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Abstract 

Background:  Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancers. However, 
the limited population that benefits from ICI therapy makes it necessary to screen predictive biomarkers for stratify-
ing patients. Currently, many biomarkers, such as tumor mutational burden (TMB), have been used in the clinic as 
indicative biomarkers. However, some high-TMB patients with mutations in genes that are closely related to immuno-
therapeutic resistance are not sensitive to ICI therapy. Thus, there is a need to move beyond TMB and identify specific 
genetic determinants of the response to ICI therapy. In this study, we established a comprehensive mutation-based 
gene set across different tumor types to predict the efficacy of ICI therapy.

Methods:  We constructed and validated a mutational signature to predict the prognosis of patients treated with ICI 
therapy. Then, the underlying immune response landscapes of different subtypes were investigated with multidimen-
sional data.

Results:  This study included genomic and clinical data for 12,647 patients. An eleven-gene mutation-based gene 
set was generated to divide patients into a high-risk group and a low-risk group in a training cohort (1572 patients 
with 9 types of cancers who were treated with ICI therapy). Validation was performed in a validation cohort (932 
patients with 5 types of cancers who were treated with ICI therapy). Mutations in these 11 genes were associated with 
a better response to ICI therapy. In addition, the mutation-based gene set was demonstrated to be an independent 
prognostic factor after ICI therapy. We further explored the role of the immune context in determining the benefits of 
immunotherapy in 10,143 patients with 33 types of cancers and found distinct immune landscapes for the high- and 
low-risk groups.
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Background
The treatment landscapes of different cancer types have 
changed based on developments in the field of immuno-
oncology. Immune checkpoint inhibitor (ICI) therapy, 
which includes antibodies targeting cytotoxic T lym-
phocyte-associated protein-4 (CTLA-4), programmed 
death-1 (PD-1), and programmed death ligand-1 (PD-
L1), offers significant clinical benefits for patients with 
many types of cancer [1–3]. In the PD-1/PD-L1 pathway, 
binding of the PD-1 receptor on T cells to PD-L1 on anti-
gen-presenting cells and tumor cells limits or halts the 
T cell response by downregulating cytokine production, 
effector function, and T cell proliferation. However, only 
20–40% of patients treated with PD-1/PD-L1 blockade 
therapy show a response, whereas most do not, and the 
determinants of the response remain elusive. In addi-
tion, treatment discontinuation in nonresponders is often 
delayed due to difficulty in interpreting imaging results 
[4]. Therefore, the selection of patients is vital, and it is a 
substantial challenge to identify reliable markers to rap-
idly predict a sustainable response.

Tumor-infiltrating immune cells play a crucial role in 
patient prognosis and cancer treatment efficacy [5–8]. 
In the tumor microenvironment, the composition of 
immune cells is related to cancer heterogeneity and cre-
ates complexity that is interesting but challenging when 
studying the dynamic interactions between cancer and 
immune cells [8]. IFN-γ is a crucial cytokine produced by 
natural killer (NK) cells and activated T cells [9], and loss 
of sensitivity to IFN-γ induction can result in resistance 
to immunotherapy [6, 10]. Many excellent models and 
targets for predicting the response to ICI therapy have 
been developed recently. For example, Jiang et al. devel-
oped a tumor immune dysfunction and exclusion (TIDE) 
score, a method that uses gene expression profiles for 
calculations to predict the response to ICI therapy. TIDE 
evaluates two different tumor immune escape mecha-
nisms: the prevention of T cell infiltration in cancers with 
low cytotoxic T lymphocyte (CTL) levels and the induc-
tion of T cell dysfunction in cancers with high CTL infil-
tration [10, 11]. This method can predict the outcomes 
of cancer patients treated with ICI therapy more accu-
rately than other biomarkers, such as mutational load 
and PD-L1 levels. Moreover, Shi et  al. discovered that 
MAN2A1 loss renders cancer cells more susceptible to 

T cell-mediated killing and that inhibition of MAN2A1 
enhances the immune response to anti-PD-L1 [12]. In 
addition to transcriptomics data, other types of omics 
data can be assessed to predict the efficacy of ICI ther-
apy. Kumar et  al. found that suppression of CARM1, 
an epigenetic enzyme and cotranscriptional activator, 
facilitates immunotherapy for resistant tumors through 
dual effects on cancer cells and cytotoxic T cells [13]. 
Genomic profiling also represents an emerging approach 
for predicting the response to immunotherapy. Based on 
exome analysis of tumors from pembrolizumab-treated 
patients, the best responses to PD-1 blockade occurred 
in tumors with a high tumor mutational burden (TMB) 
[14]. Indeed, TMB has been shown to be a strong marker 
of the response to front-line treatment with nivolumab 
together with ipilimumab in patients with advanced 
non-small-cell lung cancer (NSCLC) [15]. However, due 
to the limited number of high-quality DNA samples, the 
availability of tissue samples, the need for bioinformatics 
analyses, the lack of a standardized panel and cutoff val-
ues, and the high cost, it is difficult to implement whole-
exome sequencing or next-generation sequencing panels 
in routine clinical practice.

Furthermore, tumors with a comparably high TMB 
show variable responses, indicating that additional fac-
tors may contribute to the response to ICIs [16]. Muta-
tions in genes involved in antigen presentation and in 
interferon-receptor signaling pathways, such as B2M and 
JAK1/2, have been shown to be related to acquired resist-
ance to ICIs, and JAK1/2 mutations have also been found 
to result in primary anti-PD-1 resistance [17]. Although 
the TMB may be high, patients carrying these mutations 
usually have a poor response to ICIs. There is thus a need 
to move beyond the TMB and identify specific genetic 
determinants of the response to PD-1 inhibitors [18].

POLE and POLD1 mutations have been proposed as 
biomarkers for immunotherapy outcomes across mul-
tiple cancer types [19]. However, there has not yet been 
a comprehensive exploration of factors related to prog-
nosis after immunotherapy at the genomic level. In this 
study, we conducted a pancancer genomic analysis to 
identify a powerful signature for predicting the clinical 
benefit for ICI-treated patients. We further investigated 
the role of the immune context in determining the ben-
efit of immunotherapy.

