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Abstract
Introduction: Humans	tend	to	categorize	auditory	stimuli	into	discrete	classes,	such	
as	animal	species,	 language,	musical	 instrument,	and	music	genre.	Of	 these,	music	
genre is a frequently used dimension of human music preference and is determined 
based	on	the	categorization	of	complex	auditory	stimuli.	Neuroimaging	studies	have	
reported	that	the	superior	temporal	gyrus	(STG)	 is	 involved	in	response	to	general	
music-related	features.	However,	there	is	considerable	uncertainty	over	how	discrete	
music categories are represented in the brain and which acoustic features are more 
suited	for	explaining	such	representations.
Methods: We	used	 a	 total	 of	 540	music	 clips	 to	 examine	 comprehensive	 cortical	
representations	and	the	functional	organization	of	music	genre	categories.	For	this	
purpose,	we	applied	a	voxel-wise	modeling	approach	to	music-evoked	brain	activity	
measured	using	functional	magnetic	resonance	imaging.	In	addition,	we	introduced	
a novel technique for feature-brain similarity analysis and assessed how discrete 
music categories are represented based on the cortical response pattern to acoustic 
features.
Results: Our	findings	indicated	distinct	cortical	organizations	for	different	music	gen-
res	 in	 the	bilateral	STG,	and	 they	 revealed	 representational	 relationships	between	
different	music	genres.	On	comparing	different	acoustic	feature	models,	we	found	
that	these	representations	of	music	genres	could	be	explained	largely	by	a	biologi-
cally plausible spectro-temporal modulation-transfer function model.
Conclusion: Our	findings	have	elucidated	the	quantitative	representation	of	music	
genres	in	the	human	cortex,	indicating	the	possibility	of	modeling	this	categorization	
of	complex	auditory	stimuli	based	on	brain	activity.
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1  | INTRODUC TION

Humans	 tend	 to	 categorize	 auditory	 stimuli	 into	 discrete	 classes.	
Such	 class	 labels	 encompass	 animal	 species,	 language,	musical	 in-
strument,	 and	 music	 genre.	 Of	 these,	 music	 genre	 is	 a	 common	
class	label	for	understanding	how	humans	recognize	and	categorize	
music, and it is widely used in studies of music information retrieval 
(Sturm,	 2012).	 However,	 there	 remains	 considerable	 uncertainty	
as	to	how	such	genre	categories	are	perceived	from	complex	audi-
tory	stimuli	and	how	the	human	brain	subserves	this	categorization.	
Neuroimaging studies have decoded music genres from brain activity 
using	support	vector	machines	(SVM)	(Case	y,	2017;	Ghaemmaghami	
&	Sebe,	2016;	Sengupta	et	al.,	2018);	however,	these	studies	did	not	
clarify how cortical representations of music genres contribute to 
genre classification.

Previous	studies	have	examined	the	representations	of	general	
music-related	features,	for	example,	loudness,	in	the	brain	(Alluri	
et	 al.,	 2012;	 Hoefle	 et	 al.,	 2018;	 Toiviainen	 et	 al.,	 2014).	 Alluri	
et	 al.	 (2012)	 reported	 significant	 correlation	 between	 activation	
in	 the	 bilateral	 superior	 temporal	 gyrus	 (STG)	 with	 features	 of	
timbre,	 harmony,	 and	 rhythm.	Moreover,	 Toiviainen	et	 al.	 (2014)	
revealed	involvement	of	the	bilateral	STG	in	the	decoding	of	tim-
bral	 features.	 In	 contrast,	 cochlear	 and	 spectro-temporal	modu-
lation-transfer	 function	 (MTF)	models	have	been	widely	used	as	
biologically plausible models for the acoustic representation of 
STG	 (de	 Heer	 et	 al.,	 2017;	 Norman-Haignere	 et	 al.,	 2015;	 Patil	
et	 al.,	 2012;	 Santoro	 et	 al.,	 2014,	 2017).	 The	 cochlear	 model	
represents tonotopic information received through auditory 
pathways	(de	Heer	et	al.,	2017;	Saenz	&	Langers,	2014),	but	mod-
ulation-selective responses have been detected in the primary au-
ditory	cortex	in	ferrets	(Depireux	et	al.,	2001)	and	humans	(Hullett	
et	al.,	2016;	Langers	et	al.,	2003;	Pasley	et	al.,	2012;	Schonwiesner	
&	Zatorre,	2009).	Moreover,	the	MTF	model	has	been	applied	to	
explain	brain	activation	differences	between	2-s	excerpts	of	music	
and	 voices	 in	 STG	 (Norman-Haignere	 et	 al.,	 2015)	 and	 between	
simple	 tones	 of	 various	 musical	 instruments	 (Patil	 et	 al.,	 2012).	
However,	it	is	unclear	whether	these	biologically	plausible	models	
can	 explain	 significant	 variance	 in	 the	 brain	 activity	 patterns	 of	
genre	categories	comprising	complex	auditory	stimuli.	Further,	the	
process	by	which	various	music	genre	categories	are	organized	in	a	
fine-scale manner is not well understood.

Recent	neuroimaging	studies	have	employed	voxel-wise	encod-
ing/decoding	models	 (Naselaris	et	al.,	2011)	to	 investigate	sensory	
and	 higher-order	 cortical	 representations,	 including	 visual	 (Kay	
et	al.,	2008;	Nishimoto	et	al.,	2011)	and	auditory	modalities	 (Allen	
et	al.,	2018;	de	Heer	et	al.,	2017;	Huth	et	al.,	2016).	One	advantage	of	
an encoding/decoding model approach is its ability to use the same 
dataset to compare the performances of several competing theo-
retical	models.	de	Heer	et	al.	 (2017)	modeled	brain	activity	during	
passive story listening and conducted encoding model fitting using 
cochlear,	phoneme,	and	semantic	 features.	Allen	et	al.	 (2018)	con-
ducted encoding model fitting with multiple acoustic features and 

reported the advantage of a timbre model for predicting auditory 
cortex	 activity	 induced	 by	 simple	 instrumental	 tones.	 Such	 ap-
proaches can be employed to further assess whether a biologically 
plausible model is more effective in predicting brain activation un-
derlying categorical representation.

Consequently, we used an encoding and decoding model ap-
proach	 to	 examine	 brain	 activity	 induced	 by	 music	 stimuli	 from	
different	genre	categories	and	examined	the	detailed	cortical	or-
ganization	underlying	each	genre	representation	and	how	acoustic	
features	 can	 explain	 such	 categorical	 organization.	 Accordingly,	
five participants listened passively to naturalistic music stimuli 
representing 10 different music genres, and evoked brain activity 
was	measured	using	fMRI	(Figure	1	A).	We	hypothesized	that	music	
pieces are represented in a genre-specific way in the human brain 
and that such categorical representation reflects how the corti-
cal response pattern to acoustic features matches the acoustic 
property	of	individual	music	genre	categories.	We	examined	spe-
cific cortical activation patterns based on predefined genre labels 
(Figure	1B)	and	showed	how	different	genre	categories	are	orga-
nized	on	the	cortical	surface.	We	then	extracted	acoustic	features	
using	 two	biologically	plausible	models	 (cochlear,	MTF),	 two	mu-
sic-related	models	[MIRtoolbox	(MIRT)	and	mel-frequency	cepstral	
coefficient	 (MFCC)],	 and	 one	 voice-related	 model	 (voice	 model)	
(Figure	1C).	MIRT	 features	have	been	used	 to	describe	music-in-
duced	activation	patterns	 in	the	bilateral	STG	(Alluri	et	al.,	2012;	
Toiviainen	 et	 al.,	 2014).	MFCC	 features	were	 developed	 and	 are	
predominantly	 used	 for	 speech	 recognition	 (Güçlü	 et	 al.,	 2016).	
Since	distinct	activity	patterns	were	 reported	 for	 the	categorical	
perception	 of	 the	 human	 voice	 and	musical	 instruments	 (Leaver	
&	Rauschecker,	 2010),	we	used	 the	voice	model	 to	 test	whether	
genre-related	brain	activity	can	be	explained	merely	by	the	effect	
of voice stimuli.

