function. 

A practical solution is to use nonparametric ML methods to predict 
the average value of mortality probability as exposure alone changes, 
holding all other variables fixed at their current levels for each indi-
vidual in the data set. This yields a partial dependence plot (PDP) [30]. 
Fig. 3 shows the PDP exposure-response curve for our example data 
using the NHANES III data for male non-smokers. The interpretation is 
that each point on this curve shows the predicted average value of the 

0–1 mortality dependent variable (i.e., the average conditional proba-
bility of mortality during the follow-up period) that the individuals in 
the data set would have if exposure were set to each value on the x-axis 
and all other variables were kept at the values that they currently have. 
In this setting, the basic distinction between predicted differences and 
predicted changes in outcomes as exposure varies disappears if it can be 
assumed that the only explanation for differences in predicted mortality 
is corresponding differences in exposure (since all other independent 
variables are held fixed). This does not solve the problem of unobserved 
confounders, however. For example, if the exposure variable (blood lead 
level) indicates unreported smoking in this allegedly nonsmoking pop-
ulation, then the apparent effect of exposure on mortality risk may 
actually be due to the hidden confounder of smoking. 

To create a PDP, we need an ML algorithm (or “model” in ML 

Fig. 2. Plot of mean age vs. exposure for the data in Fig. 1. (Exposures >15 are rounded to 16 to save space.)  

Fig. 3. Partial Dependence Plot (PDP) of mortality probability vs. exposure for 
male nonsmokers. 
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terminology) that predicts the value of the dependent variable (here, 
mortality, coded as 1 for mortality and 0 otherwise) for each combination 
of values of the independent variables. There are many such algorithms 
in the modern ML toolkit. Fig. 3 uses the popular Random Forest algo-
rithm [11] to predict average mortality risk for different values of 
exposure, given the values of the following covariates: age, income, 
grade, married, Hispanic, Black, small.metro, and West. Here, married, 
Hispanic, Black, small.metro, and West are 0–1 binary indicator variables 
(i.e., dummy variables) indicating whether each case is identified as 
married, Hispanic, Black, living in a small metropolitan area, and living 
in the Western US, respectively. (Sex and smoking status are excluded 
since we selected non-smoking men as the cases for which an exposure- 
response curve is to be estimated.) Grade indicates the highest grade 
completed. 

The PDP is constructed as follows. Begin with a dataset organized so 
that each row contains the data for one individual (also called a “case” or 
“record” or “observation” or “data point”) and each column contains the 
value of one variable (also called a “feature” or “attribute” or “field”). 
This layout of the data is called a data frame. Thus, the value in row r and 
column c is the value for individual r of variable c in the data frame. For 
each case, the values of the exposure variable (called exposure in our 
example), the response variable (the 0–1 mortality indicator in our 
example), and measured covariates (age, income, grade, married, His-
panic, Black, small.metro, and West in our example) are recorded for each 
case. Next, create a succession of modifications of the original data 
frame by changing just one column, the exposure variable, while leaving 
all other columns unchanged. The successive modified datasets contain 
successively increasing values of the exposure variable (which is set to 
have the same value for all cases in each modified dataset), beginning 
with the smallest value of exposure observed in the original dataset and 
increasing to the largest value. Each of these modified datasets generates 
one point on the PDP as follows: the point corresponding to a specific 
modified dataset plots the average predicted value of the response 
variable, mortality (averaged over all cases in the modified dataset) 
against the value of exposure for the modified dataset. Joining these 
points with line segments completes the PDP. The PDP can be viewed as 
generalizing the concept of an average treatment effect (ATE) for a binary 
exposure variable to continuous exposure variables [30]. 

To illustrate this process, Table 1 shows a simple hypothetical 
dataset with only 3 records (rows). For purposes of a simple exposition 
only, suppose that the probability of mortality is predicted from other 
variables using the linear regression model. 

E(mortality | Exposure,age, income) = − 0.20+ 0.003*Exposure+ 0.017*age
− 0.02*income 

(In practice, of course, linear regression is not appropriate for a bi-
nary dependent variable, but we use it to make the arithmetic easy to 
follow and verify. For all calculations shown later, we use random forest 
as a more flexible and realistic predictive model and include additional 
significant predictors of mortality risk such as married and grade. 
Readers unfamiliar with random forest can find an accessible intro-
duction in Molnar [21]. Briefly, it is an ensemble method that averages 
predictions from several hundred non-parametric classification and 
regression (CART) trees.) Table 2 is identical to Table 1 except that the 
first column shows the model-predicted mortality probabilities instead 
of the 0–1 indicators of observed mortality; thus, for the first case we 
have. 

