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Abstract
Introduction: Humans tend to categorize auditory stimuli into discrete classes, such 
as animal species, language, musical instrument, and music genre. Of these, music 
genre is a frequently used dimension of human music preference and is determined 
based on the categorization of complex auditory stimuli. Neuroimaging studies have 
reported that the superior temporal gyrus (STG) is involved in response to general 
music-related features. However, there is considerable uncertainty over how discrete 
music categories are represented in the brain and which acoustic features are more 
suited for explaining such representations.
Methods: We used a total of 540 music clips to examine comprehensive cortical 
representations and the functional organization of music genre categories. For this 
purpose, we applied a voxel-wise modeling approach to music-evoked brain activity 
measured using functional magnetic resonance imaging. In addition, we introduced 
a novel technique for feature-brain similarity analysis and assessed how discrete 
music categories are represented based on the cortical response pattern to acoustic 
features.
Results: Our findings indicated distinct cortical organizations for different music gen-
res in the bilateral STG, and they revealed representational relationships between 
different music genres. On comparing different acoustic feature models, we found 
that these representations of music genres could be explained largely by a biologi-
cally plausible spectro-temporal modulation-transfer function model.
Conclusion: Our findings have elucidated the quantitative representation of music 
genres in the human cortex, indicating the possibility of modeling this categorization 
of complex auditory stimuli based on brain activity.
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1  | INTRODUC TION

Humans tend to categorize auditory stimuli into discrete classes. 
Such class labels encompass animal species, language, musical in-
strument, and music genre. Of these, music genre is a common 
class label for understanding how humans recognize and categorize 
music, and it is widely used in studies of music information retrieval 
(Sturm,  2012). However, there remains considerable uncertainty 
as to how such genre categories are perceived from complex audi-
tory stimuli and how the human brain subserves this categorization. 
Neuroimaging studies have decoded music genres from brain activity 
using support vector machines (SVM) (Case y, 2017; Ghaemmaghami 
& Sebe, 2016; Sengupta et al., 2018); however, these studies did not 
clarify how cortical representations of music genres contribute to 
genre classification.

Previous studies have examined the representations of general 
music-related features, for example, loudness, in the brain (Alluri 
et  al.,  2012; Hoefle et  al.,  2018; Toiviainen et  al.,  2014). Alluri 
et  al.  (2012) reported significant correlation between activation 
in the bilateral superior temporal gyrus (STG) with features of 
timbre, harmony, and rhythm. Moreover, Toiviainen et  al.  (2014) 
revealed involvement of the bilateral STG in the decoding of tim-
bral features. In contrast, cochlear and spectro-temporal modu-
lation-transfer function (MTF) models have been widely used as 
biologically plausible models for the acoustic representation of 
STG (de Heer et  al.,  2017; Norman-Haignere et  al.,  2015; Patil 
et  al.,  2012; Santoro et  al.,  2014, 2017). The cochlear model 
represents tonotopic information received through auditory 
pathways (de Heer et al., 2017; Saenz & Langers, 2014), but mod-
ulation-selective responses have been detected in the primary au-
ditory cortex in ferrets (Depireux et al., 2001) and humans (Hullett 
et al., 2016; Langers et al., 2003; Pasley et al., 2012; Schonwiesner 
& Zatorre, 2009). Moreover, the MTF model has been applied to 
explain brain activation differences between 2-s excerpts of music 
and voices in STG (Norman-Haignere et  al.,  2015) and between 
simple tones of various musical instruments (Patil et  al.,  2012). 
However, it is unclear whether these biologically plausible models 
can explain significant variance in the brain activity patterns of 
genre categories comprising complex auditory stimuli. Further, the 
process by which various music genre categories are organized in a 
fine-scale manner is not well understood.

Recent neuroimaging studies have employed voxel-wise encod-
ing/decoding models (Naselaris et al., 2011) to investigate sensory 
and higher-order cortical representations, including visual (Kay 
et al., 2008; Nishimoto et al., 2011) and auditory modalities (Allen 
et al., 2018; de Heer et al., 2017; Huth et al., 2016). One advantage of 
an encoding/decoding model approach is its ability to use the same 
dataset to compare the performances of several competing theo-
retical models. de Heer et al.  (2017) modeled brain activity during 
passive story listening and conducted encoding model fitting using 
cochlear, phoneme, and semantic features. Allen et al.  (2018) con-
ducted encoding model fitting with multiple acoustic features and 

reported the advantage of a timbre model for predicting auditory 
cortex activity induced by simple instrumental tones. Such ap-
proaches can be employed to further assess whether a biologically 
plausible model is more effective in predicting brain activation un-
derlying categorical representation.

Consequently, we used an encoding and decoding model ap-
proach to examine brain activity induced by music stimuli from 
different genre categories and examined the detailed cortical or-
ganization underlying each genre representation and how acoustic 
features can explain such categorical organization. Accordingly, 
five participants listened passively to naturalistic music stimuli 
representing 10 different music genres, and evoked brain activity 
was measured using fMRI (Figure 1 A). We hypothesized that music 
pieces are represented in a genre-specific way in the human brain 
and that such categorical representation reflects how the corti-
cal response pattern to acoustic features matches the acoustic 
property of individual music genre categories. We examined spe-
cific cortical activation patterns based on predefined genre labels 
(Figure 1B) and showed how different genre categories are orga-
nized on the cortical surface. We then extracted acoustic features 
using two biologically plausible models (cochlear, MTF), two mu-
sic-related models [MIRtoolbox (MIRT) and mel-frequency cepstral 
coefficient (MFCC)], and one voice-related model (voice model) 
(Figure 1C). MIRT features have been used to describe music-in-
duced activation patterns in the bilateral STG (Alluri et al., 2012; 
Toiviainen et  al.,  2014). MFCC features were developed and are 
predominantly used for speech recognition (Güçlü et  al.,  2016). 
Since distinct activity patterns were reported for the categorical 
perception of the human voice and musical instruments (Leaver 
& Rauschecker,  2010), we used the voice model to test whether 
genre-related brain activity can be explained merely by the effect 
of voice stimuli.