Conclusions:  The mutation-based gene set developed in this study can be used to reliably predict survival benefit 
across cancers in patients receiving ICI therapy. The close interplay between the extrinsic and intrinsic immune land-
scapes in the identified patient subgroups and the subgroups’ differing responses to ICI therapy could guide immu-
notherapy treatment decisions for cancer patients.
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Methods
Study population
Mutation data and clinical information for the training 
and validation cohorts were obtained from the cBioPor-
tal database (https://​www.​cbiop​ortal.​org) and the litera-
ture [20–28]. The predictive model was first constructed 
based on the training cohort, which consisted of 1572 
patients with 9 types of cancers who received ICI treat-
ment (Additional file  2: Fig. S1) and was then validated 
in the independent validation cohort consisting of 932 
patients with 5 types of cancers who received ICI treat-
ment (Additional file  2: Fig. S1) [20, 23]. Additional 
file  2: Fig. S1 summarizes the sample selection process. 
Specifically, in the training cohort from Samstein et  al. 
[20], both mutation profiles and clinical data were avail-
able for 1661 patients. Next, cancer types with only one 
case (n = 1) and cancer of unknown primary type (n = 88) 
were excluded; 1572 cases remained. In the validation 
cohort, both mutation profiles and clinical data were 
available for 144 patients from the cohort of Liu et  al. 
[21], 274 patients from the IMvigor210 cohort reported 
by Mariathasan et al. [22], 249 patients from the cohort 
of Miao et al. [23], 35 patients from the cohort of Miao 
et al. [24], 68 patients from the cohort of Riaz et al. [25], 
38 patients from the cohort of Hugo et  al. [26], 110 
patients from the cohort of Van Allen et  al. [27], and 
64 patients from the cohort of Snyder et  al. [29]. Nota-
bly, in the Miao cohort (n = 249) [23], cancer types with 
only one case (n = 3) were excluded, with only 246 cases 
remaining. In the Hugo cohort (n = 38) [26], one patient 
was excluded because of a lack of overall survival data; 
37 cases remained. In addition, 46 cases from the Snyder 
cohort (n = 64) and Miao cohort (n = 249) were dupli-
cates, and 46 cases from the Snyder cohort were excluded 
[23, 29]. The clinical data for each sample used in the 
analysis are shown in Additional file 1: Tables S1-S3.

Samples from the training cohort were sequenced 
using the Memorial Sloan Kettering-Integrated Mutation 
Profiling of Actionable Cancer Targets (MSK-IMPACT) 
panel, which was designed for targeted sequencing of 
468 tumor-suppressor genes, oncogenes, and members 
of pathways considered actionable for targeted thera-
pies and authorized by the US FDA [20]. Samples from 
the validation cohort were sequenced using WES, except 
for the IMvigor210 cohort reported by Mariathasan et al., 
which was sequenced with the FoundationOne panel, 
a US FDA-authorized panel [22]. This study included 
all nonsynonymous mutations, including missense, 
frame-shift, nonsense, nonstop, splice site, and transla-
tion start site mutations [19]. The primary clinical out-
comes were overall survival (OS) and clinical benefit, 
which was categorized as durable clinical benefit (DCB) 
(complete response [CR]/partial response [PR] or stable 

disease [SD] that lasted > 6 months) or no durable ben-
efit (NDB) (progression of disease [PD] or SD that lasted 
≤ 6 months) [30]. In the training cohort, no response data 
were provided by Samstein et  al., and we extracted the 
response data for some of those patients from Janjigian 
et al. [31] and Rizvi et al. [30]. In the validation cohort, 
data on the response to ICI therapy were obtained from 
Hugo et  al. [26], Liu et  al. [21], Mariathasan et  al. [22], 
Miao et al. [23, 24], Riaz et al. [25], and Van Allen et al. 
[27]. In the training and validation cohorts, OS was 
defined as the time from the date of the first ICI therapy 
to the time of the last follow-up or death. For samples 
sequenced by WES, the TMB was defined as the total 
number of nonsynonymous mutations divided by the 
exome size (38 Mb was utilized as the exome size). For 
samples sequenced with the MSK-IMPACT panel or 
FoundationOne panel, the TMB was obtained from the 
respective studies.

In the cohort from TCGA, mutation profiles (sequenced 
by WES), copy number variation (CNV) data, and mRNA 
expression profiles for 10143 patients with 33 cancer 
types, as acquired from the PanCancer Atlas consortium 
(https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​panca​
natlas), were employed to explore differences in genomic 
patterns between the identified subtypes [32].

Propensity score matching (PSM) weighting algorithm
PSM is a critical statistical method used to adjust for 
confounding factors in observational studies and has 
a wide range of applications in the social sciences, eco-
nomics, and clinical practice [33]. In contrast to pair 
matching, PSM can improve balance, estimate efficiency, 
and enable the inclusion of all subjects by weighting 
them such that each contributes to the estimation [34]. 
We used the PSM method in this study to balance poten-
tially confounding factors, including age, drug type, and 
cancer type, between the mutant and wild-type status of 
each gene in the MSK-IMPACT panel. Briefly, we first 
calculated the propensity score using logistic regression, 
with the mutation status of a given gene as a dependent 
variable, and we then used the PSM weighting scheme 
to continuously assign weights for each sample based on 
the propensity scores to achieve balance [34]. When the 
standardized difference of the weighted propensity scores 
between the mutant gene and wild-type gene groups was 
less than 10%, we considered the clinical characteristics 
to be balanced between the propensity score-weighted 
samples. We then compared survival data between the 
mutant gene and wild-type gene samples by supplying 
weights for multivariate Cox regression. Genes with a P 
value < 0.05 and adjusted P < 0.1 were considered to have 
a profound effect on prognosis and were selected for fur-
ther analysis, and statistical significance was confirmed 

https://www.cbioportal.org/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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by randomly shuffling the mutation labels of the samples 
and repeating the above processes 100 times [34]. Statis-
tical significance was analyzed by comparing the number 
of significant features obtained from the permutated data 
to that obtained from our real-world data.

Generation and validation of the mutation‑based gene set
In the training cohort, PSM analysis, Lasso-penalized 
Cox regression analysis, and multivariate Cox regres-
sion analysis were employed to screen prognostic genes 
and construct a mutation-based gene set. First, a gene 
was considered significant when the P value was < 0.05 
in the PSM analysis. The PSM algorithm was utilized as 
described above. Second, we applied Lasso-penalized 
Cox regression using the “glmnet” R package (version: 
4.0-2) to avoid overfitting, reduce multicollinearity, and 
further select the key prognostic genes [35, 36]; subselec-
tion of prognostic genes was performed by shrinkage of 
the regression coefficient via the imposition of a penalty 
proportional to size [37]. Tenfold cross-validations were 
performed to define the optimal value of the lambda pen-
alty parameter; this resulted in the weight of most of the 
potential prognostic genes decreasing to zero, and a rela-
tively small number of prognostic genes with a weight of 
nonzero remained. For the Lasso-penalized Cox regres-
sion analysis, we subsampled the dataset with replace-
ment 1000 times and selected prognostic genes with 
nonzero occurrence frequencies of more than 990 [38]. 
Third, multivariate Cox regression analysis was used to 
construct a mutation-based gene set with the “survival” R 
package (version: 3.2-3). The risk score can be estimated 
from the Cox model as follows:

•	 The coefficients (b1, b2, …, bp) measure the impact 
(i.e., the effect size) of covariates.

•	 Xi is the value of the ith covariate from the subjects.
•	 Xi is the mean value of the ith covariate.