E(mortality | Exposure = 5.0,age = 21,income = 0.6)

= − 0.20+ 0.003*5+ 0.017*21–0.02*0.6 = 0.16 

Tables 3 and 4 show successive modified datasets with Exposure set 
to the smallest and second-smallest observed exposure values in the 
NHANES data, 0.7 and 1.0, respectively. The corresponding predicted 
mortality probabilities (i.e., predicted conditional expected values for 
Mortality, given the values of the independent variables) are slightly 
different for these two consecutive values of Exposure. Averaging the 
predicted mortality probabilities for all individuals for each level of 
Exposure gives the corresponding height of the PDP for that exposure 
level. Thus, for Exposure = 0.7, the PDP predicts an average mortality 
probability in the exposed population (with all individuals having 
Exposure = 0.7) of (0.147 + 0.584 + 0.863)/3 = 0.531; while for 
Exposure = 1.0, the PDP predicts a slightly higher average mortality 
probability of (0.148 + 0.585 + 0.864)/3 = 0.532. Continuing to in-
crease the Exposure values and calculate the resulting average predicted 
mortality probabilities generates the entire PDP curve. The PDP curve in 
Fig. 3 is generated by this process using all 2903 cases in the NHANES 
dataset for lead-exposed non-smoking males and using random forest to 
predict conditional expected values of Mortality for each set of inde-
pendent variable values. 

The PDP in Fig. 3 solves the problem of controlling for observed 
potential confounders such as age, income, and grade by holding their 
values fixed: only exposure and resulting predicted mortality values vary. 
(It also avoids creating spurious dependencies between variables due to 
collider bias (ibid) as long as mortality is a possible effect, but not a 
possible cause, of the other variables.) The PDP reduces dependence on 
modeling assumptions by using non-parametric prediction methods, 
such as the Random Forest algorithm used to create Fig. 3. Thus, a PDP 
may provide a useful definition for an exposure-response curve. 

Describing interindividual heterogeneity in exposure-response 
functions: Individual conditional expectation (ICE) plots 

The challenge of characterizing interindividual differences in 
exposure-response curves remains to be addressed. The sequence of 
modified datasets used to construct the PDP can be repurposed to pro-
vide a constructive solution to this challenge. Instead of averaging the 
predicted values of the dependent variable, mortality, for all individuals 
in each modified dataset to show how average mortality probability 
depends on exposure when all other variables are held fixed, as in a PDP 
plot, an alternative is to display the predicted values of mortality for each 
individual for the different levels of exposure. This yields an individual 
conditional expectation (ICE) plot [14,30], so called because the predicted 
values of mortality are its conditional expected values (as predicted by 
an ML model such as Random Forest) given the values of each in-
dividual’s covariates, for different assumed levels of exposure. Fig. 4 
shows an ICE plot for the same data used to create the PDP in Fig. 3. Each 
black curve is the estimated exposure-response curve for one individual; 
these are too numerous and too dense to see clearly, but their spread 
shows the wide range of inter-individual variability in exposure- 
response curves. Averaging these curves gives the PDP curve (indi-
cated in red in Fig. 4) for the population of individuals. 

The ICE plot shows the range of variability in individual response 
probabilities at different levels of exposure, but it can be quite difficult 
to read when there are many individuals (e.g., there are 2903 individual 

Table 1 
Original dataset.  

Mortality Exposure age income grade married Hispanic Black small.metro West 

0 5.0 21 0.6 12 0 1 0 0 1 
0 7.3 50 3.4 12 1 1 0 0 1 
1 9.3 65 2.2 3 1 1 0 0 1  
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curves in Fig. 4). To improve legibility, it is common practice to center 
all curves at a common value, such as the lowest value of exposure in the 
dataset, and to show only the differences in predicted values of mortality 

at each exposure level compared to their predicted values at this lowest 
(baseline) level of exposure. Fig. 5 shows such a centered ICE plot 
[14,21]. 

Table 2 
Predicted mortality probabilities for original dataset.  