To investigate which acoustic features most accurately explain 
the categorical organization in the brain, we developed a novel 
technique of calculating the similarity of feature-based and brain-
based representation [feature–brain similarity (FBS)]. FBS assesses 
how cortical voxels realize the categorical representation of indi-
vidual music genres through target acoustic features by measuring 
similarities between the cortical weight vector of corresponding 
acoustic features and the reference acoustic feature vector of each 
music genre. FBS can be calculated in each voxel and is distinct from 
representational similarity analysis (Kriegeskorte et  al.,  2008) that 
calculates similarity across different categories based on multi-voxel 
patterns. Therefore, FBS is suitable for examining categorical rep-
resentation in the voxel-wise encoding modeling employed in our 
study. We further investigated the representational specificity be-
tween music genres by performing genre classification with the 
brain activity, behavior, and extracted features. Finally, we tested 
whether these acoustic features could capture such representa-
tional differences of music genres. Preliminary findings have been 
published in the IEEE International Conference  on Systems, Man, 
and Cybernetics (IEEE SMC 2018) (Nakai et al., 2018).
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2  | MATERIAL S AND METHODS

2.1 | Participants

Five healthy participants (referred to as ID01-05; age range 23–
33; 2 females; music experience, 4–15 years) with normal hearing 
participated in the MRI and behavioral experiments. An addi-
tional 21 participants (age 20–24; 5 females; music experience, 

0–15  years) participated only in the behavioral experiment. A 
questionnaire was used to assess the number of years that par-
ticipants trained on their primary instrument; this was used as 
the index of musical experience. Informed consent was obtained 
from all participants prior to their participation. This experiment 
was approved by the ethics and safety committee of the National 
Institute of Information and Communications Technology in 
Osaka, Japan.

F I G U R E  1  Schematic image showing the research paradigm of the present study. (A)Participants listened passively to the naturalistic 
music stimuli of 10 music genres, and evoked brain activity was measured using fMRI.(B)Voxel-wise brain activity was modeled as a feature 
matrix (music genre labels) times a weight matrix. Regularized linear regression was used to estimate optimal weights.(C)Five different 
acoustic models were used to explain genre-specific brain activation patterns. Cochlear, modulation-transfer function (MTF), MIRtoolbox 
(MIRT), mel-frequency cepstrum coefficients (MFCC), and voice features were extracted from the original sound signals. Each model is 
described in the Methods section.
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2.2 | Stimuli and task

Music stimuli from 10 genres (blues, classical, country, disco, hip-
hop, jazz, metal, pop, reggae, and rock) were taken at random from 
the GTZAN music genre dataset (http://marsy​asweb.appsp​ot.com/
downl​oad/data_sets/) (Tzanetakis & Cook,  2002). A total of 54 
music pieces (30 s, 22,050 Hz) were selected from each genre, pro-
viding 540 music pieces. A 15-s music clip was selected at random 
from each music piece. For each clip, 2 s of fade-in and fade-out ef-
fects were applied, and the overall signal intensity was normalized in 
terms of the root mean square (RMS).

Each experiment consisted of 18 runs: 12 were considered as 
training runs, and 6 were considered as test runs. Each run con-
sisted of 40 music clips and lasted 10 min in total. At the begin-
ning of each run, 15 s of dummy scanning was acquired; this was 
omitted from each analysis. A total of 480 of the music clips were 
used in the training runs, and the remaining 60 were reserved 
for the test runs. For the purposes of data reproducibility, a set 
of 10 music clips was presented four times in the same order as 
part of each test run. There was no repetition in the training runs. 
The clip order was randomized across the experiment. During 
scanning, participants were asked to fixate on a fixation cross at 
the center of the screen and to listen to the music clips through 
MRI-compatible insert earphones (Model S14, Sensimetrics). This 
model can attenuate scanner noise and has been widely used in 
previous MRI studies with auditory stimuli (Allen et al., 2018; de 
Heer et  al.,  2017; Huth et  al.,  2016; Kell et  al.,  2018; Norman-
Haignere et al., 2015; Santoro et al., 2017). After each 10 min run, 
we asked the participants to describe their physical condition, 
and we allowed a 1–2 min break if they felt fatigue or sleepiness. 
After all runs on each day, we asked the participants whether 
they fell asleep during scanning. According to their self-reports, 
nobody slept during the experiments. The experiment was ex-
ecuted over the course of three days, with six runs performed 
each day.

2.3 | MRI data acquisition

Scanning was performed using a 3.0  T MRI scanner (TIM Trio; 
Siemens, Erlangen, Germany) equipped with a 32-channel head 
coil. For functional scanning, we scanned 68 interleaved axial 
slices with a thickness of 2.0  mm without a gap using a T2*-
weighted gradient echo multi-band echo-planar imaging (MB-EPI) 
sequence (Moeller et al., 2010) (repetition time (TR) = 1,500 ms, 
echo time (TE)  =  30  ms, flip angle (FA)  =  62°, field of view 
(FOV) = 192 × 192 mm2, voxel size = 2 × 2 × 2 mm3, multi-band 
factor = 4). A total of 410 volumes were obtained for each run. For 
anatomical reference, we acquired high-resolution T1-weighted 
images of the whole brain from all participants using a magnetiza-
tion prepared rapid acquisition gradient echo sequence (MPRAGE, 
TR = 2,530 ms, TE = 3.26 ms, FA = 9°, FOV = 256 × 256 mm2, 
voxel size = 1 × 1 × 1 mm3).

2.4 | Feature assignment

To examine the representational basis of music, the following fea-
tures were assigned to the stimulus sounds (Figure 1).

2.4.1 | Genre-label features

The genre-label features consisted of 10 features corresponding to 
the 10 music genres. Values of either 1 or 0 were assigned to the en-
tire time duration of a 15 s music clip (consisting of 10 TRs) to denote 
the music genre of the target music clip.

2.4.2 | Cochlear and MTF features

A sound cochleogram was generated by processing the stimulus 
sounds using a bank of 128 overlapping band-pass filters, span-
ning from 100 to 8,000 Hz (Ellis, 2009). The window size was set 
to 25 ms, with the hop size set to 10 ms. The filter output averaged 
across 1.5 s (TR) was used as a feature in the cochlear model.