X-tile 3.6.1 software was used to determine the best 
cutoff for classifying patients into low- and high-risk 
score groups [39]. The cutoff was defined as the risk 
score that generated the largest value of χ2 in the Mantel–
Cox test [40]. Finally, the same formula and cutoff were 
applied for the validation and TCGA cohorts.

Generation and validation of the nomogram
As convenient and reliable tools, nomograms are widely 
used to predict specific outcomes in clinical oncology; 
they quantitatively predict prognosis for certain patients 

Risk score = exp

[

p
∑

i=1

biXi −

p
∑

i=1

biXi

]

using known critical predictive factors and reveal the 
survival probability of clinical outcomes [41]. A calibra-
tion curve was used to evaluate the agreement between 
the actual and predicted survival probabilities [42].

Evaluation of immune infiltration with CIBERSORT
CIBERSORT is a deconvolution algorithm that is based 
on gene expression and applies support vector regression 
to infer cell type proportions in data from bulk cancer 
samples of mixed cell types [43]. The proportions of 22 
types of infiltrating immune cells were estimated via the 
CIBERSORT method based on normalized gene expres-
sion data. CIBERSORT immune infiltration proportions 
were obtained from the pancancer immune landscape 
project conducted by Thorsson et al. [44].

TIL fraction, leukocyte fraction and lymphocyte fraction 
analyses
In the cohort from TCGA, the levels of TILs from 
genomics evaluation and those of TILs from H&E-
stained image evaluation were evaluated by analyzing 
the data from Thorsson et al. and Saltz et al., respectively 
[44, 45]. Saltz et al. presented global mappings of TILs for 
over 5000 H&E-stained diagnostic whole-slide images 
from TCGA by using deep learning-based lympho-
cyte classification with convolutional neural networks 
(CNNs), representing a benchmark for TIL analysis. 
Genomics evaluation of the TIL fraction was carried out 
by multiplying an aggregated proportion of the lympho-
cyte fraction in the immune compartment assessed by 
the CIBERSORT approach with the leukocyte fraction 
derived from DNA methylation. The lymphocyte fraction 
is an aggregation of CIBERSORT estimates of T regula-
tory cells, follicular helper T cells, naïve, resting and acti-
vated memory CD4 T cells, naïve and memory B cells, 
plasma cells, activated and resting NK cells, CD8 T cells, 
and gamma-delta T cells.

The immune infiltration scores from Danaher et al.
The immune infiltration scores were extracted from a 
previous TCGA pancancer study conducted by Danaher 
et al. [46]. Each immune cell score was estimated by 60 
specific marker genes with expression levels that are able 
to classify 14 immune cell populations: total TILs, B cells, 
DCs, macrophages, exhausted CD8 T cells, CD8 T cells, 
neutrophils, cytotoxic cells, Tregs, NK CD56dim cells, 
mast cells, NK cells, and Th1 cells. These results were 
highly reproducible and concordant with those obtained 
by immunohistochemistry and flow cytometry.

Immune signature evaluation
Twenty-nine classical immune signatures were acquired 
from He et al. (Additional file 1: Table S4) [47]. We used 
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the “GSVA” R package (version: 1.34.0) based on the 
single-sample gene set enrichment analysis (ssGSEA) 
method to quantify the enrichment levels of the twenty-
nine immune signatures in each sample [48].

Immunogenomic indicator calculation
Immunogenomic indicators were obtained from the pan-
cancer immune landscape project conducted by Thors-
son et  al. [44]. In brief, the intertumoral heterogeneity 
(ITH) score was defined as the subclonal genome frac-
tion (which measures the fraction of the tumor genome 
that is not part of the “plurality” clone), as determined by 
ABSOLUTE, which models tumor copy number altera-
tions and mutations as mixtures of subclonal and clonal 
components of varying ploidy. The copy number burden 
scores n_segs and frac_altered (“number of segments” 
and “fraction altered”, respectively) represent the total 
number of segments in each sample’s copy number pro-
file and the fraction of bases that deviate from the base-
line ploidy, respectively. Aneuploidy scores were defined 
as the sum total of the amplified or deleted (collectively, 
“altered”) arms. TCR diversity scores (Shannon entropy 
and richness) and BCR diversity scores (Shannon entropy 
and richness) were inferred from cancer RNA-seq data.

Cytolytic activity score
The cytolytic activity score (CYT) was defined as the 
geometric mean of granzyme A (GZMA) and perforin 1 
(PRF1) expression [49].

Deciphering mutational signatures in the genome
The “MutationalPatterns” R package (version: 1.12.0) 
was applied to perform nonnegative matrix factorization 
(NMF) analysis of mutations stratified by 96 trinucleo-
tide contexts in pancancer specimens from TCGA. The 
extracted mutational portrait was compared against the 
Catalogue of Somatic Mutations in Cancer (COSMIC) by 
cosine similarity.

Enrichment scores of oncogenic pathways
Ten canonical oncogenic pathways containing 187 
oncogenes were obtained from the study conducted by 

Sanchez-Vega et  al. [50]. Enrichment scores for each 
pathway in each sample were determined by the ssGSEA 
approach applying the “GSVA” R package [48].

Copy number variation analysis
Significant deletion or amplification events in regions of 
the genome were investigated with GISTIC 2.0, a revised 
computational program that identifies somatic copy 
number alterations by investigating the amplitude and 
frequency of observed events [51].

Functional enrichment analysis
Functional enrichment analysis and clustering of the 
identified biological processes were conducted using the 
“clusterProfiler” R package (version: 3.14.3) [52].

Statistical analysis
Associations between the mutation-based gene set and 
OS were analyzed via the Kaplan–Meier method; survival 
curves were compared via the log-rank test. C-indexes 
were determined to compare the accuracy of the muta-
tion-based gene set with that of the risk factors [53]. Sta-
tistical analysis for comparisons between two groups was 
conducted using the Wilcoxon test. R software (version 
3.6.3) was applied to perform all statistical analyses, and 
P values were two-tailed. A P value < 0.05 was considered 
to indicate significance.