Predicted 
Mortality 

Exposure age income grade married Hispanic Black small.metro West 

0.16 5.0 21 0.6 12 0 1 0 0 1 
0.60 7.3 50 3.4 12 1 1 0 0 1 
0.89 9.3 65 2.2 3 1 1 0 0 1  

Table 3 
Predicted mortality probabilities for modified dataset with Exposure = 0.7.  

Predicted 
Mortality 

Exposure age income grade married Hispanic Black small.metro West 

0.147 0.7 21 0.6 12 0 1 0 0 1 
0.584 0.7 50 3.4 12 1 1 0 0 1 
0.863 0.7 65 2.2 3 1 1 0 0 1  

Table 4 
Predicted mortality probabilities for modified dataset with Exposure = 1.0.  

Predicted 
Mortality 

Exposure age income grade married Hispanic Black small.metro West 

0.148 1.0 21 0.6 12 0 1 0 0 1 
0.585 1.0 50 3.4 12 1 1 0 0 1 
0.864 1.0 65 2.2 3 1 1 0 0 1  

Fig. 4. ICE Plot for mortality probability vs. exposure for male nonsmokers.  
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The centered ICE plot shows that even though the average predicted 
mortality probability in the population of cases increases with exposure, 
individual predicted mortality probabilities vary with exposure in a 
variety of ways. 

To further simplify and abstract from the wealth of detail in the ICE 
plot in Fig. 5, Fig. 6 uses k-means clustering to cluster the centered ICE 
curves into three clusters. The proportions of cases in each cluster are 
shown in the legend. (The y-axis (labeled “cluster yhat”) is a rescaled 
version of the differences in mortality probabilities shown on the y-axis 
in Fig. 5, expressed in terms of standard deviations, as is usual for k- 
means clustering; see Goldstein et al. [13] for details.) The clusters in 
Fig. 6 suggest that about 23% of the individuals in the dataset (green 
cluster) have individual exposure-response curves that increase with 
exposure over the range from 0 to about 10, while 70% have no sig-
nificant response (red cluster) and the remaining cases (shown as 6% 
due to rounding) have smaller mortality risks at higher exposure levels 
(blue cluster). 

What distinguishes members of the different clusters is not neces-
sarily simple to identify and summarize when ICE curves are very var-
iable over a wide range, as in Fig. 5, but further exploration shows that 
exposure is significantly positively ordinally correlated with predicted 
mortality risk for people with above-median age (Kendall’s tau = 0.17, 
p-value = 1.97E-14) but not for younger people (Kendall’s tau = 0.015, 
p-value = 0.49), especially for the youngest individuals with below- 

median income (Kendall’s tau = − 0.056, p-value = 0.15 for people 
under 25, corresponding to the first quartile of the age distribution of 
cases with below-median incomes). However, any such clustering sim-
plifies the complex reality shown in Fig. 5, which is that different in-
dividuals have very different exposure-response functions, depending on 
the levels of their other covariates. 

Data-informed counterfactuals: Two-dimensional partial 
dependence plots (2D-PDPs) 

The construction of PDPs and ICE plots involves (i) varying one in-
dependent variable, exposure, while holding all others fixed at their 
current levels; and (ii) plotting how predicted average (for PDPs) or 
individual (for ICE plots) values of the dependent variable vary in 
response to the different levels of exposure, given the fixed levels of 
other covariates for the individual cases in the population for which the 
PDP or ICE plot is derived. These concepts can be extended to allow 
more than one independent variable to be varied while holding the rest 
fixed. In the two-dimensional PDP in Fig. 7, both age (y-axis) and exposure 
are systematically varied from their lowest to their highest observed 
values, holding all other variables fixed at their current value for each 
case. The plot shows the predicted value of mortality risk (yellow = high, 
blue = low) for each pair of exposure and age values. The white spaces to 
the upper right and lower right of the colored region correspond to 

Fig. 5. Centered ICE Plot for mortality probability vs. exposure for male nonsmokers. The curves show the differences in predicted individual mortality probabilities 
for different levels of exposure compared to their predicted values for the lowest level of exposure. 
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combinations of age and exposure that do not occur in this data set, and 
hence fall outside the colored data cloud region. For example, no one 
younger than 40 or older than 70 years old has exposure > 40. 