Then, we extracted MTF features as performed by Chi 
et  al.  (2005). For each cochleogram, a convolution with modula-
tion-selective filters was calculated. The outputs of the two filters 
with orthogonal phases (quadrature pairs) were squared and summed 
to yield the local modulation energy (Nishimoto et  al.,  2011). The 
local modulation energy was log-transformed, averaged across 
1.5  s, and further averaged within each of the 20 nonoverlapping 
frequency ranges logarithmically spaced in the frequency axis. The 
filter outputs of the upward and downward sweep directions were 
then averaged. Modulation-selective filters were tuned to 10 spec-
tral modulation scales [Ω = (0.35, 0.50, 0.71, 1.0, 1.41, 2.0, 2.83, 4.0, 
5.66, 8.0) cyc/oct] and 10 temporal modulation rates [ω = (2.8, 4.0, 
5.7, 8.0, 11.3, 16.0, 22.6, 32.0, 45.3, 64.0) Hz]. To reduce the com-
putational burden, the resultant 20 × 10 × 10 = 2000 features were 
reduced to 302 features using principal component analysis (PCA), 
which preserved 99% of the variance of the original features. The 
number of features used in the Cochlear and MTF models was 128 
and 302, respectively.

2.4.3 | MIRT and MFCC features

For the MIRT model, the MIR toolbox was used to extract multi-
ple music-related features from the dataset (Lartillot et  al.,  2008). 
Consistent with a previous neuroimaging study on music (Alluri 
et al., 2012), we extracted the following 24 features: RMS energy 
as the loudness feature; zero-crossing rate, high energy–low energy 
ratio, spectral centroid, spectral roll-off, spectral entropy, spectral 
flatness, roughness, spectral spread, spectral flux, and sub-band flux 
(with nine sub-bands) as timbral features; pulse clarity, fluctuation 
centroid, and fluctuation entropy as rhythm features; and mode and 
key clarity as tonal features. For loudness and timbral features, the 

http://marsyasweb.appspot.com/download/data_sets/
http://marsyasweb.appspot.com/download/data_sets/
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frame duration was set to 25 ms, with a 50% overlap between the 
two adjacent frames. For rhythm and tonal features, the frame du-
ration was set to 3  s, with a 33% overlap. Each feature was aver-
aged across 1.5 s. In addition, we used the MIR toolbox to extract 
MFCC features with 12 channels (Lartillot et al., 2008). Feature ex-
traction of the MIRT and MFCC models was also restricted within 
100–8,000 Hz. The number of features used in the MIRT and MFCC 
models was 24 and 12, respectively.

2.4.4 | Voice features

The voice features consisted of two features corresponding to 
whether each music piece contained voice stimuli. Values of either 
1 or 0 were assigned to the entire time duration of a 15 s music clip 
(consisting of 10 TRs) to denote the presence or absence of voice.

2.5 | Data analyses

2.5.1 | fMRI data preprocessing

Motion correction was performed for each run using the Statistical 
Parametric Mapping toolbox (SPM8; Wellcome Trust Centre for 
Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). All 
volumes were aligned to the first EPI image for each participant. 
Low-frequency drift was removed using a median filter with a 240-s 
window. To augment model fitting accuracy, the response for each 
voxel was normalized by subtracting the mean response and then 
scaling it to the unit variance. We used FreeSurfer (Dale et al., 1999; 
Fischl et al., 1999) to identify the cortical surfaces from the anatomi-
cal data and register them with the voxels of the functional data. We 
used only cortical voxels as targets of the analysis for each partici-
pant. For each participant, we used the voxels identified in the cer-
ebral cortex in the analysis (53,421–64,700 voxels per participant).

2.5.2 | Voxel-wise encoding model fitting

For each of the above models, cortical activation for each voxel 
was fitted using a set of linear temporal filters that captured the 
slow hemodynamic response and its coupling with brain activity 
(Nishimoto et  al.,  2011). A feature matrix FE [T ×  5N] was mod-
eled using concatenated sets of [T × N] feature matrices with five 
temporal delays of 1.5, 3, 4.5, 6, and 7.5 s (T, # of samples; N, # 
of features). The cortical response RE [T × V] was modeled using 
the feature matrix FE times the weight matrix WE [5N × V] (V, # of 
voxels):

We conducted an L2-regularized linear regression using the 
training dataset (4,800 samples, 7,200 s) to obtain the weight matrix 
WE. The optimal regularization parameter was evaluated via random 
resampling of the training dataset into two subsets, with 80% of the 
dataset being used for model fitting and the remaining 20% being 
used for model validation. This random resampling procedure was 
repeated 10 times.

The test dataset comprised 600 samples (900  s). The signal-
to-noise ratio was increased by averaging four repetitions of the 
test datasets. We calculated prediction accuracy by means of the 
Pearson's correlation coefficient between the predicted signal and 
the measured signal in the test dataset. The resulting p values were 
corrected for multiple comparisons within each participant using the 
false discovery rate (FDR) procedure (Benjamini & Hochberg, 1995). 
Mean prediction accuracy of each encoding model was calculated 
by averaging the prediction accuracy of all voxels within the par-
ticipant-specific region-of-interest mask (see below). The prediction 
accuracies of all models are summarized in Table  1. All model fit-
ting and analyses were performed using custom software written on 
MATLAB. For data visualization on the cortical maps, pycortex was 
used (Gao et al., 2015).