To	 investigate	which	acoustic	 features	most	accurately	explain	
the	 categorical	 organization	 in	 the	 brain,	 we	 developed	 a	 novel	
technique of calculating the similarity of feature-based and brain-
based	representation	 [feature–brain	similarity	 (FBS)].	FBS	assesses	
how	 cortical	 voxels	 realize	 the	 categorical	 representation	 of	 indi-
vidual music genres through target acoustic features by measuring 
similarities between the cortical weight vector of corresponding 
acoustic features and the reference acoustic feature vector of each 
music	genre.	FBS	can	be	calculated	in	each	voxel	and	is	distinct	from	
representational	 similarity	 analysis	 (Kriegeskorte	 et	 al.,	 2008)	 that	
calculates	similarity	across	different	categories	based	on	multi-voxel	
patterns.	Therefore,	FBS	 is	 suitable	 for	examining	categorical	 rep-
resentation	 in	 the	 voxel-wise	 encoding	modeling	 employed	 in	 our	
study. We further investigated the representational specificity be-
tween music genres by performing genre classification with the 
brain	 activity,	 behavior,	 and	 extracted	 features.	 Finally,	we	 tested	
whether these acoustic features could capture such representa-
tional differences of music genres. Preliminary findings have been 
published	 in	 the	 IEEE	 International	 Conference	 on	 Systems,	Man,	
and	Cybernetics	(IEEE	SMC	2018)	(Nakai	et	al.,	2018).
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2  | MATERIAL S AND METHODS

2.1 | Participants

Five	healthy	participants	(referred	to	as	ID01-05;	age	range	23–
33;	2	females;	music	experience,	4–15	years)	with	normal	hearing	
participated	 in	 the	 MRI	 and	 behavioral	 experiments.	 An	 addi-
tional	 21	 participants	 (age	 20–24;	 5	 females;	music	 experience,	

0–15	 years)	 participated	 only	 in	 the	 behavioral	 experiment.	 A	
questionnaire was used to assess the number of years that par-
ticipants trained on their primary instrument; this was used as 
the	index	of	musical	experience.	Informed	consent	was	obtained	
from	all	participants	prior	to	their	participation.	This	experiment	
was approved by the ethics and safety committee of the National 
Institute	 of	 Information	 and	 Communications	 Technology	 in	
Osaka,	Japan.

F I G U R E  1  Schematic	image	showing	the	research	paradigm	of	the	present	study.	(A)Participants listened passively to the naturalistic 
music	stimuli	of	10	music	genres,	and	evoked	brain	activity	was	measured	using	fMRI.(B)Voxel-wise	brain	activity	was	modeled	as	a	feature	
matrix	(music	genre	labels)	times	a	weight	matrix.	Regularized	linear	regression	was	used	to	estimate	optimal	weights.(C)Five	different	
acoustic	models	were	used	to	explain	genre-specific	brain	activation	patterns.	Cochlear,	modulation-transfer	function	(MTF),	MIRtoolbox	
(MIRT),	mel-frequency	cepstrum	coefficients	(MFCC),	and	voice	features	were	extracted	from	the	original	sound	signals.	Each	model	is	
described	in	the	Methods	section.
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2.2 | Stimuli and task

Music	 stimuli	 from	10	 genres	 (blues,	 classical,	 country,	 disco,	 hip-
hop,	jazz,	metal,	pop,	reggae,	and	rock)	were	taken	at	random	from	
the	GTZAN	music	genre	dataset	(http://marsy	asweb.appsp	ot.com/
downl	oad/data_sets/)	 (Tzanetakis	 &	 Cook,	 2002).	 A	 total	 of	 54	
music	pieces	(30	s,	22,050	Hz)	were	selected	from	each	genre,	pro-
viding	540	music	pieces.	A	15-s	music	clip	was	selected	at	random	
from	each	music	piece.	For	each	clip,	2	s	of	fade-in	and	fade-out	ef-
fects	were	applied,	and	the	overall	signal	intensity	was	normalized	in	
terms	of	the	root	mean	square	(RMS).

Each	experiment	consisted	of	18	runs:	12	were	considered	as	
training runs, and 6 were considered as test runs. Each run con-
sisted	of	40	music	clips	and	lasted	10	min	in	total.	At	the	begin-
ning	of	each	run,	15	s	of	dummy	scanning	was	acquired;	this	was	
omitted	from	each	analysis.	A	total	of	480	of	the	music	clips	were	
used in the training runs, and the remaining 60 were reserved 
for	the	test	runs.	For	the	purposes	of	data	reproducibility,	a	set	
of 10 music clips was presented four times in the same order as 
part of each test run. There was no repetition in the training runs. 
The	 clip	 order	 was	 randomized	 across	 the	 experiment.	 During	
scanning,	participants	were	asked	to	fixate	on	a	fixation	cross	at	
the center of the screen and to listen to the music clips through 
MRI-compatible	insert	earphones	(Model	S14,	Sensimetrics).	This	
model can attenuate scanner noise and has been widely used in 
previous	MRI	studies	with	auditory	stimuli	(Allen	et	al.,	2018;	de	
Heer	 et	 al.,	 2017;	Huth	 et	 al.,	 2016;	Kell	 et	 al.,	 2018;	Norman-
Haignere	et	al.,	2015;	Santoro	et	al.,	2017).	After	each	10	min	run,	
we asked the participants to describe their physical condition, 
and	we	allowed	a	1–2	min	break	if	they	felt	fatigue	or	sleepiness.	
After all runs on each day, we asked the participants whether 
they fell asleep during scanning. According to their self-reports, 
nobody	 slept	 during	 the	 experiments.	 The	 experiment	 was	 ex-
ecuted	 over	 the	 course	 of	 three	 days,	with	 six	 runs	 performed	
each day.

2.3 | MRI data acquisition

Scanning	 was	 performed	 using	 a	 3.0	 T	 MRI	 scanner	 (TIM	 Trio;	
Siemens,	 Erlangen,	 Germany)	 equipped	 with	 a	 32-channel	 head	
coil.	 For	 functional	 scanning,	 we	 scanned	 68	 interleaved	 axial	
slices with a thickness of 2.0 mm without a gap using a T2*-
weighted	gradient	echo	multi-band	echo-planar	imaging	(MB-EPI)	
sequence	(Moeller	et	al.,	2010)	(repetition	time	(TR)	=	1,500	ms,	
echo	 time	 (TE)	 =	 30	 ms,	 flip	 angle	 (FA)	 = 62°, field of view 
(FOV)	= 192 × 192 mm2,	voxel	size	= 2 × 2 × 2 mm3, multi-band 
factor =	4).	A	total	of	410	volumes	were	obtained	for	each	run.	For	
anatomical reference, we acquired high-resolution T1-weighted 
images	of	the	whole	brain	from	all	participants	using	a	magnetiza-
tion	prepared	rapid	acquisition	gradient	echo	sequence	(MPRAGE,	
TR =	2,530	ms,	TE	=	3.26	ms,	FA	=	9°,	FOV	=	256	×	256	mm2, 
voxel	size	= 1 × 1 × 1 mm3).

2.4 | Feature assignment

To	examine	the	representational	basis	of	music,	 the	 following	fea-
tures	were	assigned	to	the	stimulus	sounds	(Figure	1).

2.4.1 | Genre-label features

The genre-label features consisted of 10 features corresponding to 
the	10	music	genres.	Values	of	either	1	or	0	were	assigned	to	the	en-
tire	time	duration	of	a	15	s	music	clip	(consisting	of	10	TRs)	to	denote	
the music genre of the target music clip.