Fig. 7 shows that the effect of exposure on mortality risk depends on 
age. For peple with age >70 years old, exposure has little or no relevance 
to mortality risk: the risk is high (yellow) for all levels of exposure, and is 
not higher at higher exposure levels. On the other hand, for people with 
age <36 (the median age), mortality risk, although relatively low, in-
creases significantly with exposure, from <0.1 on the lower left (dark 
blue) to 0.3 or more on the lower right of the data cloud. This illustrates 
that the shape of an exposure-response PDP depends on the distribution 
of age (and other covariates) in the population for which the PDP is 
calculated. 

To apply a PDP estimated for one population to a different popula-
tion, the predicted individual-level risks (conditioned on values of 
covariates) that are averaged to form the PDP must be re-weighted to 
reflect the joint frequency distribution of covariates in the new popu-
lation. This makes the interpretation of “integrated exposure-response 
functions” (e.g., [4]) based on data from multiple populations (often 
developed via international collaborations) problematic, as there is no 
population for which the resulting curve holds. Rather, different parts of 
the curve come from different populations in different countries, with 
different distributions of age, income, and other covariates. 

Fig. 8 shows a 2D-PDP for the joint effects of exposure and income on 
mortality risk, other independent variables being held fixed. The highest 
risks occur at the lower right, for individuals with high exposure and low 
income. The white space in the upper right shows that the dataset 
contains no individuals who have both high income and high exposure. 
This implies that counterfactual predictions about what mortality risks 
would be for high-income, high-exposure individuals are not relevant to 
the observed real-world cases and are not supported by the data. This 
illustrates a difficulty with the key concept of “holding other variables 

Fig. 6. Clustered ICE Plot showing 3 clusters of individual exposure-response curves.  

Fig. 7. 2D-PDP for mortality risk (false color scale, yellow = high, blue = low) 
vs. age and exposure. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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fixed” as exposure is varied: doing so may generate unrealistic coun-
terfactual cases that dilute the realism and practical relevance of the 
resulting exposure-response PDP curves. For example, in Fig. 8, it is true 
that all individuals with exposure > 35 have relatively high mortality 
risks, but they also all have relatively low incomes. A PDP curve that 
includes mortality risks estimated for high-income individuals in its 
calculation of average mortality risk as a function of exposure therefore 
includes extrapolated risks for counterfactual scenarios of high-income, 
high-exposure individuals for which there are no corresponding obser-
vations in the data cloud. It is not clear that such extrapolations are 
correct or relevant for real populations. Hence, it is not clear that they 
should be included in calculating exposure-response curves that are 
meant to inform risk management decisions for real populations. 

Two refinements of the PDP concept have been proposed to avoid 
including unrealistic or irrelevant counterfactual cases in the calculation 
of exposure-response functions. Accumulated local effects (ALE) plots [1] 
work entirely within the observed data cloud. They use observed com-
binations of variable values for real cases to estimate the change in 
average response for small changes around each level of exposure, 
holding other variables fixed. They do so by using only the subset of 
cases with similar levels of exposure to estimate the local change in risk 
from a small change in exposure around a given level. For example, in 
Fig. 8, only cases with exposures in the neighborhood of 35 would be 
used to estimate how mortality probability changes as exposure in-
creases from 34 to 35 or from 35 to 36. This automatically selects cases 
with relevant (relatively low) incomes and excludes irrelevant coun-
terfactual cases of individuals with high incomes and exposures in this 
range. The second approach is to drop the requirement that all other 
variables be held fixed as exposure changes. For example, causal graph 
models can be used to identify adjustment sets [29] of variables that must 
be held fixed to obtain estimates of direct or total causal effects of 

exposure on mortality (e.g., confounders), while other variables are left 
free to have their conditional distributions change realistically as 
exposure changes. In this approach, the conditional distribution of in-
come could change (shifting downward) at higher levels of exposure, 
again avoiding the need to include unrealistic counterfactual cases in 
calculating the exposure-response curve. 

Discussion and conclusions: What do we want exposure-response 
curves to mean? 

The previous sections have suggested that ideas and computational 
methods from modern causal artificial intelligence (CAI) and machine 
learning (ML) can help to clarify what an exposure-response curve 
means. These ideas and clarifications include the following:  

1. A predictive exposure-response curve shows the conditional expected 
value of a response variable such as mortality predicted for different 
observed values of exposure, given the distribution of other inde-
pendent variables (i.e., covariates) in a population.  