Results
Identification of a mutation‑based gene set for predicting 
immunotherapy outcomes
Samples from the training cohort were sequenced using 
an MSK-IMPACT panel including 468 genes [20]. To 
remove confounding effects (including effects of age, 
drug type and cancer type), a PSM weighting algorithm 
was adopted to study survival differences between car-
riers of mutant and wild-type variants of these 468 
genes (Fig.  1A). Additional file  2: Fig. S2 summarizes 
the analysis process used for this study. We calculated 
the propensity scores, “reweighted” the samples in 
the training cohort, and compared the survival differ-
ences between mutant and wild-type status for the 468 
genes. As a result, 98 gene mutations were found to 

(See figure on next page.)
Fig. 1  Generation and validation of the mutation-based gene set. A An overview of the propensity score algorithm used to balance confounding 
factors, including age, cancer types, and drug types. B Survival analysis of the mutation-based gene set in the training cohort. C Survival analysis of 
the mutation-based gene set in different age groups (age < 65 and age ≥ 65). D Survival analysis of the mutation-based gene set in different drug 
type subgroups (anti-PD-1, anti-CTLA-4 and combination). E Survival analysis of the mutation-based gene set in different cancer type subgroups 
(urothelial cancer, melanoma, non-small-cell lung cancer, renal cell carcinoma, and colorectal cancer). F Survival analysis of the mutation-based 
gene set in the validation cohort. G The proportion of patients who responded to ICI therapy in the high-risk and low-risk groups in the training 
cohort. H The distribution of risk scores in groups with different ICI clinical response statuses in the training cohort. I The proportions of patients 
with a response to ICI therapy in the high-risk and low-risk groups in the validation cohort. J The distribution of risk scores in groups with different 
ICI clinical response statuses in the validation cohort
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Fig. 1  (See legend on previous page.)
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be significantly related to OS (P < 0.05 and adjusted P 
< 0.1). Lasso-penalized Cox regression analysis was used 
to further select important genes. Eleven genes with a 
nonzero occurrence frequency of more than 990 times 
of a total of 1000 repetitions were obtained (Additional 
file 1: Table S5) [38]. Finally, we quantified a risk score 
for each patient on the basis of the eleven-gene muta-
tion-based gene set through multivariate Cox regression 
analysis:

In this formula, exp denotes exponential, the mutant 
gene status equals 1, and the wild-type gene status 
equals 0. X-tile software was used to generate an opti-
mal cutoff value (1.07) to divide patients into groups 
with high- and low-risk scores [40]. The cutoff score 
of 1.07 was automatically identified by X-tile software 
because it was defined as the risk score that gener-
ated the largest value of χ2 in the Mantel–Cox test. In 
addition, we rescored 9 gene sets (excluding ROS1 and 
PTPRT from the 11 gene sets), and we found that the 
cutoff automatically identified by X-tile software was 
0.74, so the cutoff for the 9 gene sets was 0.74, and the 
cutoff for the 11 gene sets was 1.07. This means that the 
1.07 cutoff used in our study was selected specifically 
for 11 gene sets.

Patients in the group with high risk scores had a 
shorter OS than those in the group with low risk scores 
(P < 0.001; HR, 2.394; 95% CI, 2.035–2.817) (Fig.  1B). 
The AUC of the mutation-based gene set in the training 
cohort was 0.751 at 3 years and 0.831 at 5 years (Addi-
tional file 2: Fig. S3A). The AUC of each cancer type in 
the training cohort was also calculated (Additional file 2: 
Fig. S3C). We investigated whether the mutation-based 
gene set is restricted to specific groups or applicable to 
different populations. Subgroup analyses indicated that 
the mutation-based gene set was significantly associated 
with OS in patients treated with ICI therapy, regard-
less of age (Fig. 1C), drug type (Fig. 1D), or cancer type 
(Fig. 1E). The results of the subgroup analysis are in good 
agreement with those of PSM. Considering that TMB is 
a good marker for predicting the efficacy of immuno-
therapy, we performed a stratified analysis of TMB [54, 
55]. In the stratified analysis of TMB, we found that the 
mutation-based gene set could predict prognosis very 
well in the TMB-high group and TMB-low group (Addi-
tional file 2: Fig. S4A and B). In the training cohort, the 

Risk score = exp
[

(−0.4885006 × BRAF) + (−0.2618274 × PAK7) + (−0.2610592 × PTPRD)

+(−0.2404202 × PTPRT) + (−0.2321493 × ROS1) + (−0.2759073 × SETD2)

+(−0.8026092 × TET1) + (−1.0449158 × VHL) + (−1.7929573 × FAM46C)

+(−0.7964559 × RNF43) + (−0.3821696 × ZFHX3) − (−0.3283004)].

survival time of patients with BRAF mutation (median 
OS: 47.0 months) was significantly longer than that of 
those with wild-type BRAF (median OS: 17.0 months) 
(P < 0.001) (Additional file  2: Fig. S4C). In melanoma, 
patients with mutated BRAF (median OS: 49.0 months) 
had a good survival trend compared with those with 
wild-type BRAF (median OS: 33.0 months) (Additional 
file 2: Fig. S4D). We calculated the mutation rate of the 
ROS1 (Additional file  2: Fig. S4E) and PTPRT (Addi-

tional file  2: Fig. S4F) genes for each cancer type and 
found them not to be high.

Validation of the mutation‑based gene set for predicting 
immunotherapy outcomes
To further confirm the value of the mutation-based 
gene set for predicting immunotherapy outcomes, we 
evaluated the mutation-based gene set in the valida-
tion cohort. When using the same formula and the same 
cutoff obtained from the training cohort, in the valida-
tion cohort, patients in the low-risk group exhibited an 
increased OS compared with those in the high-risk group 
(P < 0.001; HR, 1.792, 95% CI, 1.499–2.143) (Fig. 1F). The 
AUC of the mutation-based gene set in the validation 
cohort was 0.674 at 3 years and 0.732 at 5 years (Addi-
tional file 2: Fig. S3B); the AUC for each cancer type in 
the validation cohort was also assessed (Additional file 2: 
Fig. S3D). Considering the dependence of TMB measure-
ment on the sequence panels used [54, 55], we separately 
evaluated the robustness of the model across different 
panels used in the clinic. In the Snyder et al. cohort [29], 
an advanced melanoma anti-CTLA-4-treated cohort 
(Additional file 2: Fig. S5A), and in the Mariathasan et al. 
cohort [22], a metastatic urothelial cancer anti-PD-L1-
treated cohort (Additional file  2: Fig. S5B), the survival 
time of patients in the low-risk group was significantly 
longer than that of patients in the high-risk group (P 
< 0.05), which was consistent with the results obtained 
for the training cohort.

We also systematically compared the performance 
of our mutation-based gene set to that of the existing 
mutation-based signature of ICI response in the train-
ing cohort, including frameshift insertion/deletion 
(indel) mutation burden [56], tobacco mutation signa-
ture [57], UV signature [58], APOBEC signature [59], 
and DNA damage response pathway mutation [60]. 
Genes of the DNA damage response pathway were 
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extracted from Conway et  al., including MSH2, MSH6, 
PMS2, POLE, and BRCA2 [60]. We defined the sample 
in which all genes in the DNA damage response path-
way were wild-type as “DNA damage response pathway 
unaltered” and the sample in which at least one gene 
in the DNA damage response pathway was mutated as 
“DNA damage response pathway altered.” The C-index 
is one of the most commonly used performance meas-
ures for survival models: the higher the value of the 
C-index is, the better the predictive ability of the model 
[61]. We found that the predictive power of the muta-
tion-based gene set (C-index = 0.716) was greater than 
that of the frameshift insertion/deletion (indel) muta-
tion burden (C-index = 0.526), tobacco mutation signa-
ture (C-index = 0.515), UV signature (C-index = 0.592), 
APOBEC signature (C-index = 0.531), and DNA damage 
response pathway mutation (C-index = 0.607) (Addi-
tional file 2: Fig. S5C).