2.4.2 | Cochlear and MTF features

A sound cochleogram was generated by processing the stimulus 
sounds	 using	 a	 bank	 of	 128	 overlapping	 band-pass	 filters,	 span-
ning	 from	100	 to	8,000	Hz	 (Ellis,	2009).	The	window	size	was	 set	
to	25	ms,	with	the	hop	size	set	to	10	ms.	The	filter	output	averaged	
across	1.5	s	(TR)	was	used	as	a	feature	in	the	cochlear	model.

Then,	 we	 extracted	 MTF	 features	 as	 performed	 by	 Chi	
et	 al.	 (2005).	 For	 each	 cochleogram,	 a	 convolution	 with	 modula-
tion-selective filters was calculated. The outputs of the two filters 
with	orthogonal	phases	(quadrature	pairs)	were	squared	and	summed	
to	 yield	 the	 local	modulation	 energy	 (Nishimoto	 et	 al.,	 2011).	 The	
local modulation energy was log-transformed, averaged across 
1.5	 s,	 and	 further	 averaged	within	each	of	 the	20	nonoverlapping	
frequency	ranges	logarithmically	spaced	in	the	frequency	axis.	The	
filter outputs of the upward and downward sweep directions were 
then	averaged.	Modulation-selective	filters	were	tuned	to	10	spec-
tral	modulation	scales	[Ω =	(0.35,	0.50,	0.71,	1.0,	1.41,	2.0,	2.83,	4.0,	
5.66,	8.0)	cyc/oct]	and	10	temporal	modulation	rates	[ω =	(2.8,	4.0,	
5.7,	8.0,	11.3,	16.0,	22.6,	32.0,	45.3,	64.0)	Hz].	To	reduce	the	com-
putational burden, the resultant 20 × 10 × 10 = 2000 features were 
reduced	to	302	features	using	principal	component	analysis	(PCA),	
which preserved 99% of the variance of the original features. The 
number	of	features	used	in	the	Cochlear	and	MTF	models	was	128	
and 302, respectively.

2.4.3 | MIRT and MFCC features

For	 the	MIRT	model,	 the	MIR	 toolbox	was	 used	 to	 extract	multi-
ple	music-related	 features	 from	 the	dataset	 (Lartillot	 et	 al.,	 2008).	
Consistent	 with	 a	 previous	 neuroimaging	 study	 on	 music	 (Alluri	
et	al.,	2012),	we	extracted	 the	 following	24	 features:	RMS	energy	
as	the	loudness	feature;	zero-crossing	rate,	high	energy–low	energy	
ratio, spectral centroid, spectral roll-off, spectral entropy, spectral 
flatness,	roughness,	spectral	spread,	spectral	flux,	and	sub-band	flux	
(with	nine	sub-bands)	as	 timbral	 features;	pulse	clarity,	 fluctuation	
centroid, and fluctuation entropy as rhythm features; and mode and 
key	clarity	as	tonal	features.	For	loudness	and	timbral	features,	the	

http://marsyasweb.appspot.com/download/data_sets/
http://marsyasweb.appspot.com/download/data_sets/
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frame	duration	was	set	to	25	ms,	with	a	50%	overlap	between	the	
two	adjacent	frames.	For	rhythm	and	tonal	features,	the	frame	du-
ration was set to 3 s, with a 33% overlap. Each feature was aver-
aged	across	1.5	s.	 In	addition,	we	used	the	MIR	toolbox	to	extract	
MFCC	features	with	12	channels	(Lartillot	et	al.,	2008).	Feature	ex-
traction	of	the	MIRT	and	MFCC	models	was	also	restricted	within	
100–8,000	Hz.	The	number	of	features	used	in	the	MIRT	and	MFCC	
models	was	24	and	12,	respectively.

2.4.4 | Voice features

The voice features consisted of two features corresponding to 
whether	each	music	piece	contained	voice	stimuli.	Values	of	either	
1	or	0	were	assigned	to	the	entire	time	duration	of	a	15	s	music	clip	
(consisting	of	10	TRs)	to	denote	the	presence	or	absence	of	voice.

2.5 | Data analyses

2.5.1 | fMRI data preprocessing

Motion	correction	was	performed	for	each	run	using	the	Statistical	
Parametric	 Mapping	 toolbox	 (SPM8;	 Wellcome	 Trust	 Centre	 for	
Neuroimaging,	 London,	 UK;	 http://www.fil.ion.ucl.ac.uk/spm/).	 All	
volumes	were	 aligned	 to	 the	 first	 EPI	 image	 for	 each	 participant.	
Low-frequency	drift	was	removed	using	a	median	filter	with	a	240-s	
window. To augment model fitting accuracy, the response for each 
voxel	was	normalized	by	 subtracting	 the	mean	 response	and	 then	
scaling	it	to	the	unit	variance.	We	used	FreeSurfer	(Dale	et	al.,	1999;	
Fischl	et	al.,	1999)	to	identify	the	cortical	surfaces	from	the	anatomi-
cal	data	and	register	them	with	the	voxels	of	the	functional	data.	We	
used	only	cortical	voxels	as	targets	of	the	analysis	for	each	partici-
pant.	For	each	participant,	we	used	the	voxels	identified	in	the	cer-
ebral	cortex	in	the	analysis	(53,421–64,700	voxels	per	participant).

2.5.2 | Voxel-wise encoding model fitting

For	each	of	 the	above	models,	 cortical	 activation	 for	each	voxel	
was fitted using a set of linear temporal filters that captured the 
slow hemodynamic response and its coupling with brain activity 
(Nishimoto	et	 al.,	 2011).	A	 feature	matrix	 FE	 [T	×	 5N]	was	mod-
eled	using	concatenated	sets	of	[T	×	N]	feature	matrices	with	five	
temporal	delays	of	1.5,	3,	4.5,	6,	and	7.5	s	 (T,	#	of	samples;	N,	#	
of	features).	The	cortical	response	RE	[T	×	V]	was	modeled	using	
the	feature	matrix	FE	times	the	weight	matrix	WE	[5N	×	V]	(V,	#	of	
voxels):

We	 conducted	 an	 L2-regularized	 linear	 regression	 using	 the	
training	dataset	(4,800	samples,	7,200	s)	to	obtain	the	weight	matrix	
WE.	The	optimal	regularization	parameter	was	evaluated	via	random	
resampling	of	the	training	dataset	into	two	subsets,	with	80%	of	the	
dataset being used for model fitting and the remaining 20% being 
used for model validation. This random resampling procedure was 
repeated 10 times.

The	 test	 dataset	 comprised	 600	 samples	 (900	 s).	 The	 signal-
to-noise ratio was increased by averaging four repetitions of the 
test datasets. We calculated prediction accuracy by means of the 
Pearson's correlation coefficient between the predicted signal and 
the measured signal in the test dataset. The resulting p values were 
corrected for multiple comparisons within each participant using the 
false	discovery	rate	(FDR)	procedure	(Benjamini	&	Hochberg,	1995).	
Mean	prediction	accuracy	of	each	encoding	model	was	calculated	
by	 averaging	 the	 prediction	 accuracy	 of	 all	 voxels	within	 the	 par-
ticipant-specific	region-of-interest	mask	(see	below).	The	prediction	
accuracies	 of	 all	models	 are	 summarized	 in	 Table	 1.	 All	model	 fit-
ting and analyses were performed using custom software written on 
MATLAB.	For	data	visualization	on	the	cortical	maps,	pycortex	was	
used	(Gao	et	al.,	2015).