2. A predictive exposure-response curve may be quite different from an 
interventional exposure-response curve that shows how the average 
value of the response variable would change if the values of exposure 
were changed [10,22].  

3. The shape of a regression-based estimated predictive exposure- 
response curve typically reflects modeling assumptions as well as 
obervations. Non-parametric ML techniques including PDPs based on 
random forests or other ML algorithms can help to avoid the need for 
parametric modeling assumptions, although they still require 
adequate sample sizes and coverage of the combinations of exposures 
and other covariates for which predictions are to be made in order to 
produce accurate predictions. (By contrast, nonparametric statistical 

Fig. 8. 2D-PDP for mortality risk (false color scale, yellow = high, blue = low) vs. incomeand exposure. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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methods often make their own strong modeling assumptions, such as 
that different conditional curves have the same shapes, are sym-
metric about their medians, etc.; such assumptions are not required 
for PDPs based on nonparametric ML methods.)  

4. Figs. 7 and 8 illustrate (via white spaces outside the data cloud) the 
common occurrence that many logically possible combinations of 
exposure values with other covariate values do not occur in practice. 
Exposure-response curves should be accompanied by explanations of 
whether the average response probabilities they predict are based on 
observed combinations only (as in ALE plots) or whether they 
include hypothetical, perhaps unrealistic, combinations of exposure 
values with other covariate values that do not occur in the data (as in 
one-dimensional PDP plots).  

5. The predictions from a (predictive or interventional) exposure- 
response curve depend in general on the values of other covariates 
for individuals in the population for which the curve is developed. 
Fig. 7 illustrates this point: how mortality risk depends on exposure 
depends on age. Therefore, averaging mortality risk over individuals 
for different assumed levels of exposure will produce very different 
population exposure-response curves depending on the frequency 
distribution of individual ages (and other covariates) in the popu-
lation. Even if the dependent variable were age-specific hazard rate, 
other covariates (such as grade) would still modify the predictive 
relationship between exposure and response. Thus, any exposure- 
response curve is valid only for specific joint distributions of other 
causally relevant covariates that interact with exposure in predicting 
risk. These distributions are seldom stated explicitly when exposure- 
response curves are presented, but they are crucial parts of the 
definition of the curves.  

6. In general, an exposure-response curve developed for one population 
does not apply to other populations with different distributions of 
covariates. (An exception occurs if there are no interactions among 
exposure and other covariates so that the effect of exposure can be 
assessed independently of age, income, education co-morbidities, co- 
exposure, or other covariates. But in our experience, such indepen-
dence of effects seldom holds in practice.)  

7. Integrated exposure-response functions (e.g., [4]) do not hold for any 
population. Rather, different parts are taken by averaging the pre-
dicted or observed levels of the response variable over individuals in 
different populations, typically with different types and levels of 
exposures and different distributions of covariates. Such a curve has 
no clear conceptual definition and does not apply to any specific 
population.  

8. Even when the meaning of an exposure-response curve is clearly 
specified, e.g., as the predicted average value of response for each 
level of observed exposure in a specific population of individuals 
with known values of other covariates (assumed to remain fixed as 
exposure varies), the exposure-response curve is only an average of 
individual-level curves. This is illustrated in Figs. 5 and 6, which 
make explicit the inter-individual variability in exposure-response 
curves. The flaws of using averages in decision-making are well 
known [26], but how to use the more detailed information in ICE 
plots to improve risk management decision-making has not yet been 
much discussed in applied epidemiology, which still relies largely on 
population-level exposure-response curves. 

These ideas emphasize different possible meanings for an exposure- 
response curve (e.g., regression model, PDP, ALE, descriptive model, 
predictive model, interventional model); some of their limitations; and 
the fact that the meanings of some exposure-response curves cannot be 
inferred from the curves themselves because the levels of other relevant 
covariates for individuals in the populations described by the curves are 
not specified. 

Exposure-response curves are usually used to communicate infor-
mation to inform health risk management decisions. It is therefore worth 
asking what information the users of exposure-response curves want or 

intend for them to communicate. Fig. 9 presents an exampleof why the 
intended meaning of such a curve requires clarification. Suppose that 
high concentrations of PM2.5 are found to predict both higher levels of 
chronic obstructive lung disease (COPD) in a population and also higher 
rates of lung cancer specifically among COPD patients, but not among 
other individuals. 