R̂E=FEWE

TA B L E  1   Prediction accuracy in each anatomical region

Genre-Label
Genre-Label (with 
Voice regressor) Cochlear MTF MIRT MFCC Voice

L. LSTG 0.079 ± 0.009 0.068 ± 0.017 0.070 ± 0.022 0.095 ± 0.017 0.074 ± 0.016 0.034 ± 0.007 0.078 ± 0.015

L. HG 0.153 ± 0.027 0.144 ± 0.023 0.159 ± 0.017 0.194 ± 0.040 0.159 ± 0.023 0.095 ± 0.027 0.098 ± 0.030

L. HS 0.222 ± 0.085 0.199 ± 0.076 0.200 ± 0.043 0.261 ± 0.050 0.223 ± 0.075 0.104 ± 0.038 0.169 ± 0.065

L. PT 0.121 ± 0.027 0.111 ± 0.028 0.104 ± 0.033 0.130 ± 0.027 0.114 ± 0.027 0.058 ± 0.017 0.114 ± 0.044

R. LSTG 0.100 ± 0.023 0.081 ± 0.026 0.102 ± 0.016 0.131 ± 0.029 0.100 ± 0.015 0.053 ± 0.009 0.103 ± 0.023

R. HG 0.152 ± 0.022 0.136 ± 0.034 0.163 ± 0.029 0.213 ± 0.045 0.161 ± 0.011 0.099 ± 0.018 0.125 ± 0.030

R. HS 0.198 ± 0.035 0.178 ± 0.026 0.188 ± 0.037 0.248 ± 0.040 0.205 ± 0.045 0.102 ± 0.048 0.145 ± 0.031

R. PT 0.116 ± 0.040 0.108 ± 0.041 0.131 ± 0.017 0.140 ± 0.069 0.118 ± 0.018 0.059 ± 0.023 0.090 ± 0.046

Note: Average prediction accuracies of six models across all participants (mean ± SD) calculated in the eight anatomical regions of interest. The 
prediction accuracy of the genre-label model was also calculated by regressing out the voice effect. LSTG, lateral superior temporal gyrus; HG, 
Heschl's gyrus; HS, Heschl's sulcus; PT, planum temporale; MTF, modulation-transfer function; MIRT, music information retrieval toolbox; MFCC, 
mel-frequency cepstral coefficient.

http://www.fil.ion.ucl.ac.uk/spm/
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2.5.3 | Genre-representing region-of-interest 
(ROI) mask

To obtain robust estimates of the genre-related cortical regions, we 
used the following resampling procedure: First, the training dataset 
was divided randomly into training samples (80%) and validation 
samples (20%). Using the optimal regularization parameter esti-
mated in the analysis of the genre-label model, we then performed 
encoding model fitting using the genre-label features with the train-
ing samples and calculated the prediction accuracy with the vali-
dation samples. Model fitting was performed using L2-regularized 
linear regression. This random resampling procedure was repeated 
50 times, and the voxels showing significant prediction accuracy 
(FDR corrected) for more than 80% of the repetitions were selected 
for the ROI mask. We included 468 voxels in the ROI mask for par-
ticipant ID01, 453 for participant ID02, 1,686 for participant ID03, 
576 for participant ID04, and 530 for participant ID05. Unless oth-
erwise indicated, the following analyses were all performed using 
the extracted ROI mask.

2.5.4 | Decoding of genre labels

In the decoding model, the cortical response matrix RD [T × 5V] was 
obtained by concatenating the set of [T × V] response matrices with 
five temporal delays of 1.5, 3, 4.5, 6, and 7.5 s. The genre-label ma-
trix G [T × 10] was modeled using the cortical response matrix RD 
times the weight matrix WD [5V × 10]:

The weight matrix WD was estimated using an L2-regularized 
linear regression with the training dataset following the same pro-
cedure used for the encoding model fitting. We used linear regres-
sion rather than a categorical classifier, such as logistic regression, 
to maintain the similarity between the encoding and decoding 
analyses. To calculate the classification accuracy, we first assigned 
genre-label indices (1 to 10) to each time point by taking the argmax 
of the decoded genre-label matrix. Then, we estimated the repre-
sentative genre-label index for each music clip by the majority voting 
method (Dalwon et al., 2008). Specifically, the genre-label that was 
most frequently assigned for all time points during a single music clip 
was regarded as a representative genre of that clip.

In the activity-based approach, we obtained a response matrix 
RD for each participant, whereas we used the feature matrix FD 
[T × N] in the feature-based approach.

2.5.5 | Behavioral experiment

To confirm that brain activation in response to music genres was re-
lated to the behavioral performance of genre classification, we per-
formed additional behavioral experiments. These experiments were 

conducted in a soundproof room by the same participants who par-
ticipated in the MRI experiments, as well as an additional 21 partici-
pants who had not taken part in the MRI experiments. Participants 
were first asked to listen to three original music clips (30 s) per genre 
as a reference; these clips were selected at random from the 460 
clips not used in the MRI experiment. In this training session, correct 
music genres were informed to the participants. Participants then 
listened to the 60 music clips used as the test dataset in the MRI 
experiment and judged the music genre to which the target music 
clip belonged by filling in 1 of 10 cells on the answer sheet provided. 
Participants listened to each music clip only once and in the same 
order of presentation as in the fMRI experiment. Of the 21 non-MRI 
participants, data from one participant were excluded because the 
average accuracy (30.0%) was outside the mean ± 3*SD range (and 
also outside the median 3*interquartile range) for all participants.

3  | RESULTS

3.1 | Genre-representing cortical organization

Genre-representing cortical areas were assessed using the genre-
label model. For all participants, significant prediction accuracy 
was observed in the bilateral STG (p  <  .05, with FDR correction; 
Figure 2A, Figure S1, Table 1). To identify cortical areas that robustly 
represented music genres independent of sample selection, we de-
termined the genre-representing functional ROI for each participant 
(Figure 2B, Figure S2). We performed this using a resampling proce-
dure. This analysis revealed significant prediction accuracies in the 
bilateral STG, and functional ROI was used as an inclusive mask in 
subsequent analyses.