R̂E=FEWE

TA B L E  1   Prediction accuracy in each anatomical region

Genre-Label
Genre-Label (with 
Voice regressor) Cochlear MTF MIRT MFCC Voice

L.	LSTG 0.079 ± 0.009 0.068	± 0.017 0.070 ± 0.022 0.095	± 0.017 0.074	± 0.016 0.034	± 0.007 0.078	±	0.015

L.	HG 0.153	± 0.027 0.144	± 0.023 0.159	± 0.017 0.194	±	0.040 0.159	± 0.023 0.095	± 0.027 0.098	± 0.030

L.	HS 0.222 ±	0.085 0.199 ± 0.076 0.200 ±	0.043 0.261 ±	0.050 0.223 ±	0.075 0.104	±	0.038 0.169 ±	0.065

L. PT 0.121 ± 0.027 0.111 ±	0.028 0.104	± 0.033 0.130 ± 0.027 0.114	± 0.027 0.058	± 0.017 0.114	±	0.044

R.	LSTG 0.100 ± 0.023 0.081	± 0.026 0.102 ± 0.016 0.131 ± 0.029 0.100 ±	0.015 0.053	± 0.009 0.103 ± 0.023

R.	HG 0.152	± 0.022 0.136 ±	0.034 0.163 ± 0.029 0.213 ±	0.045 0.161 ± 0.011 0.099 ±	0.018 0.125	± 0.030

R.	HS 0.198	±	0.035 0.178	± 0.026 0.188	± 0.037 0.248	±	0.040 0.205	±	0.045 0.102 ±	0.048 0.145	± 0.031

R. PT 0.116 ±	0.040 0.108	±	0.041 0.131 ± 0.017 0.140	± 0.069 0.118	±	0.018 0.059	± 0.023 0.090 ±	0.046

Note: Average	prediction	accuracies	of	six	models	across	all	participants	(mean	± SD)	calculated	in	the	eight	anatomical	regions	of	interest.	The	
prediction	accuracy	of	the	genre-label	model	was	also	calculated	by	regressing	out	the	voice	effect.	LSTG,	lateral	superior	temporal	gyrus;	HG,	
Heschl's	gyrus;	HS,	Heschl's	sulcus;	PT,	planum	temporale;	MTF,	modulation-transfer	function;	MIRT,	music	information	retrieval	toolbox;	MFCC,	
mel-frequency cepstral coefficient.

http://www.fil.ion.ucl.ac.uk/spm/
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2.5.3 | Genre-representing region-of-interest 
(ROI) mask

To obtain robust estimates of the genre-related cortical regions, we 
used	the	following	resampling	procedure:	First,	the	training	dataset	
was	 divided	 randomly	 into	 training	 samples	 (80%)	 and	 validation	
samples	 (20%).	 Using	 the	 optimal	 regularization	 parameter	 esti-
mated in the analysis of the genre-label model, we then performed 
encoding model fitting using the genre-label features with the train-
ing samples and calculated the prediction accuracy with the vali-
dation	 samples.	Model	 fitting	was	performed	using	L2-regularized	
linear regression. This random resampling procedure was repeated 
50	 times,	 and	 the	 voxels	 showing	 significant	 prediction	 accuracy	
(FDR	corrected)	for	more	than	80%	of	the	repetitions	were	selected	
for	the	ROI	mask.	We	included	468	voxels	in	the	ROI	mask	for	par-
ticipant	ID01,	453	for	participant	ID02,	1,686	for	participant	ID03,	
576	for	participant	ID04,	and	530	for	participant	ID05.	Unless	oth-
erwise indicated, the following analyses were all performed using 
the	extracted	ROI	mask.

2.5.4 | Decoding of genre labels

In	the	decoding	model,	the	cortical	response	matrix	RD	[T	×	5V]	was	
obtained	by	concatenating	the	set	of	[T	×	V]	response	matrices	with	
five	temporal	delays	of	1.5,	3,	4.5,	6,	and	7.5	s.	The	genre-label	ma-
trix	G	[T	×	10]	was	modeled	using	the	cortical	response	matrix	RD 
times	the	weight	matrix	WD	[5V	×	10]:

The	 weight	 matrix	WD	 was	 estimated	 using	 an	 L2-regularized	
linear regression with the training dataset following the same pro-
cedure used for the encoding model fitting. We used linear regres-
sion rather than a categorical classifier, such as logistic regression, 
to maintain the similarity between the encoding and decoding 
analyses. To calculate the classification accuracy, we first assigned 
genre-label	indices	(1	to	10)	to	each	time	point	by	taking	the	argmax	
of	 the	decoded	genre-label	matrix.	Then,	we	estimated	 the	 repre-
sentative	genre-label	index	for	each	music	clip	by	the	majority	voting	
method	(Dalwon	et	al.,	2008).	Specifically,	the	genre-label	that	was	
most frequently assigned for all time points during a single music clip 
was regarded as a representative genre of that clip.

In	 the	activity-based	approach,	we	obtained	a	response	matrix	
RD	 for	 each	 participant,	 whereas	 we	 used	 the	 feature	 matrix	 FD 
[T	×	N]	in	the	feature-based	approach.

2.5.5 | Behavioral experiment

To confirm that brain activation in response to music genres was re-
lated to the behavioral performance of genre classification, we per-
formed	additional	behavioral	experiments.	These	experiments	were	

conducted in a soundproof room by the same participants who par-
ticipated	in	the	MRI	experiments,	as	well	as	an	additional	21	partici-
pants	who	had	not	taken	part	in	the	MRI	experiments.	Participants	
were	first	asked	to	listen	to	three	original	music	clips	(30	s)	per	genre	
as	a	 reference;	 these	clips	were	selected	at	 random	from	the	460	
clips	not	used	in	the	MRI	experiment.	In	this	training	session,	correct	
music genres were informed to the participants. Participants then 
listened	 to	 the	60	music	 clips	used	as	 the	 test	dataset	 in	 the	MRI	
experiment	and	 judged	the	music	genre	to	which	the	target	music	
clip belonged by filling in 1 of 10 cells on the answer sheet provided. 
Participants listened to each music clip only once and in the same 
order	of	presentation	as	in	the	fMRI	experiment.	Of	the	21	non-MRI	
participants,	data	from	one	participant	were	excluded	because	the	
average	accuracy	(30.0%)	was	outside	the	mean	± 3*SD	range	(and	
also	outside	the	median	3*interquartile	range)	for	all	participants.

3  | RESULTS

3.1 | Genre-representing cortical organization

Genre-representing cortical areas were assessed using the genre-
label	 model.	 For	 all	 participants,	 significant	 prediction	 accuracy	
was	 observed	 in	 the	 bilateral	 STG	 (p <	 .05,	 with	 FDR	 correction;	
Figure	2A,	Figure	S1,	Table	1).	To	identify	cortical	areas	that	robustly	
represented music genres independent of sample selection, we de-
termined	the	genre-representing	functional	ROI	for	each	participant	
(Figure	2B,	Figure	S2).	We	performed	this	using	a	resampling	proce-
dure. This analysis revealed significant prediction accuracies in the 
bilateral	STG,	and	functional	ROI	was	used	as	an	 inclusive	mask	in	
subsequent analyses.

To	 examine	 the	 relative	 contribution	 of	 each	 cortical	 voxel	 to	
the 10 music genres, we mapped the representation of the music 
genres on the cortical surface using PCA with genre-label weights 
(Figure	2C,	Figure	S3).	For	each	voxel	within	the	ROI	mask,	we	ex-
tracted	 the	 estimated	 weight	 matrix	 of	 the	 genre-label	 encoding	
models.	 By	 averaging	 five	 temporal	 delays,	 we	 obtained	matrices	
of	 [10	× Vi]	 (Vi:	#	of	voxels	 for	participant	 i, i=1,⋯, 5).	To	obtain	a	
general result across participants, we concatenated the weight ma-
trix	of	the	five	participants.	Then,	we	used	PCA	to	perform	dimen-
sionality	 reduction	 on	 the	 aggregated	 weight	 matrix	 [10×

∑5

i=1
Vi

].	 PCA	 produced	 a	 score	matrix	 [
∑5

i=1
Vi ×	 10]	 and	 loading	matrix	

[10	×	10].	The	score	matrix	indicates	how	10	PCs	are	represented	in	
each	cortical	voxel.	The	loading	matrix	indicates	the	contribution	of	
each PC to the representation of 10 music genres. To demonstrate 
the representational relationship between the music genres, the 10 
genres were mapped onto the 2-D space using the loadings of PC1 
and	PC2	(i.e.,	the	first	and	second	columns	of	the	loading	matrix)	as	
the	x-axis	and	the	y-axis,	respectively.	Genres	were	colored	further	
in red, green, and blue based on the relative PCA loadings in PC1, 
PC2,	and	PC3	(i.e.,	the	first	to	third	columns	of	the	loading	matrix),	
respectively.	The	top	3	PC	components	explain	70.9%	of	the	total	
variances.	 To	 represent	 the	 cortical	 organization	 of	 music	 genres	