As many studies have associated individual gene muta-
tion status with ICI benefit, we used the C-index to com-
pare the performance of mutation-based gene sets to that 
of those genes, including B2M [62], JAK1, JAK2 [63], 
KRAS, TP53 [64], PTEN [65], STK11 [66], and BAP1 
[67]. We found that the predictive power of the muta-
tion-based gene set (C-index = 0.716) was greater than 
that of B2M mutation (C-index = 0.538), JAK1 mutation 
(C-index = 0.614), JAK2 mutation (C-index = 0.615), 
KRAS mutation (C-index = 0.526), TP53 mutation 
(C-index = 0.600), PTEN mutation (C-index = 0.513), 
STK11 mutation (C-index = 0.653), and BAP1 mutation 
(C-index = 0.606) (Additional file 2: Fig. S5D).

We investigated whether the mutation-based gene set is 
able to predict the response to ICI therapy in the training 
and validation cohorts. In the training cohort, there was 
a significant DCB of ICI therapy in the low-risk group 
compared to the high-risk group (Fig. 1G). Patients with 
low risk scores were also more likely to respond to ICI 
therapy (Fig. 1H). This result was confirmed in the valida-
tion cohort (Fig. 1I and J). Additionally, we examined the 
breakdown of the risk score-predicted high-risk and low-
risk proportion per cancer type and found that renal cell 
carcinoma and melanoma accounted for a higher propor-
tion of samples in the low-risk group (Additional file  2: 
Fig. S6A-C). This may be due to the higher response rate 
of renal cell carcinoma and melanoma than other tumors 
to immunotherapy [68].

The mutation‑based gene set is an independent predictor 
of prognosis after immunotherapy
We next verified whether the mutation-based gene set 
is an independent predictor of the response to immu-
notherapy. In both the training cohort and validation 
cohorts, univariate Cox regression analysis showed that 
the mutation-based gene set correlated with OS (Fig. 2A, 
B). After adjusting for drug type, cancer type, and TMB, 
the mutation-based gene set remained an independent 
predictive factor based on multivariate Cox regression 
analysis, confirming its robustness for independently pre-
dicting ICI prognosis (Fig. 2A, B).

In both the training and validation cohorts, multivari-
ate Cox regression analysis showed drug type, TMB, and 
the mutation-based gene set to be independent predic-
tive factors for identifying patients who will benefit from 
ICI treatment (Fig.  2A, B). To identify which factor has 
the best predictive performance, the C-index was utilized 
to compare performance between the mutation-based 
gene set and the TMB and drug type in both the training 
and validation cohorts. In the former, the C-index results 
showed that the mutation-based gene set predicted prog-
nosis more accurately than TMB (P < 0.001) and drug 
type (P = 0.006) (Fig.  2C), a result that was validated in 
the validation cohort (all P < 0.001) (Fig. 2D).

The mutation‑based gene set, disease stage, CTL, 
and 6‑IFN‑g gene signature can be combined to predict 
the clinical benefit of ICI therapy
Using the Riaz cohort involving both DNA sequencing 
and RNA sequencing data [25], we compared the 2-gene 
cytolytic score, 6-gene IFN-g signature score, and 18-gene 
IFN-g signature score between the low-risk group and the 
high-risk group. The genes of the 2-gene cytolytic score 
included GZMA and GZMB. The genes of the 6-gene 
IFN-g signature were extracted from Ayers et al.: IDO1, 
CXCL10, CXCL9, HLA-DRA, STAT1, and IFNG [9]. 
The genes of the 18-gene IFN-g signature were extracted 
from Ayers et  al.: CD3D, IDO1, CIITA, CD3E, CCL5, 
GZMK, CD2, HLA-DRA, CXCL13, IL2RG, NKG7, HLA-
E, CXCR6, LAG3, TAGAP, CXCL10, STAT1, and GZMB 
[9]. The 2-gene cytolytic score, 6-gene IFN-g signature 
score, and 18-gene IFN-g signature score were estimated 
by the ssGSEA method. We found that compared with 
the high-risk group, the low-risk group showed a higher 
2-gene cytolytic score (P = 0.071), 6-gene IFN-g signature 

Fig. 2  Relationships between the mutation-based gene set and other characteristics. A Univariate and multivariate Cox regression analyses of 
the mutation-based gene set in the training cohort. B Univariate and multivariate Cox regression analyses of the mutation-based gene set in the 
validation cohort. C Comparison of C-indexes between the mutation-based gene set and the TMB and drug type in the training cohort. Error 
bars represent the 95% CI of the C-index. D Comparison of C-indexes between the mutation-based gene set and the TMB and drug type in the 
validation cohort. E Nomogram for predicting survival probability at 12 and 24 months in the Riaz cohort. F Calibration curves for evaluating the 
predictive accuracy of the nomogram in the Riaz cohort. The gray line represents ideal performance. The purple line represents actual performance

(See figure on next page.)
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score (P < 0.05), and 18-gene IFN-g signature score 
(P < 0.05) (Additional file 2: Fig. S7A-C).

Given that the disease stage, TIL, and 6-gene IFN-g 
gene signature have been shown to be highly predictive 
of the response to ICI therapy [9, 11, 69], we speculated 
that they might function as synergistic factors in predict-
ing the response to immunotherapy. The genes of TILs 
(represented by CTLs) were extracted from Jiang et  al., 
including CD8A, CD8B, GZMA, GZMB, and PRF1 [11]. 
The CTL score was estimated by the ssGSEA method. 
Therefore, a nomogram was developed to combine the 
mutation-based gene set with the disease stage, CTL, 
and 6-gene IFN-g gene signature to offer clinicians a 
quantitative approach for predicting OS in ICI-treated 
patients. The nomogram was constructed in the Riaz 
cohort (Fig. 2E), and the calibration curve of the nomo-
gram showed good agreement between the observa-
tions and the predictions (Fig.  2F), suggesting that the 
mutation-based gene set, disease stage, CTL, and 6-gene 
IFN-g gene signature should be integrated into a predic-
tive nomogram for ICI therapy.