To examine the relative contribution of each cortical voxel to 
the 10 music genres, we mapped the representation of the music 
genres on the cortical surface using PCA with genre-label weights 
(Figure 2C, Figure S3). For each voxel within the ROI mask, we ex-
tracted the estimated weight matrix of the genre-label encoding 
models. By averaging five temporal delays, we obtained matrices 
of [10 × Vi] (Vi: # of voxels for participant i, i=1,⋯, 5). To obtain a 
general result across participants, we concatenated the weight ma-
trix of the five participants. Then, we used PCA to perform dimen-
sionality reduction on the aggregated weight matrix [10×

∑5

i=1
Vi

]. PCA produced a score matrix [
∑5

i=1
Vi × 10] and loading matrix 

[10 × 10]. The score matrix indicates how 10 PCs are represented in 
each cortical voxel. The loading matrix indicates the contribution of 
each PC to the representation of 10 music genres. To demonstrate 
the representational relationship between the music genres, the 10 
genres were mapped onto the 2-D space using the loadings of PC1 
and PC2 (i.e., the first and second columns of the loading matrix) as 
the x-axis and the y-axis, respectively. Genres were colored further 
in red, green, and blue based on the relative PCA loadings in PC1, 
PC2, and PC3 (i.e., the first to third columns of the loading matrix), 
respectively. The top 3 PC components explain 70.9% of the total 
variances. To represent the cortical organization of music genres 

Ĝ=RDWD
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for each participant, we extracted and normalized the PCA scores 
from each participant's voxels (i.e., for each row of the score ma-
trix). The resultant cortical map indicates the relative contribution of 
each cortical voxel to the target PC. By combining the PCA scores 
of the top three PCs (i.e., the first to third rows of the normalized 
score matrix) of each participant, we visualized how each cortical 
voxel is represented by the 10 music genres. Each cortical voxel was 
colored based on the relative PCA scores of PC1, PC2, and PC3, cor-
responding to the color of the genre in the 2-dimensional space. This 
analysis revealed various genre-specific representations within the 
bilateral STG. Among the multiple subregions of STG, music genres 
were represented more clearly in Heschl's sulcus (HS) and the lat-
eral STG (LSTG) than in Heschl's gyrus (HG), the planum temporale 
(PT), or the lateral sulcus (LS) (except participant ID03, who dis-
played genre-specific activations in large brain regions including PT). 
Although we observed considerable individual variability, there was 

a marked consistency in that the contribution to pop, disco, coun-
try, and hip-hop music (shown in green in Figure 2C, Figure S3) was 
larger in the LSTG than in either the HS or the HG, whereas the con-
tribution to blues music (shown in purple) was larger around the HS.

To illustrate the relative relationships between the cortical acti-
vation patterns for different music genres, we visualized the weight 
values of 10 music genres in each voxel using the 2-D coordinates 
derived from the top two principal components (Figure 2D). Using 
PCA, we embedded genre-specific representation based on multiple 
cortical voxels (i.e., high-dimensional data) into the 2-D space, main-
taining their representational similarity. These findings indicated 
that the activation patterns induced by classical and jazz music were 
relatively similar, as were those induced by rock and metal music, 
whereas blues and hip-hop music seemed to have distinct activa-
tion patterns. Using the weight values of the genre-label model, 
we further visualized how the 10 music genres were represented 

F I G U R E  2  Cortical organization of music genre representations. (A) A cortical map of prediction accuracy using the genre-label model 
(p<.05, FDR corrected), shown on flattened cortical sheets of participant ID01: L, left hemisphere. R, right hemisphere.(B)The genre-
representing ROI for participant ID01, obtained using the genre-label model.(C)A cortical map of all music genres tested in the present 
study for participant ID01. All voxels were assigned red, green, and blue colors according to the loadings of the top three principal 
components (PC1-PC3) of the genre-label model weights (concatenated across participants). HG, Heschl’s gyrus. HS, Heschl’s sulcus. PT, 
planum temporale. LS, lateral sulcus. LSTG, lateral superior temporal gyrus.(D)Visualization of the representational relationship among 
the 10 music genres, mapped onto the 2-D space based on the loadings of PC1 and PC2. The color represents the PC1-PC3 loadings as in 
(C). The distance between each circle reflects the differences in cortical representation.(E)Weight values for the 10 genres extracted in a 
representative voxel in the right STG in participant ID01, plotted according to the same coordinates as in (D). The radius of each circle is 
equivalent to the weight value of the corresponding music genre at the target voxel (red, positive weight; blue, negative weight).
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differently in each cortical voxel based on the same 2-D coordinates 
(see Figure 2E for representative voxel data in participant ID01).

3.2 | Genre-specific representation independent 
from voice stimuli

Most of the hip-hop and pop music clips contained voice stimuli, 
whereas the classical and jazz music clips did not (Figure 3A). To test 
whether the genre-specific cortical representation was not explained 
by the inclusion of voice stimuli, we performed additional encoding 
model analysis. We concatenated the voice features with the original 
genre-label features in the encoding model fitting. Model testing ex-
cluded the voice features from the concatenated feature matrix and 
the corresponding weight matrix. In this process, the voice features in-
dicate whether certain music clip contains voice stimuli (Figure 1C). As 

this regressor was excluded in model testing, we regressed out the ef-
fect of voice stimuli. This model predicted activations in most of the bi-
lateral STG ROI that were used in the original genre-label model (77.8% 
± 19.2% of voxels were significant across all participants; prediction 
accuracy, r = .246 ± .027; original genre-label model, r = .284 ± .025; 
Figure 3B, C, Figure S4; Table 1). To examine how the cortical represen-
tation of 10 music genres is affected by regressing out the voice effect, 
we mapped the weight values of 10 music genres in each voxel using 
PCA (Figure 3D, Figure S5). We also visualized the relative relationships 
of 10 music genres derived from the top two PCs (Figure 3E) and their 
representation in each cortical voxel (Figure 3F). Similar to the results 
in Figure 2, the activation patterns induced by classical and jazz music 
were relatively similar, as were those induced by rock and metal music, 
whereas blues and hip-hop music had distinct activation patterns. 
These findings suggest that the genre-specific activation patterns were 
not explained merely by the inclusion of the voice stimuli.

F I G U R E  3  Genre-specific representation independent from voice stimuli. (A) Percent of voice stimuli in each music genre. (B) A cortical 
map of prediction accuracy excluding voice model features as a regressor of noninterest, shown on the flattened cortical sheet of participant 
ID01. (C) Bar plots show average prediction accuracies across all participants, averaged within the bilateral STG ROIs, obtained using the 
original genre-label model and with regressing out the voice effect. The black circles indicate each participant’s data. (D) A cortical map of 
all music genres, obtained using the genre-label model without voice effect. All voxels were assigned red, green, and blue colors according 
to the loadings of the top three principal components (PC1–PC3, respectively) of the genre-label model weights (concatenated across 
participants). HG, Heschl’s gyrus; HS, Heschl’s sulcus; PT, planum temporale; LS, lateral sulcus; LSTG, lateral superior temporal gyrus. (E) 
Visualization of the representational relationship among the 10 music genres, mapped onto the 2-D space based on the loadings of PC1 and 
PC2. (F) Weight values for the 10 genres extracted in a representative voxel in the right STG.



     |  9 of 14NAKAI et al.