Ĝ=RDWD
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for	each	participant,	we	extracted	and	normalized	the	PCA	scores	
from	each	participant's	 voxels	 (i.e.,	 for	 each	 row	of	 the	 score	ma-
trix).	The	resultant	cortical	map	indicates	the	relative	contribution	of	
each	cortical	voxel	to	the	target	PC.	By	combining	the	PCA	scores	
of	the	top	three	PCs	 (i.e.,	 the	first	 to	third	rows	of	the	normalized	
score	matrix)	 of	 each	 participant,	we	 visualized	 how	each	 cortical	
voxel	is	represented	by	the	10	music	genres.	Each	cortical	voxel	was	
colored based on the relative PCA scores of PC1, PC2, and PC3, cor-
responding to the color of the genre in the 2-dimensional space. This 
analysis revealed various genre-specific representations within the 
bilateral	STG.	Among	the	multiple	subregions	of	STG,	music	genres	
were	 represented	more	clearly	 in	Heschl's	 sulcus	 (HS)	and	 the	 lat-
eral	STG	(LSTG)	than	in	Heschl's	gyrus	(HG),	the	planum	temporale	
(PT),	 or	 the	 lateral	 sulcus	 (LS)	 (except	 participant	 ID03,	 who	 dis-
played	genre-specific	activations	in	large	brain	regions	including	PT).	
Although we observed considerable individual variability, there was 

a marked consistency in that the contribution to pop, disco, coun-
try,	and	hip-hop	music	(shown	in	green	in	Figure	2C,	Figure	S3)	was	
larger	in	the	LSTG	than	in	either	the	HS	or	the	HG,	whereas	the	con-
tribution	to	blues	music	(shown	in	purple)	was	larger	around	the	HS.

To illustrate the relative relationships between the cortical acti-
vation	patterns	for	different	music	genres,	we	visualized	the	weight	
values	of	10	music	genres	 in	each	voxel	using	the	2-D	coordinates	
derived	from	the	top	two	principal	components	 (Figure	2D).	Using	
PCA, we embedded genre-specific representation based on multiple 
cortical	voxels	(i.e.,	high-dimensional	data)	into	the	2-D	space,	main-
taining their representational similarity. These findings indicated 
that	the	activation	patterns	induced	by	classical	and	jazz	music	were	
relatively similar, as were those induced by rock and metal music, 
whereas blues and hip-hop music seemed to have distinct activa-
tion	 patterns.	 Using	 the	 weight	 values	 of	 the	 genre-label	 model,	
we	 further	 visualized	 how	 the	 10	music	 genres	were	 represented	

F I G U R E  2  Cortical	organization	of	music	genre	representations.	(A)	A	cortical	map	of	prediction	accuracy	using	the	genre-label	model	
(p<.05,	FDR	corrected),	shown	on	flattened	cortical	sheets	of	participant	ID01:	L,	left	hemisphere.	R,	right	hemisphere.(B)The genre-
representing	ROI	for	participant	ID01,	obtained	using	the	genre-label	model.(C)A cortical map of all music genres tested in the present 
study	for	participant	ID01.	All	voxels	were	assigned	red,	green,	and	blue	colors	according	to	the	loadings	of	the	top	three	principal	
components	(PC1-PC3)	of	the	genre-label	model	weights	(concatenated	across	participants).	HG,	Heschl’s	gyrus.	HS,	Heschl’s	sulcus.	PT,	
planum	temporale.	LS,	lateral	sulcus.	LSTG,	lateral	superior	temporal	gyrus.(D)Visualization	of	the	representational	relationship	among	
the 10 music genres, mapped onto the 2-D space based on the loadings of PC1 and PC2. The color represents the PC1-PC3 loadings as in 
(C).	The	distance	between	each	circle	reflects	the	differences	in	cortical	representation.(E)Weight	values	for	the	10	genres	extracted	in	a	
representative	voxel	in	the	right	STG	in	participant	ID01,	plotted	according	to	the	same	coordinates	as	in	(D).	The	radius	of	each	circle	is	
equivalent	to	the	weight	value	of	the	corresponding	music	genre	at	the	target	voxel	(red,	positive	weight;	blue,	negative	weight).
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differently	in	each	cortical	voxel	based	on	the	same	2-D	coordinates	
(see	Figure	2E	for	representative	voxel	data	in	participant	ID01).

3.2 | Genre-specific representation independent 
from voice stimuli

Most	 of	 the	 hip-hop	 and	 pop	 music	 clips	 contained	 voice	 stimuli,	
whereas	the	classical	and	jazz	music	clips	did	not	(Figure	3A).	To	test	
whether	the	genre-specific	cortical	 representation	was	not	explained	
by the inclusion of voice stimuli, we performed additional encoding 
model analysis. We concatenated the voice features with the original 
genre-label	 features	 in	 the	encoding	model	 fitting.	Model	 testing	ex-
cluded	 the	voice	 features	 from	 the	 concatenated	 feature	matrix	 and	
the	corresponding	weight	matrix.	In	this	process,	the	voice	features	in-
dicate	whether	certain	music	clip	contains	voice	stimuli	(Figure	1C).	As	

this	regressor	was	excluded	in	model	testing,	we	regressed	out	the	ef-
fect of voice stimuli. This model predicted activations in most of the bi-
lateral	STG	ROI	that	were	used	in	the	original	genre-label	model	(77.8%	
±	 19.2%	of	voxels	were	 significant	 across	 all	 participants;	 prediction	
accuracy, r =	.246	± .027; original genre-label model, r =	.284	±	.025;	
Figure	3B,	C,	Figure	S4;	Table	1).	To	examine	how	the	cortical	represen-
tation of 10 music genres is affected by regressing out the voice effect, 
we	mapped	the	weight	values	of	10	music	genres	in	each	voxel	using	
PCA	(Figure	3D,	Figure	S5).	We	also	visualized	the	relative	relationships	
of	10	music	genres	derived	from	the	top	two	PCs	(Figure	3E)	and	their	
representation	in	each	cortical	voxel	(Figure	3F).	Similar	to	the	results	
in	Figure	2,	the	activation	patterns	induced	by	classical	and	jazz	music	
were relatively similar, as were those induced by rock and metal music, 
whereas blues and hip-hop music had distinct activation patterns. 
These findings suggest that the genre-specific activation patterns were 
not	explained	merely	by	the	inclusion	of	the	voice	stimuli.