Now, suppose that we are asked to develop an exposure-response 
curve relating PM2.5 exposure to lung cancer risk to inform discus-
sions about the health benefits of lowering PM2.5. Then we must decide 
what should be held fixed (and at what levels) in developing the 
requested exposure-response curve. Specifically, should COPD peva-
lence in the population be held fixed as PM2.5 exposures are varied 
across the horizontal axis of the exposure-response curve? In the ter-
minology of mediation analysis, this would correspond to quantifying a 
controlled direct effect of PM2.5 on lung cancer risk [28]. If so, should 
COPD prevalence be fixed at today’s levels? Doing so would maximize 
the estimated direct effect on lung cancers caused by reducing PM2.5 
exposure by providing a relatively large pool of COPD cases for whom 
lung cancer risk can be reduced by reducing PM2.5. Or should COPD 
prevalence be fixed instead at the predicted future lower prevalence 
level for COPD anticipated if PM2.5 is reduced to a new, lower level? 
This would reduce the predicted direct benefit from reduced lung cancer 
risk among COPD cases while acknowledging an additional benefit from 
reduced COPD cases. In the terminology of mediation analysis, the total 
effect of reducing PM2.5 on lung cancer risk reflects both the direct effect 
caused by reducing lung cancer risk for COPD patients and also the in-
direct effect caused by reducing the number of COPD patients (ibid). 
How, if at all, should choices about which effect to present depend on 
how long it takes for reductions in PM2.5 to reduce COPD prevalence? 

There are not correct or incorrect technical answers to these ques-
tions. Rather, they are questions about what the users of exposure- 
response curves want and intend them to mean – about what informa-
tion they are meant to convey to recipients. Once a choice has been 
made about whether to model the PM2.5-mortality exposure-response 
curve by holding COPD prevalence fixed at current levels, or at some 
anticipated future level, or perhaps as changing over time in a popula-
tion following a specified reduction in PM2.5, then the focus can shift to 
the technical challenges of quantifying the desired curve. The technical 
tools such as PDPs, ICE plots, ALE plots, and adjustment sets may then be 
deployed to quantify it. But the logically prior question of what it is that 
we want to quantify is seldom explicitly addressed in current pre-
sentations of exposure-response curves. What actually was quantified – 
what exactly the presented curves represent – is also seldom described at 
a level of detail that specifies the joint distribution of covariates aver-
aged over in calculating the exposure-response curves. Yet, without such 
detailed information, it may be impossible to calculate how the pre-
sented exposure-response curve (or the underlying relative risks or other 
measures of association) must be modified to apply to a target popula-
tion with a different joint distribution of variables – or even to the same 
population used to estimate the exposure-response curve following an 
intervention that reduces exposure [22]. A major contribution of the 
technical methods and diagrams we have discussed is to enable calcu-
lation of exposure-response curves that reflect the detailed characteris-
tics (observed or assumed) of target populations, but they do not address 
which assumptions should be made about the counterfactual levels of 
other variables in calculating exposure-response curves. 

Fig. 9. Should levels of COPD be held fixed in quantifying the PM2.5-lung 
cancer risk exposure-response curve? 
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In summary, the increasing availability of causal artificial intelli-
gence (CAI) and machine learning algorithms is making it increasingly 
practical to calculate relatively sophisticated nonparametric population 
exposure-response curves, 2D-PDPs, and distributions of individual 
exposure-response curves from the kinds of data already used to esti-
mate parametric regression exposure-response curves. Figs. 3-8 illus-
trate how modern CAI/ML methods can quantify not only non- 
parametric PDPs that control for observed confounders without 
requiring parametric modeling assumptions but also ICE plots that 
address inter-individual heterogeneity. With this increased computa-
tional capacity comes an increasing need to define clearly what we want 
to use it for. It is perhaps fair to suggest that the capacity to calculate 
various types of exposure-response curves currently outstrips clarity 
about what should be calculated and how the results should be used to 
inform and improve public health risk management decisions. The need 
for greater clarity on these points can perhaps be addressed by better 
philosophical and causal reasoning about the information required for 
more causally effective risk management decisions [8,19]. Meanwhile, 
continuing conceptual and algorithmic advances in CAI and ML (e.g., 
[1,13,30]) will continue to both improve our ability to quantify carefully 
defined exposure-response relationships and to challenge practitioners 
to carefully define the relationships that they want to quantify and 
communicate to policymakers and risk managers. 
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