3.3 | Genre-specific brain activity was explained 
by the spectro-temporal modulation of music genres

Next, we tested how well acoustic feature-based genre specific-
ity corresponds to brain-based feature specificity. To achieve this, we 
extracted the acoustic features of each music stimulus using the five 

acoustic models (Cochlear, MTF, MIRT, MFCC, and voice). In this study 
(Figure 4A-E), we only show the MTF model results for the purpose of 
visualization; however, the following analyses were performed similarly 
for all acoustic models. Spectro-temporal modulation of each music 
genre was evaluated according to the feature matrix used for encoding 
model fitting. Interpretable spectro-temporal information was obtained 

F I G U R E  4   Contribution of spectro-temporal features to music genre representation.(A)Examples of the averaged modulation profiles for 
classical music. Modulation-transfer function (MTF) model weights were projected on a 2-D plot of the spectral modulation Ω (cyc/oct) and 
temporal modulation rates ω (Hz).(B)Spectro-temporal modulation of the cortical voxels determined in participant ID01. Weight vectors of 
the MTF model were averaged for 20 central frequencies. Each cortical voxel was assigned the maximum spectral/temporal modulation rate 
of that voxel. The averaged modulation profile of an example voxel is shown on the left panel. Feature-brain similarity (FBS) was calculated 
as a Pearson’s correlation coefficient between the modulation profile in each cortical voxel and the reference modulation profile of each 
music genre.(C)FBS cortical maps of participant ID01 obtained from the spectro-temporal modulations of classical music (i.e., MTF model 
features). Data were normalized and projected on the inflated cortical map (red, positive weight; blue, negative weight).(D)The normalized 
weights of the genre-label model were projected on the inflated cortical map (genre-weight map; red, positive weight; blue, negative 
weight), for classical music.(E)The 2-D scatterplot of voxel values of the normalized genre-weight map and the FBS map of the MTF model 
(CandD) taken from all voxels in the genre-representing ROI of participant ID01, and overlaid with 10 music genres.(F)Pearson’s correlation 
coefficients between voxels in the FBS map and those in the genre-weight map for participant ID01 for the cochlear, MTF, music information 
retrieval toolbox (MIRT), and mel-frequency cepstral coefficient (MFCC), voice; see Methods), averaged for 10 music genres. The MTF model 
provided the highest similarity (Wilcoxon signed-rank test,p<.010 for all the models).
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for each MTF feature by restoring the MTF feature matrix to the origi-
nal size through multiplying it by the transposed PCA coefficient matrix. 
Moreover, we transformed the MTF weight matrix by multiplying it by 
the PCA loading matrix. In order to visualize the MTF model, we further 
averaged the feature values obtained at the 20 central frequencies for 
each of the 10 × 10 combinations of spectral modulation Ω (cyc/oct) 
and temporal modulation ω (Hz). Genre-specific feature vectors were 
calculated for the other models using the same procedure. By averaging 
the MTF features for the 48 clips of the same music genre in the training 
dataset, we obtained reference MTF features for the 10 music genres 
(Figure 4A). We then obtained the MTF features of each cortical voxel 
using the weight matrix of the MTF model (Figure 4B; see Figure S6 for 
a weight map of the other models). The response of each cortical voxel 
to spectro-temporal modulation was assessed using the transformed 
weight matrix. Voxel-specific weight vectors were calculated by averag-
ing the MTF weight values of the 48 training clips for each genre. Voxel-
specific weight vectors were calculated for the other models using the 
same procedure. In order to visualize the MTF model, we further aver-
aged the weight values obtained at the 20 central frequencies for each 
of the 10 × 10 combinations of spectral modulation Ω (cyc/oct) and tem-
poral modulation ω (Hz).

To examine whether genre-representing activation patterns were 
explained by the extracted features, we calculated the Pearson's cor-
relation coefficients between the reference genre-specific feature vec-
tor and the voxel-specific weight vector in each cortical voxel. Through 
this analysis, we obtained an FBS cortical map of each music genre 
based on its MTF features (Figure 4C, Figure S7). The FBS map based 
on the MTF model was very similar to the cortical map obtained for 
genre-label weight (genre-weight map, Figure 4D, Figure S8), and they 
were significantly correlated for all music genres (Pearson's correlation 
coefficient, p < .001, with Bonferroni correction; Figure 4E, Figure S9). 
A significant correlation was observed consistently across all partici-
pants (r = .729 ± .111), indicating that the different spectro-temporal 
modulations of the 10 music genres explained genre-specific activity 

patterns. The FBS map was also obtained for the other acoustic mod-
els, and we found that the MTF model outperformed the other models 
(cochlear, MIRT, MFCC, and voice models) in terms of the mean cor-
relation between the FBS maps and the genre-weight maps (Wilcoxon 
signed-rank test, p < .020 for participants except for ID02; Figure 4F, 
Figure  S10). Although we used earphones that attenuate scanning 
noise, the remaining noise could have degraded the stimulus quality 
and modulated activity patterns in the auditory cortex (Peelle, 2014). 
To evaluate the effects of scanning noise on our results, we therefore 
performed additional analyses (Figure S11). Specifically, we recorded 
the MRI noise inside the scanner using an MRI-compatible micro-
phone and added this noise to the original auditory stimuli. Since the 
relative intensity of noise depends on the depth of insertion, we added 
the noise with three different relative intensities (0.2, 0.5, and 1.0 to 
the mean RMS of the original stimuli). For participants ID01, ID04, 
and ID05, we found that the MTF model exhibited the largest cor-
relation coefficients between the FBS maps and genre-weight maps 
independent of relative noise intensities (Wilcoxon signed-rank test, 
p < .050; except for the comparison between the MTF and cochlear 
models for participant ID01 with noise intensities of 1.0 and 0.5, for 
which p = .065, and between the MTF and MIRT models for partici-
pant ID04 with a noise intensity of 0.5, for which p = .084). For par-
ticipants ID02 and ID03, a relative noise intensity of 0.2 more clearly 
demonstrated the advantage of the MTF model (Wilcoxon signed-rank 
test, p < .010). These results suggest that the MTF model accurately 
captured genre-specific cortical organization in the bilateral STG.