F I G U R E  3  Genre-specific	representation	independent	from	voice	stimuli.	(A)	Percent	of	voice	stimuli	in	each	music	genre.	(B)	A	cortical	
map	of	prediction	accuracy	excluding	voice	model	features	as	a	regressor	of	noninterest,	shown	on	the	flattened	cortical	sheet	of	participant	
ID01.	(C)	Bar	plots	show	average	prediction	accuracies	across	all	participants,	averaged	within	the	bilateral	STG	ROIs,	obtained	using	the	
original	genre-label	model	and	with	regressing	out	the	voice	effect.	The	black	circles	indicate	each	participant’s	data.	(D)	A	cortical	map	of	
all	music	genres,	obtained	using	the	genre-label	model	without	voice	effect.	All	voxels	were	assigned	red,	green,	and	blue	colors	according	
to	the	loadings	of	the	top	three	principal	components	(PC1–PC3,	respectively)	of	the	genre-label	model	weights	(concatenated	across	
participants).	HG,	Heschl’s	gyrus;	HS,	Heschl’s	sulcus;	PT,	planum	temporale;	LS,	lateral	sulcus;	LSTG,	lateral	superior	temporal	gyrus.	(E)	
Visualization	of	the	representational	relationship	among	the	10	music	genres,	mapped	onto	the	2-D	space	based	on	the	loadings	of	PC1	and	
PC2.	(F)	Weight	values	for	the	10	genres	extracted	in	a	representative	voxel	in	the	right	STG.
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3.3 | Genre-specific brain activity was explained 
by the spectro-temporal modulation of music genres

Next,	 we	 tested	 how	 well	 acoustic	 feature-based	 genre	 specific-
ity corresponds to brain-based feature specificity. To achieve this, we 
extracted	 the	acoustic	 features	of	each	music	 stimulus	using	 the	 five	

acoustic	models	(Cochlear,	MTF,	MIRT,	MFCC,	and	voice).	In	this	study	
(Figure	4A-E),	we	only	show	the	MTF	model	results	for	the	purpose	of	
visualization;	however,	the	following	analyses	were	performed	similarly	
for	 all	 acoustic	 models.	 Spectro-temporal	 modulation	 of	 each	 music	
genre	was	evaluated	according	to	the	feature	matrix	used	for	encoding	
model	fitting.	Interpretable	spectro-temporal	information	was	obtained	

F I G U R E  4   Contribution of spectro-temporal features to music genre representation.(A)Examples	of	the	averaged	modulation	profiles	for	
classical	music.	Modulation-transfer	function	(MTF)	model	weights	were	projected	on	a	2-D	plot	of	the	spectral	modulation	Ω	(cyc/oct)	and	
temporal modulation rates ω	(Hz).(B)Spectro-temporal	modulation	of	the	cortical	voxels	determined	in	participant	ID01.	Weight	vectors	of	
the	MTF	model	were	averaged	for	20	central	frequencies.	Each	cortical	voxel	was	assigned	the	maximum	spectral/temporal	modulation	rate	
of	that	voxel.	The	averaged	modulation	profile	of	an	example	voxel	is	shown	on	the	left	panel.	Feature-brain	similarity	(FBS)	was	calculated	
as	a	Pearson’s	correlation	coefficient	between	the	modulation	profile	in	each	cortical	voxel	and	the	reference	modulation	profile	of	each	
music genre.(C)FBS	cortical	maps	of	participant	ID01	obtained	from	the	spectro-temporal	modulations	of	classical	music	(i.e.,	MTF	model	
features).	Data	were	normalized	and	projected	on	the	inflated	cortical	map	(red,	positive	weight;	blue,	negative	weight).(D)The	normalized	
weights	of	the	genre-label	model	were	projected	on	the	inflated	cortical	map	(genre-weight	map;	red,	positive	weight;	blue,	negative	
weight),	for	classical	music.(E)The	2-D	scatterplot	of	voxel	values	of	the	normalized	genre-weight	map	and	the	FBS	map	of	the	MTF	model	
(CandD)	taken	from	all	voxels	in	the	genre-representing	ROI	of	participant	ID01,	and	overlaid	with	10	music	genres.(F)Pearson’s	correlation	
coefficients	between	voxels	in	the	FBS	map	and	those	in	the	genre-weight	map	for	participant	ID01	for	the	cochlear,	MTF,	music	information	
retrieval	toolbox	(MIRT),	and	mel-frequency	cepstral	coefficient	(MFCC),	voice;	see	Methods),	averaged	for	10	music	genres.	The	MTF	model	
provided	the	highest	similarity	(Wilcoxon	signed-rank	test,p<.010	for	all	the	models).
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for	each	MTF	feature	by	restoring	the	MTF	feature	matrix	to	the	origi-
nal	size	through	multiplying	it	by	the	transposed	PCA	coefficient	matrix.	
Moreover,	we	transformed	the	MTF	weight	matrix	by	multiplying	it	by	
the	PCA	loading	matrix.	In	order	to	visualize	the	MTF	model,	we	further	
averaged the feature values obtained at the 20 central frequencies for 
each of the 10 × 10 combinations of spectral modulation Ω	 (cyc/oct)	
and temporal modulation ω	 (Hz).	Genre-specific	 feature	vectors	were	
calculated	for	the	other	models	using	the	same	procedure.	By	averaging	
the	MTF	features	for	the	48	clips	of	the	same	music	genre	in	the	training	
dataset,	we	obtained	reference	MTF	features	for	the	10	music	genres	
(Figure	4A).	We	then	obtained	the	MTF	features	of	each	cortical	voxel	
using	the	weight	matrix	of	the	MTF	model	(Figure	4B;	see	Figure	S6	for	
a	weight	map	of	the	other	models).	The	response	of	each	cortical	voxel	
to spectro-temporal modulation was assessed using the transformed 
weight	matrix.	Voxel-specific	weight	vectors	were	calculated	by	averag-
ing	the	MTF	weight	values	of	the	48	training	clips	for	each	genre.	Voxel-
specific weight vectors were calculated for the other models using the 
same	procedure.	In	order	to	visualize	the	MTF	model,	we	further	aver-
aged the weight values obtained at the 20 central frequencies for each 
of the 10 × 10 combinations of spectral modulation Ω	(cyc/oct)	and	tem-
poral modulation ω	(Hz).

To	examine	whether	genre-representing	activation	patterns	were	
explained	by	the	extracted	features,	we	calculated	the	Pearson's	cor-
relation coefficients between the reference genre-specific feature vec-
tor	and	the	voxel-specific	weight	vector	in	each	cortical	voxel.	Through	
this	analysis,	we	obtained	an	FBS	cortical	map	of	each	music	genre	
based	on	its	MTF	features	(Figure	4C,	Figure	S7).	The	FBS	map	based	
on	the	MTF	model	was	very	similar	to	the	cortical	map	obtained	for	
genre-label	weight	(genre-weight	map,	Figure	4D,	Figure	S8),	and	they	
were	significantly	correlated	for	all	music	genres	(Pearson's	correlation	
coefficient, p <	.001,	with	Bonferroni	correction;	Figure	4E,	Figure	S9).	
A significant correlation was observed consistently across all partici-
pants	(r = .729 ±	.111),	indicating	that	the	different	spectro-temporal	
modulations	of	the	10	music	genres	explained	genre-specific	activity	

patterns.	The	FBS	map	was	also	obtained	for	the	other	acoustic	mod-
els,	and	we	found	that	the	MTF	model	outperformed	the	other	models	
(cochlear,	MIRT,	MFCC,	and	voice	models)	in	terms	of	the	mean	cor-
relation	between	the	FBS	maps	and	the	genre-weight	maps	(Wilcoxon	
signed-rank test, p <	.020	for	participants	except	for	ID02;	Figure	4F,	
Figure	 S10).	 Although	 we	 used	 earphones	 that	 attenuate	 scanning	
noise, the remaining noise could have degraded the stimulus quality 
and	modulated	activity	patterns	in	the	auditory	cortex	(Peelle,	2014).	
To evaluate the effects of scanning noise on our results, we therefore 
performed	additional	analyses	(Figure	S11).	Specifically,	we	recorded	
the	 MRI	 noise	 inside	 the	 scanner	 using	 an	 MRI-compatible	 micro-
phone	and	added	this	noise	to	the	original	auditory	stimuli.	Since	the	
relative intensity of noise depends on the depth of insertion, we added 
the	noise	with	three	different	relative	intensities	(0.2,	0.5,	and	1.0	to	
the	mean	RMS	of	 the	 original	 stimuli).	 For	 participants	 ID01,	 ID04,	
and	 ID05,	we	 found	 that	 the	MTF	model	 exhibited	 the	 largest	 cor-
relation	coefficients	between	the	FBS	maps	and	genre-weight	maps	
independent	of	relative	noise	 intensities	 (Wilcoxon	signed-rank	test,	
p <	.050;	except	for	the	comparison	between	the	MTF	and	cochlear	
models	for	participant	ID01	with	noise	intensities	of	1.0	and	0.5,	for	
which p =	.065,	and	between	the	MTF	and	MIRT	models	for	partici-
pant	ID04	with	a	noise	intensity	of	0.5,	for	which	p =	.084).	For	par-
ticipants	ID02	and	ID03,	a	relative	noise	intensity	of	0.2	more	clearly	
demonstrated	the	advantage	of	the	MTF	model	(Wilcoxon	signed-rank	
test, p <	.010).	These	results	suggest	that	the	MTF	model	accurately	
captured	genre-specific	cortical	organization	in	the	bilateral	STG.