Underlying extrinsic immune landscapes of the high‑ 
and low‑risk groups
To further explore the relationship between the immune 
system and mutation-based gene sets, we performed 
multiomics analysis of the cohort from The Cancer 
Genome Atlas (TCGA). Using the same formula and cut-
off obtained from the training cohort, the cohort from 
TCGA was classified into high-risk and low-risk groups 
(Fig.  3A). Comparison at the genomic level revealed 
larger leukocyte, lymphocyte, and TIL fractions in the 
low-risk group than in the high-risk group (P < 0.001) 
(Fig.  3B–D). In addition, we used the TIL fraction data 
according to Saltz et  al., who applied deep learning 
methods to estimate TILs on hematoxylin and eosin-
stained (H&E-stained) slides [45]. Strikingly consistent 
results for the H&E estimates of the TIL fraction were 
obtained (P < 0.001) (Fig. 3E). In detail, the proportion of 

immune-stimulatory cells (such as CD8 T cells) was sig-
nificantly increased in the low-risk group compared with 
the high-risk group (P < 0.001) (Fig. 3F). To further exam-
ine the above results using different methods of evaluat-
ing immune cells, we analyzed their distribution between 
the high- and low-risk groups according to the immune 
infiltration scores from Danaher et  al. (Fig.  3G) and 
immune signature scores (Fig.  3H). The low-risk group 
was characterized by a greater abundance of immune 
cells, such as TILs and CD8 T cells (P < 0.05) (Fig. 3G, H). 
TCGA cohort patients were then clustered on the basis 
of immune signature scores using unsupervised cluster-
ing to assess whether the high-risk and low-risk groups 
correctly corresponded to the low-immune infiltration 
and high-immune infiltration groups, and unsupervised 
clustering revealed two distinct immune patterns with 
high and low levels of immune infiltration (Fig. 3I). Inter-
estingly, the high immune infiltration group was signifi-
cantly enriched in cases from the low-risk group (Fig. 3J). 
In addition, in the low-risk group, the immune signa-
ture scores at the tumor site were obviously greater than 
those at the normal site; conversely, the immune signa-
ture scores of the high-risk group at the tumor site were 
obviously lower than those at the normal site (Fig.  4A). 
Furthermore, the correlation among immune activities 
in the low-risk group was significantly higher than that 
in the high-risk group (Fig. 4B, C). GSEA showed signifi-
cant enrichment in 13 pathways in the low-risk group, 
including 6 immune-related pathways, such as “natural 
killer cell mediated cytotoxicity” (P < 0.05) (Additional 
file 1: Table S6) (Fig. 4D). In contrast, no enrichment in 
any immune-related pathway was observed for the high-
risk group (Additional file 1: Table S7). Low-risk tumors 
were associated with significantly higher CYT scores 
(P < 0.001) (Fig. 4E), and a significantly larger number of 
fibroblasts was found in the high-risk group (P < 0.01) 
(Fig. 4F). According to these results, the low-risk group 
showed abundant immune cells at the tumor site, which 
led to a response to ICI therapy, whereas fibroblasts may 

(See figure on next page.)
Fig. 3  Immune landscapes of the high-risk and low-risk groups in the cohort from TCGA. A Bar charts depicting proportions of 22 types of immune 
cells estimated by the CIBERSORT method based on RNA-sequencing data for each patient and Sankey diagram showing that the patients in the 
cohort from TCGA were classified into high-risk and low-risk groups. B Comparison of leukocyte fractions based on DNA methylation data between 
the high-risk and low-risk groups. C Comparison of lymphocyte fractions estimated by the CIBERSORT method based on RNA-sequencing data 
between the high-risk and low-risk groups. D Comparison of TIL fractions based on molecular estimates from the processing of cancer genomics 
data between the high-risk and low-risk groups. E Comparison of TIL regional fractions based on estimates from processing diagnostic H&E images 
between the high-risk and low-risk groups. F Comparison of CD8 T cells estimated by the CIBERSORT method based on RNA-sequencing data 
between the high-risk and low-risk groups. G Comparison of 14 immune cells estimated by the Danaher method based on RNA-sequencing 
data between the high-risk and low-risk groups. In each cell type, the light color represents the high-risk group, and the dark color represents the 
low-risk group. The P value is shown at the top of the graph. H Comparison of the 29 immune signatures estimated by the ssGSEA method based 
on RNA-sequencing data between the high-risk and low-risk groups. For each cell type, the light color represents the high-risk group, and the dark 
color represents the low-risk group. The P value is shown at the top of the graph. I Unsupervised clustering based on 29 immune signatures in the 
cohort from TCGA, yielding two stable immune subtypes. J The proportions of high immune infiltration and low immune infiltration estimated by 
29 immune signatures in the high-risk and low-risk groups
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contribute to extrinsic immune escape in the high-risk 
group.

Furthermore, we found higher expression of 
chemokines in the low-risk group (Fig.  4G), which was 
compatible with the higher infiltration of immune cells 
in this group (Fig. 3). To provide a fair comparison nor-
malized to immune cell density in tissues, we divided the 
expression of these genes by the immune cell fraction 
and compared them again (Fig. 4H); the results obtained 
after normalization were generally consistent with those 
obtained before normalization. Therefore, we infer 
that enrichment of chemokines may invoke an immune 
response in the low-risk group.

Underlying intrinsic immune landscapes of the high‑ 
and low‑risk groups
We first compared some underlying factors determin-
ing tumor immunogenicity between the two groups. 
The low-risk group showed a higher mutation rate and 
neoantigen load than the high-risk group (all P < 0.001) 
(Fig. 5A), as well as significantly higher TCR diversity and 
BCR diversity (P < 0.001) (Fig.  5A). Compared with the 
low-risk group, the high-risk group exhibited a higher 
CNV burden and aneuploidy (all P < 0.001) (Fig.  5A). 
This result is consistent with the previous discovery 
that tumor aneuploidy is related to a reduced response 
to immunotherapy and to markers of immune evasion 
[70]. In terms of intertumoral heterogeneity, patients in 
the high-risk group displayed higher intertumoral het-
erogeneity than those in the low-risk group (P < 0.001) 
(Fig.  5A). This result further supports the concept that 
in the presence of cytolytic activity and fewer actively 
infiltrating immune cells, the tumor is allowed to clon-
ally evolve, promoting the development of heterogeneity. 
Hence, we conclude that high immunogenicity may cause 
an extrinsic immune response in the low-risk group.

To further understand the mutational processes in 
the high-risk and low-risk groups, we delineated the 
mutational signatures based on somatic mutation data 
and identified four distinct patterns of mutagenesis in 
the cohort from TCGA (Fig.  5B). Signature 10 (5.58%), 
which contains a predominance of C>A mutations at 
TCT (31.2%) sites and C>T mutations at TCG (21.2%) 
sites, has been previously related to altered activity of 

the error-prone polymerase POL ε (POLE) as a conse-
quence of mutations in the gene (Fig.  5B). Signature 7 
(24.75%) contains an extremely strong transcriptional 
strand bias for C>T mutations in the CpTpN context, 
possibly due to ultraviolet light exposure (Fig.  5B). Sig-
nature 4 accounts for 31.63% of all point mutations and 
is characterized by C>A mutations; it may be associated 
with smoking (Fig.  5B). Signature 6 (38.03%), which is 
the most prevalent signature, is characterized by C>T 
mutations and thought to be associated with defective 
DNA mismatch repair (MMR); this signature has been 
detected in microsatellite unstable tumors (Fig. 5B). The 
four signatures were found at obviously higher frequen-
cies in the low-risk group than in the high-risk group (all 
P < 0.001) (Fig. 5C). Smoking signatures and MMR signa-
tures have been reported to be associated with immune 
response [14, 71]. We then calculated enrichment scores 
for oncogenes in 10 common oncogenic pathways in the 
low- and high-risk groups [50]. The cell cycle, Hippo, 
NRF2, PI3K, and TP53 pathways had higher scores in 
the low-risk group, whereas the MYC and Wnt path-
ways were enriched in the high-risk group (all P < 0.001) 
(Fig. 5D). The Wnt pathway has been shown to be related 
to immune exclusion [72].