3.4 | Genre classification accuracy based on brain 
activity, behavior, and acoustic models

In the MRI experiments in this study, participants listened pas-
sively to music stimuli and did not carry out any genre classifi-
cation tasks during scanning. To confirm that participants’ brain 

F I G U R E  5  The modulation-transfer function (MTF) model explains the genre representational specificities of brain activity and 
behavior.(A)The confusion matrix based on the brain activity of participant ID01 using the decoding model approach. For each column of 
correct music genres, the percentage of classified music clips was plotted on the row of classified music genres.(B)The confusion matrix 
based on the behavioral data of participant ID01.(C) The mean confusion matrix based on the behavioral data of the non-MRI participants. 
For each column of music genres, the percentage of correctly classified music clips was plotted on the row of the classified music genres. 
Error bar, SD.
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activity captured sufficient information to distinguish different 
music genres in the current experimental setting, we conducted 
a genre classification based on brain activity using a decod-
ing model approach (see Methods). We evaluated the confusion 
matrix, along with the classification accuracy (the diagonal ele-
ments of the confusion matrix), using cortical activation within 
the genre-representing ROI masks (Figure 5A, Figure  S12). The 
results of classification varied across genres, in that classical 
music was always classified accurately (average classification 
accuracy, 100%), whereas classification performance for rock 
music was poor across all participants (13.3% ± 18.3%). We also 
found that participants tended to classify reggae music as hip-
hop music (confusion from reggae to hip-hop, 43.3% ± 14.9%), 
whereas they tended to classify rock music as country music (con-
fusion from rock to country, 33.3% ± 11.8%). The activity-based 
confusion matrices were highly consistent across all participants 
(Spearman's correlation coefficient, ρ = 0.553 ± 0.062; p <  .001 
for all combinations of participants).

To investigate how brain activation associated with music genre 
is related to behavioral performance during genre classification, 
we conducted an additional behavioral test for each participant 
(MRI participants) after the MRI scanning (Figure 5B, Figure S13). 
The confusion matrix revealed that participants’ genre classifi-
cation performance varied for each genre, in that classical music 
was always accurately recognized (average classification accuracy, 
100%), while rock music was less accurately recognized across all 
participants (36.7% ± 13.9%). Behavioral confusion matrices iden-
tified brain activity-like error tendencies, such that rock music 
tended to be classified as country music (confusion from rock to 
country, 20.0% ± 13.9%). The behavior-based confusion matrices 
were highly consistent across all participants (Spearman's correla-
tion coefficient, ρ = .669 ± 0.038; p < .001 for all combinations of 
participants). The confusion matrices of behavior and brain activity 
were significantly correlated for all participants (Spearman's cor-
relation coefficient, ρ  =  .438 ±  0.081, p  <  .001), suggesting that 
the genre representational specificity of human behavior mimicked 
that of brain activity.

Further, because the MRI participants listened to the music 
stimuli twice (once in the MRI scanner and again in the behav-
ioral test), there may have been a learning effect. Moreover, it is 
necessary to test whether the five MRI participants have similar 
perceptual properties for music genres as those of the general 
population. To confirm the generalizability of the behavioral re-
sults of these participants, we recruited an additional 21 par-
ticipants for the behavioral tests only (non-MRI participants, 
Figure 5C). The non-MRI participants exhibited variable genre 
classification accuracy (mean ±  SD, 56.3% ±  6.1%; max, 68.3%; 
min, 43.3%), with performances similar to those of the MRI par-
ticipants, in that they always recognized classical music accurately 
(100%) whereas they did not always do so with rock music (17.5%). 
Accordingly, the average behavioral confusion matrices of the 
MRI participants and the non-MRI participants were significantly 
correlated (ρ = .826, p < .001).

4  | DISCUSSION

Using fMRI, the current study revealed the cortical organization 
underlying different music genres. As the genre-label model did 
not assume any acoustic properties, we used genre-weight maps 
(Figure 4D) to reflect music genre information in general. Thus, it 
was important to obtain similar weight patterns between the genre-
label model (Figure 4D) and the FBS map based on the MTF model 
(Figure 4C). The FBS map shows how the spectro-temporal modu-
lation of each cortical voxel corresponds to the reference spectro-
temporal modulation profile for each music genre. Thus, it is likely 
that the weight values in the bilateral STG for the genre-label model 
were determined by the degree to which each STG voxel’s spectro-
temporal modulation property resembles that of the music stimuli.

Among the multiple subregions in STG, music genres were rep-
resented more clearly in both HS and LSTG than in the other subre-
gions. Previous studies on frequency-selective (i.e., tonotopic) maps 
of the human STG have indicated that the primary auditory cortex 
(A1) is located around the posterior part of HG and HS accompa-
nied by a gradient of low- to high-frequency selectivity from the 
anterior to posterior directions (Ahveninen et al., 2016; Humphries 
et al., 2010; Leaver & Rauschecker, 2016; Moerel et al., 2014). While 
cochlear features correspond to positions in the frequency axis and 
may therefore reflect tonotopic properties (see Figure 1C), the MTF 
model further captures the modulation property around each posi-
tion on the frequency axis. Santoro et al. (2014) showed that the MTF 
model outperformed the cochlear model in terms of predicting STG 
activation in response to natural sound stimuli (Santoro et al., 2014), 
which is consistent with the current results. LSTG has been reported 
to represent different sound categories such as the sound of a guitar 
versus. voice of a cat (Staeren et al., 2009), and it exhibits human 
speech-selective activation (Leaver & Rauschecker, 2010; Norman-
Haignere et  al.,  2015). The MTF model captures detailed spec-
tro-temporal modulation properties both in human speech (Elliott 
& Theunissen, 2009) and in musical instruments (Patil et al., 2012), 
which may explain the more general acoustic features that can en-
compass the feature space of simple categorical models such as 
genre-label or voice models. To summarize, the spectro-temporal 
modulations obtained in our study seem to reflect the general pro-
cessing properties of auditory stimuli in the bilateral STG.