3.4 | Genre classification accuracy based on brain 
activity, behavior, and acoustic models

In	 the	MRI	 experiments	 in	 this	 study,	 participants	 listened	 pas-
sively to music stimuli and did not carry out any genre classifi-
cation	 tasks	during	scanning.	To	confirm	 that	participants’	brain	

F I G U R E  5  The	modulation-transfer	function	(MTF)	model	explains	the	genre	representational	specificities	of	brain	activity	and	
behavior.(A)The	confusion	matrix	based	on	the	brain	activity	of	participant	ID01	using	the	decoding	model	approach.	For	each	column	of	
correct music genres, the percentage of classified music clips was plotted on the row of classified music genres.(B)The	confusion	matrix	
based	on	the	behavioral	data	of	participant	ID01.(C)	The	mean	confusion	matrix	based	on	the	behavioral	data	of	the	non-MRI	participants.	
For	each	column	of	music	genres,	the	percentage	of	correctly	classified	music	clips	was	plotted	on	the	row	of	the	classified	music	genres.	
Error	bar,	SD.
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activity captured sufficient information to distinguish different 
music	genres	 in	 the	current	experimental	 setting,	we	conducted	
a genre classification based on brain activity using a decod-
ing	model	 approach	 (see	Methods).	We	evaluated	 the	confusion	
matrix,	 along	with	 the	 classification	 accuracy	 (the	 diagonal	 ele-
ments	 of	 the	 confusion	matrix),	 using	 cortical	 activation	 within	
the	 genre-representing	 ROI	masks	 (Figure	 5A,	 Figure	 S12).	 The	
results of classification varied across genres, in that classical 
music	 was	 always	 classified	 accurately	 (average	 classification	
accuracy,	 100%),	 whereas	 classification	 performance	 for	 rock	
music	was	poor	across	all	participants	(13.3%	±	18.3%).	We	also	
found that participants tended to classify reggae music as hip-
hop	music	 (confusion	 from	 reggae	 to	 hip-hop,	 43.3%	±	 14.9%),	
whereas	they	tended	to	classify	rock	music	as	country	music	(con-
fusion from rock to country, 33.3% ±	11.8%).	The	activity-based	
confusion matrices were highly consistent across all participants 
(Spearman's	correlation	coefficient,	ρ = 0.553	± 0.062; p < .001 
for	all	combinations	of	participants).

To investigate how brain activation associated with music genre 
is related to behavioral performance during genre classification, 
we conducted an additional behavioral test for each participant 
(MRI	participants)	after	the	MRI	scanning	(Figure	5B,	Figure	S13).	
The	 confusion	 matrix	 revealed	 that	 participants’	 genre	 classifi-
cation performance varied for each genre, in that classical music 
was	always	accurately	recognized	(average	classification	accuracy,	
100%),	while	rock	music	was	less	accurately	recognized	across	all	
participants	(36.7%	±	13.9%).	Behavioral	confusion	matrices	iden-
tified brain activity-like error tendencies, such that rock music 
tended	 to	be	 classified	 as	 country	music	 (confusion	 from	 rock	 to	
country, 20.0% ±	13.9%).	The	behavior-based	confusion	matrices	
were	highly	consistent	across	all	participants	(Spearman's	correla-
tion coefficient, ρ = .669 ±	0.038;	p < .001 for all combinations of 
participants).	The	confusion	matrices	of	behavior	and	brain	activity	
were	 significantly	 correlated	 for	 all	 participants	 (Spearman's	 cor-
relation coefficient, ρ = .438	±	 0.081,	p <	 .001),	 suggesting	 that	
the genre representational specificity of human behavior mimicked 
that of brain activity.

Further,	 because	 the	MRI	 participants	 listened	 to	 the	music	
stimuli	 twice	 (once	 in	 the	MRI	 scanner	 and	 again	 in	 the	 behav-
ioral	test),	there	may	have	been	a	learning	effect.	Moreover,	it	is	
necessary	to	test	whether	the	five	MRI	participants	have	similar	
perceptual properties for music genres as those of the general 
population.	To	 confirm	 the	generalizability	of	 the	behavioral	 re-
sults of these participants, we recruited an additional 21 par-
ticipants	 for	 the	 behavioral	 tests	 only	 (non-MRI	 participants,	
Figure	 5C).	 The	 non-MRI	 participants	 exhibited	 variable	 genre	
classification	 accuracy	 (mean	± SD,	 56.3%	±	 6.1%;	max,	 68.3%;	
min,	43.3%),	with	performances	similar	 to	those	of	 the	MRI	par-
ticipants,	in	that	they	always	recognized	classical	music	accurately	
(100%)	whereas	they	did	not	always	do	so	with	rock	music	(17.5%).	
Accordingly, the average behavioral confusion matrices of the 
MRI	participants	and	the	non-MRI	participants	were	significantly	
correlated	(ρ =	.826,	p <	.001).

4  | DISCUSSION

Using	 fMRI,	 the	 current	 study	 revealed	 the	 cortical	 organization	
underlying different music genres. As the genre-label model did 
not assume any acoustic properties, we used genre-weight maps 
(Figure	4D)	 to	 reflect	music	 genre	 information	 in	 general.	 Thus,	 it	
was important to obtain similar weight patterns between the genre-
label	model	(Figure	4D)	and	the	FBS	map	based	on	the	MTF	model	
(Figure	4C).	The	FBS	map	shows	how	the	spectro-temporal	modu-
lation	of	each	cortical	voxel	corresponds	to	the	reference	spectro-
temporal modulation profile for each music genre. Thus, it is likely 
that	the	weight	values	in	the	bilateral	STG	for	the	genre-label	model	
were	determined	by	the	degree	to	which	each	STG	voxel’s	spectro-
temporal modulation property resembles that of the music stimuli.

Among	the	multiple	subregions	in	STG,	music	genres	were	rep-
resented	more	clearly	in	both	HS	and	LSTG	than	in	the	other	subre-
gions.	Previous	studies	on	frequency-selective	(i.e.,	tonotopic)	maps	
of	the	human	STG	have	indicated	that	the	primary	auditory	cortex	
(A1)	 is	 located	around	 the	posterior	part	of	HG	and	HS	accompa-
nied by a gradient of low- to high-frequency selectivity from the 
anterior	to	posterior	directions	(Ahveninen	et	al.,	2016;	Humphries	
et	al.,	2010;	Leaver	&	Rauschecker,	2016;	Moerel	et	al.,	2014).	While	
cochlear	features	correspond	to	positions	in	the	frequency	axis	and	
may	therefore	reflect	tonotopic	properties	(see	Figure	1C),	the	MTF	
model further captures the modulation property around each posi-
tion	on	the	frequency	axis.	Santoro	et	al.	(2014)	showed	that	the	MTF	
model	outperformed	the	cochlear	model	in	terms	of	predicting	STG	
activation	in	response	to	natural	sound	stimuli	(Santoro	et	al.,	2014),	
which	is	consistent	with	the	current	results.	LSTG	has	been	reported	
to represent different sound categories such as the sound of a guitar 
versus.	voice	of	a	cat	 (Staeren	et	al.,	2009),	 and	 it	exhibits	human	
speech-selective	activation	(Leaver	&	Rauschecker,	2010;	Norman-
Haignere	 et	 al.,	 2015).	 The	 MTF	 model	 captures	 detailed	 spec-
tro-temporal	modulation	 properties	 both	 in	 human	 speech	 (Elliott	
&	Theunissen,	2009)	and	in	musical	instruments	(Patil	et	al.,	2012),	
which	may	explain	the	more	general	acoustic	features	that	can	en-
compass the feature space of simple categorical models such as 
genre-label	 or	 voice	 models.	 To	 summarize,	 the	 spectro-temporal	
modulations obtained in our study seem to reflect the general pro-
cessing	properties	of	auditory	stimuli	in	the	bilateral	STG.