Compared to the low-risk group, the high-risk group 
expressed smaller amounts of MHC I- and II-related 
antigen-presenting molecules (all P < 0.001), resulting in 
intrinsic immune escape (Fig.  5E). In contrast, the low-
risk group had higher expression of most MHC genes, 
which is indicative of stronger immunogenicity. We also 
found immune checkpoint molecules (such as PD-1, 
PD-L1, and CTLA4) and costimulatory molecules to be 
more highly expressed in the low-risk group than in the 
high-risk group (most P < 0.001) (Fig. 5E). Therefore, we 
conclude that these immune checkpoint molecules cause 
a response to ICI therapy.

The above research was based on the mutation-based 
gene set as a whole to study the potential mechanisms 
of immune response and escape; thus, we further char-
acterized the presumed mechanism by which each 
gene is related to the response to immunotherapy. We 
first compared the nonsilent mutation rate between 
the mutant and wild-type status of each gene in the 
cohort from TCGA. The nonsilent mutation rate was 

Fig. 4  Potential extrinsic immune response landscapes in the high-risk and low-risk groups. A Volcano plots of 29 immune signatures in the 
high-risk and low-risk groups. Immune signatures enriched in cancer tissues are marked in red; immune signatures enriched in normal tissues are 
marked in blue. B Correlations among 29 immune signatures in the high-risk (top right panel) and low-risk (low left panel) groups. C Comparison of 
the correlation coefficient among 29 immune signatures between the high-risk and low-risk groups. Correlation coefficients greater than 0.7 were 
included in the analysis. D Gene set enrichment analysis of the high-risk and low-risk groups. E Comparison of the CYT score between the high-risk 
and low-risk groups. F Comparison of fibroblast abundances between the high-risk and low-risk groups. G Comparison of the expression patterns of 
chemokines between the high-risk and low-risk groups. H After normalizing the data according to the immune cell fraction, the expression patterns 
of chemokines were compared between the high-risk and low-risk groups

(See figure on next page.)
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significantly higher in tumors with mutant genes than in 
those with wild-type genes (Additional file  2: Fig. S8A), 
indicating that mutations are related to enhanced tumor 
immunogenicity.

In addition, based on molecular estimates, TILs were 
more abundant in mutant-gene tumors than in wild-
type-gene tumors (Additional file  2: Fig. S8B), which 
was validated using the H&E estimate data (Additional 
file 2: Fig. S8C). Next, we focused on T cells and found 
significantly higher TCR richness in tumors harboring 
mutant genes than in tumors with wild-type genes (Addi-
tional file 2: Fig. S9A). Based on CIBERSORT data, CD8 
T cells were more abundant in mutant-gene tumors than 
in wild-type-gene tumors (Additional file  2: Fig. S9B), 
and these results were validated using immune signature 
score (Additional file 2: Fig. S9C). To better characterize 
the immune profile, differences in the expression pattern 
of immune checkpoint genes between mutant- and wild-
type-gene tumors were explored. In line with the data 
for TILs, PD-1, PD-L1, and CTLA4 were upregulated in 
tumors with mutant genes (Additional file  2: Fig. S10). 
These results suggest that mutation of these 11 genes is 
strongly related to a hot immune microenvironment and 
enhanced tumor immunogenicity, which firmly supports 
the predictive abilities of these mutations for ICI therapy.

We also compared the lymphocyte, immune activation 
and mutation signature 7 (ultraviolet radiation, UVR) 
between the low-risk group and the high-risk group in 
the breast invasive carcinoma (BRCA) and skin cutane-
ous melanoma (SKCM) cohorts (Additional file  2: Fig. 
S7D-I); lymphocyte genes (represented by CTLs) were 
extracted from Jiang et  al., including CD8A, CD8B, 
GZMA, GZMB, and PRF1 [11], and immune activa-
tion genes (represented by T and NK cell activity mark-
ers) were extracted from Wan et  al., including GZMA, 
GZMB, IFNG, and NKG7 [50]. The lymphocyte score 
and immune activation score for each sample were esti-
mated by the ssGSEA method. Compared with the 
high-risk group, the low-risk group showed a higher lym-
phocyte count, stronger immune activation and a higher 
mutation signature 7 (UVR) score in both cohorts (all 
P < 0.05, Additional file 2: Fig. S7D-I).

Furthermore, to balance the bias of the number of 
high- and low-risk groups among different cancer types, 
we selected 50 high-risk cases and 50 low-risk cases from 
each cancer type that had at least these numbers of cases, 

including bladder urothelial carcinoma (BLCA), BRCA, 
cervical squamous cell carcinoma and endocervical ade-
nocarcinoma (CESC), colon adenocarcinoma (COAD), 
head and neck squamous cell carcinoma (HNSC), kidney 
renal clear cell carcinoma (KIRC), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), SKCM, 
stomach adenocarcinoma (STAD), thyroid carcinoma 
(THCA), and uterine corpus endometrial carcinoma 
(UCEC) (Additional file 2: Fig. S7J). We conducted 1000 
random samplings and compared the lymphocyte score, 
immune activation score and mutation signature 7 (UVR) 
between the low-risk and high-risk groups and found 
higher scores in the low-risk group (all P < 0.001, Addi-
tional file 2: Fig. S7K-M).