Several studies have reported that perceived music genres can be 
decoded from brain activity. Ghaemmaghami and Sebe (2017) used 
magnetoencephalogram and electroencephalogram datasets to clas-
sify musical stimuli as either pop or rock using SVM (Ghaemmaghami 
& Sebe, 2016). Further, Case y (2017) and Sengupta et al. (2018) used 
fMRI data with five distinct music genres, followed by activity-based 
multi-class classification using SVM. However, these studies did not 
provide answers to how cortical representations of music genres 
contribute to genre classification. Collectively, the present findings 
demonstrate the underlying mechanisms of such activity-based 
genre classification.

We investigated classification accuracy using five models (co-
chlear, MTF, MIRT, MFCC, and voice). Both the MFCC and the 
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MIRT models were developed in the field of computational science 
and have been employed previously in studies of music-induced 
brain activity (Alluri et  al.,  2012; Güçlü et  al.,  2016; Toiviainen 
et  al.,  2014). The cochlear model has been employed to test 
cortical activation in the spectral domain (de Heer et  al.,  2017); 
however, it cannot capture the dynamic temporal modulation of 
spectra (see Figure 1C). The MTF model was constructed based on 
the physiological properties of neurons in the auditory cortex (Chi 
et al., 2005) and is used widely in neuroscience research into audi-
tory perception (Norman-Haignere et al., 2015; Patil et al., 2012; 
Santoro et  al.,  2014, 2017). Therefore, it is likely that the MTF 
model is more biologically plausible for addressing the auditory 
processing of music genres. Our current findings are consistent 
with this view, because, of all the models, the MTF model showed 
the highest correlation coefficients between the FBS maps and 
genre-weight maps (Figure 4F).

One might argue that the fMRI signal change is too slow to 
capture the rapid acoustic features of music stimuli and that this 
could affect the model performance with up-tempo (e.g., metal) and 
slow-tempo (e.g., classical) music genres. However, the MTF model 
includes temporal modulations of frequency (from 2.8 to 64.0 Hz) 
and the estimated model weights show signals in high temporal 
modulation rates (e.g., Figure 4B), suggesting that this model can 
capture the fine-scale musical information necessary to distinguish 
relatively up-tempo music genres (e.g., metal and hip-hop). Indeed, 
the difference in decoding accuracy (in Figure 5A) is not explained by 
the difference in tempo, given that both classical and hip-hop music 
showed higher decoding accuracies.

In the MRI experiments in this study, participants listened pas-
sively to music stimuli and did not carry out any genre classification 
tasks during scanning. It could be argued that we did not confirm 
that the participants listened attentively to the stimuli and that we 
overlooked the brain regions activated for top-down decision-mak-
ing on music genre classification. To address this, we conducted 
behavioral experiments of genre classification for MRI participants 
(Figure 5B) and confirmed that there were significant correlations 
between the confusion matrices based on brain activation and be-
havior. These findings suggested that passive listening to music stim-
uli captured enough brain information for use in behavioral music 
genre classification.

In this study, we adopted a small-N design (five participants). The 
small number of subjects is compensated for by the large number 
of samples for each participant (i.e., three hours). The small-N de-
sign has attracted substantial attention in recent studies combining 
fMRI data and machine learning (Smith & Little, 2018). Instead, of 
group-level statistical analyses, as are often used in conventional 
neuroimaging, we performed subject-wise analyses. The correspon-
dence of genre representation among participants was confirmed 
using Pearson's correlation of confusion matrices for both activi-
ty-based decoding and behavior-based analyses. In contrast, corti-
cal organization differed across participants. For instance, the left 
HS showed much larger SD of prediction accuracy than the other 
anatomical ROI (genre-label model: left HS, SD =  0.085; mean SD 

across other ROIs =  0.026; Table 1), indicating that the left HS is 
the most sensitive region to the individual variability of music genre 
representation.

It is worth considering whether linguistic factors could explain 
genre-specific organization because most classical and jazz pieces 
employed in the current study were instrumental (i.e., without 
human voice), whereas other genres included the human voice 
(Figure 3A). Previous studies have reported voice-selective and non-
voice-selective cortical areas around STG (Kell et al., 2018; Leaver 
& Rauschecker,  2010; Norman-Haignere et  al.,  2015). However, 
our study demonstrated that such linguistic factors do not explain 
genre-specific patterns. The genre-label model in our study pre-
dicted brain activity even after regressing out voice-related features 
(Figure 3B, C). In addition, we also showed that classical and jazz 
music were not confused with each other (see the confusion matri-
ces in Figure 5) and that some music genres containing voice stimuli 
were not confused with each other (e.g., hip-hop and country music). 
Thus, it is likely that genre-specific activation patterns in the bilateral 
STG reflected detailed spectro-temporal modulation even within 
nonvoice music pieces.

Although we have shown that FBS maps and genre-weight maps 
largely corresponded, the correspondence is not perfect. There are 
several possible reasons for such imperfection. First, the FBS maps 
and genre-weight maps were susceptible to the noise of brain activ-
ity. The upper limit of prediction accuracy also affects the accuracy 
of both FBS maps and genre-weight maps. Second, the MTF might 
not be the best model. Indeed, an acoustic model might exist that 
captures more detailed characteristics of music genres. Third, some 
nonacoustic features (such as the participants’ preference, knowl-
edge, and experience related to music) may play important roles in 
producing the genre-specific cortical organization. Further research 
is therefore required to clarify the detailed neural basis of music 
categorization.

5  | CONCLUSION

In conclusion, music genre categories are represented in the bilateral 
STG in a genre-specific way and that spectro-temporal modulation 
profiles extracted from the music pieces themselves can be used to 
model these representations. To summarize, our finding suggest that 
it may be possible to model the categorization of complex auditory 
stimuli based on brain activity.
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