Several	studies	have	reported	that	perceived	music	genres	can	be	
decoded	from	brain	activity.	Ghaemmaghami	and	Sebe	(2017)	used	
magnetoencephalogram and electroencephalogram datasets to clas-
sify	musical	stimuli	as	either	pop	or	rock	using	SVM	(Ghaemmaghami	
&	Sebe,	2016).	Further,	Case	y	(2017)	and	Sengupta	et	al.	(2018)	used	
fMRI	data	with	five	distinct	music	genres,	followed	by	activity-based	
multi-class	classification	using	SVM.	However,	these	studies	did	not	
provide answers to how cortical representations of music genres 
contribute to genre classification. Collectively, the present findings 
demonstrate the underlying mechanisms of such activity-based 
genre classification.

We	investigated	classification	accuracy	using	five	models	(co-
chlear,	 MTF,	 MIRT,	 MFCC,	 and	 voice).	 Both	 the	 MFCC	 and	 the	
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MIRT	models	were	developed	in	the	field	of	computational	science	
and have been employed previously in studies of music-induced 
brain	 activity	 (Alluri	 et	 al.,	 2012;	 Güçlü	 et	 al.,	 2016;	 Toiviainen	
et	 al.,	 2014).	 The	 cochlear	 model	 has	 been	 employed	 to	 test	
cortical	 activation	 in	 the	 spectral	 domain	 (de	Heer	 et	 al.,	 2017);	
however, it cannot capture the dynamic temporal modulation of 
spectra	(see	Figure	1C).	The	MTF	model	was	constructed	based	on	
the	physiological	properties	of	neurons	in	the	auditory	cortex	(Chi	
et	al.,	2005)	and	is	used	widely	in	neuroscience	research	into	audi-
tory	perception	(Norman-Haignere	et	al.,	2015;	Patil	et	al.,	2012;	
Santoro	 et	 al.,	 2014,	 2017).	 Therefore,	 it	 is	 likely	 that	 the	MTF	
model is more biologically plausible for addressing the auditory 
processing	 of	music	 genres.	 Our	 current	 findings	 are	 consistent	
with	this	view,	because,	of	all	the	models,	the	MTF	model	showed	
the	 highest	 correlation	 coefficients	 between	 the	 FBS	maps	 and	
genre-weight	maps	(Figure	4F).

One	 might	 argue	 that	 the	 fMRI	 signal	 change	 is	 too	 slow	 to	
capture the rapid acoustic features of music stimuli and that this 
could	affect	the	model	performance	with	up-tempo	(e.g.,	metal)	and	
slow-tempo	(e.g.,	classical)	music	genres.	However,	the	MTF	model	
includes	 temporal	modulations	of	 frequency	 (from	2.8	 to	64.0	Hz)	
and the estimated model weights show signals in high temporal 
modulation	 rates	 (e.g.,	 Figure	 4B),	 suggesting	 that	 this	model	 can	
capture the fine-scale musical information necessary to distinguish 
relatively	up-tempo	music	genres	(e.g.,	metal	and	hip-hop).	Indeed,	
the	difference	in	decoding	accuracy	(in	Figure	5A)	is	not	explained	by	
the difference in tempo, given that both classical and hip-hop music 
showed higher decoding accuracies.

In	the	MRI	experiments	in	this	study,	participants	listened	pas-
sively to music stimuli and did not carry out any genre classification 
tasks	during	 scanning.	 It	 could	be	argued	 that	we	did	not	 confirm	
that the participants listened attentively to the stimuli and that we 
overlooked the brain regions activated for top-down decision-mak-
ing on music genre classification. To address this, we conducted 
behavioral	experiments	of	genre	classification	for	MRI	participants	
(Figure	5B)	 and	 confirmed	 that	 there	were	 significant	 correlations	
between the confusion matrices based on brain activation and be-
havior. These findings suggested that passive listening to music stim-
uli captured enough brain information for use in behavioral music 
genre classification.

In	this	study,	we	adopted	a	small-N	design	(five	participants).	The	
small number of subjects is compensated for by the large number 
of	samples	 for	each	participant	 (i.e.,	 three	hours).	The	small-N	de-
sign has attracted substantial attention in recent studies combining 
fMRI	data	and	machine	 learning	 (Smith	&	Little,	2018).	 Instead,	of	
group-level statistical analyses, as are often used in conventional 
neuroimaging, we performed subject-wise analyses. The correspon-
dence of genre representation among participants was confirmed 
using Pearson's correlation of confusion matrices for both activi-
ty-based	decoding	and	behavior-based	analyses.	 In	contrast,	corti-
cal	organization	differed	across	participants.	For	 instance,	 the	 left	
HS	 showed	much	 larger	SD of prediction accuracy than the other 
anatomical	ROI	 (genre-label	model:	 left	HS,	SD =	 0.085;	mean	SD 

across	other	ROIs	=	 0.026;	 Table	1),	 indicating	 that	 the	 left	HS	 is	
the most sensitive region to the individual variability of music genre 
representation.

It	 is	worth	considering	whether	 linguistic	 factors	could	explain	
genre-specific	 organization	because	most	 classical	 and	 jazz	pieces	
employed	 in	 the	 current	 study	 were	 instrumental	 (i.e.,	 without	
human	 voice),	 whereas	 other	 genres	 included	 the	 human	 voice	
(Figure	3A).	Previous	studies	have	reported	voice-selective	and	non-
voice-selective	cortical	areas	around	STG	(Kell	et	al.,	2018;	Leaver	
&	 Rauschecker,	 2010;	 Norman-Haignere	 et	 al.,	 2015).	 However,	
our	study	demonstrated	that	such	 linguistic	factors	do	not	explain	
genre-specific patterns. The genre-label model in our study pre-
dicted brain activity even after regressing out voice-related features 
(Figure	 3B,	C).	 In	 addition,	we	 also	 showed	 that	 classical	 and	 jazz	
music	were	not	confused	with	each	other	(see	the	confusion	matri-
ces	in	Figure	5)	and	that	some	music	genres	containing	voice	stimuli	
were	not	confused	with	each	other	(e.g.,	hip-hop	and	country	music).	
Thus, it is likely that genre-specific activation patterns in the bilateral 
STG	 reflected	 detailed	 spectro-temporal	 modulation	 even	 within	
nonvoice music pieces.

Although	we	have	shown	that	FBS	maps	and	genre-weight	maps	
largely corresponded, the correspondence is not perfect. There are 
several	possible	reasons	for	such	imperfection.	First,	the	FBS	maps	
and genre-weight maps were susceptible to the noise of brain activ-
ity. The upper limit of prediction accuracy also affects the accuracy 
of	both	FBS	maps	and	genre-weight	maps.	Second,	the	MTF	might	
not	be	the	best	model.	 Indeed,	an	acoustic	model	might	exist	 that	
captures more detailed characteristics of music genres. Third, some 
nonacoustic	 features	 (such	as	 the	participants’	 preference,	 knowl-
edge,	and	experience	related	to	music)	may	play	important	roles	in	
producing	the	genre-specific	cortical	organization.	Further	research	
is therefore required to clarify the detailed neural basis of music 
categorization.

5  | CONCLUSION

In	conclusion,	music	genre	categories	are	represented	in	the	bilateral	
STG	in	a	genre-specific	way	and	that	spectro-temporal	modulation	
profiles	extracted	from	the	music	pieces	themselves	can	be	used	to	
model	these	representations.	To	summarize,	our	finding	suggest	that	
it	may	be	possible	to	model	the	categorization	of	complex	auditory	
stimuli based on brain activity.
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