Copy number features of the high‑ and low‑risk groups
Significant differences in chromosomal aberrations were 
detected between the high-risk and low-risk groups 
(Fig.  6A). Compared with the high-risk group (Fig.  6B), 
focal amplification peaks were observed for well-char-
acterized immune genes, such as PD-L1 (9p24.1) and 
PD-L2 (9p24.1), in the low-risk group (Fig.  6C). Venn 
diagrams revealed 692 shared genes in the chromosome 
regions with copy number amplification in both groups, 
with 310 and 1218 genes specifically amplified in the 
high-risk and low-risk groups, respectively (Fig. 6D). We 
annotated these specific amplified genes through biologi-
cal processes in Gene Ontology (Additional file 1: Tables 
S8 and S9) and then clustered the top 10 biological pro-
cesses (Fig.  6E). The low-risk group was significantly 
enriched in 2 immune-related biological processes, 
“lymphocyte costimulation” and “T cell costimulation” 
(Fig.  6E). In contrast, the high-risk group was signifi-
cantly enriched in “positive regulation of fibroblast pro-
liferation” but not any immune-related biological process 
(Fig.  6E). This result was surprisingly consistent with 
previous results; that is, there were more immune cells 
in the low-risk group (Fig. 3B–D) and more fibroblasts in 
the high-risk group (Fig. 4F). Notably, PD-L1 and PD-L2 
(located in the low-risk group-specific amplification peak 
9p24.1) were annotated in both immune-related biologi-
cal processes, indicating that PD-L1 and PD-L2 may play 
important roles in regulating immune status in the low-
risk group (Fig. 6F). At the level of mRNA expression in 
the cohort from TCGA, we found significantly higher 
mRNA expression of PD-L1 and PD-L2 in the low-risk 

(See figure on next page.)
Fig. 5  Potential intrinsic immune response and escape landscapes in the high-risk and low-risk groups. A Comparison of immunogenomic 
indicators between the high-risk and low-risk groups. B Mutational activities of four corresponding extracted mutational signatures. C Comparison 
of four mutational signatures between the high-risk and low-risk groups. D Comparison of enrichment scores of 10 oncogenic pathways between 
the high-risk and low-risk groups. E Comparison of the expression patterns of MHC molecules, costimulators and coinhibitors between the high-risk 
and low-risk groups
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group (Fig. 6G), consistent with the CNV data. This find-
ing indicates that CNVs in tumors contribute to observed 
differences in immune infiltration.

Discussion
Predictive biomarkers may help members of the medi-
cal community offer accurate guidance for ICI-treated 
patients, aid in cost management, and accelerate clini-
cal trials and FDA approvals. Several biomarkers have 
been investigated, and some have been used to predict 
treatment outcomes. Indeed, recent studies have shown 
a robust association between TMB and the response to 
ICIs [73]. However, some patients with a high TMB may 
carry decisive mutations (in B2M, JAK1/2, etc.) that are 
closely associated with immunotherapy resistance, lead-
ing to a lack of response to ICIs and indicating that the 
TMB is insufficient for prognosis prediction [17]. There-
fore, it is necessary to identify alternative markers of 
responsiveness. Based on a cohort of 2504 patients with 
different types of cancer, we established and validated a 
mutation-based gene set including 11 genes to predict 
survival benefits in patients undergoing ICI therapy. To 
the best of our knowledge, the current study is the first 
to investigate a comprehensive mutation-based gene set 
across different tumor types using independent cohorts.

Different types of tumors were included in our study, 
and different types of tumors have different prognoses. 
Therefore, we focused on eliminating bias among differ-
ent types of tumors in the establishment and evaluation 
of the mutation-based gene set. First, we used the PSM 
adjustment method to adjust for bias among different 
types of tumors. The PSM algorithm is an important sta-
tistical tool to control confounding in observational stud-
ies, and it has been widely used in clinical research and 
pancancer genomic studies to reweight potential con-
founding effects in a multivariate manner [33, 34, 74–77]. 
In addition, the performance of methods that correct the 
confounder effect by balancing the propensity score was 
reported to be superior to that of other methods, includ-
ing the t test, analysis of variance (ANOVA) and general 
linear model (GLM) [33]. Therefore, to identify gene 
mutations associated with prognosis, we employed a pro-
pensity score algorithm to reduce potential confounding 
effects among different types of tumors. Second, after the 

mutation-based gene set was established, we investigated 
whether the mutation-based gene set was restricted to 
specific groups or applicable to different populations. 
Stratification analyses indicated that the mutation-based 
gene set was significantly associated with OS in patients 
treated with ICI therapy, regardless of whether the cancer 
type was advanced lung cancer or colorectal cancer. The 
results of the subgroup analysis were consistent with the 
results of PSM adjustment. Third, we performed multi-
variate Cox regression analysis and found that our muta-
tion-based gene set was independent of tumor type in 
predicting prognosis. In summary, we tested the applica-
tion performance of the mutation-based gene set across 
different types of tumors using the PSM algorithm, strati-
fied analysis, and multivariate Cox regression analysis, 
and based on the results, we believe the mutation-based 
gene set to be reliable.

Furthermore, we employed the multidimensional 
TCGA dataset to analyze how cancers respond to immu-
notherapy. We found that the low-risk group featured an 
inflammatory pattern of immune activities, such as high 
levels of CD8 T cell infiltration determined by the ESTI-
MATE approach, and stronger immunogenicity, such as 
a higher TMB. When we utilized the immune infiltration 
scores from Danaher et al. and the ssGSEA approach to 
calculate overall immune cell infiltration levels for can-
cers, the immune score was significantly higher in the 
low-risk group than in the high-risk group, which again 
confirmed the stronger antitumor immune activity in 
the former group. Many studies have shown that the 
density of TILs is positively associated with the immune 
response in patients with various kinds of cancers [78]. 
In addition to a high level of cytotoxic T cell infiltration, 
the low-risk group was characterized by overexpres-
sion of immune checkpoints, such as PD-L1, PD-1, and 
CTLA-4, compared with the high-risk group. Therefore, 
activated antitumor immunity, high PD-L1, PD-L1, and 
CTLA-4 expression, and enhanced t1umor immuno-
genicity might explain why the low-risk group was found 
to be more likely than the high-risk group to benefit from 
ICI therapy.

Our research has the following innovations and practi-
cal application. First, our study investigated different types 
of tumors (such as NSCLC, melanoma, and renal cell 

Fig. 6  Copy number alterations in the high-risk and low-risk groups. A Copy number profiles of the high-risk (above) and low-risk (below) groups, 
with gains shown in red and losses shown in blue. B Detailed cytobands with focal amplification (left) and deletion (right) peaks identified in the 
high-risk group. C Detailed cytobands with focal amplification (left) and deletion (right) peaks identified in the low-risk group. D Venn diagrams 
showing significantly amplified genes in the high-risk and low-risk groups. Each circle in the Venn diagram represents one group, and the number 
in the overlaid area represents common genes between the groups. E Cluster analysis of the top 10 biological processes in the high-risk (left) and 
low-risk (right) groups. F Circular plot of the top 10 biological processes and corresponding enriched genes in the high-risk (left) and low-risk (right) 
groups. G Comparison of the mRNA expression of PD-L1 and PD-L1 between the high-risk and low-risk groups in the cohort from TCGA​

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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carcinoma), which represent the most common types of 
cancers treated with ICI therapy [79–81]. Several mRNA-
based signatures, such as the T cell-inflamed gene-expres-
sion profile (GEP), an 18-gene assay, have been developed 
to predict clinical efficacy in patients undergoing ICI ther-
apy [82]. To the best of our knowledge, the current study 
is the first to investigate a comprehensive mutation-based 
gene set across different tumor types using independent 
cohorts. Second, the application of multibiomarker predic-
tive models requires an understanding of the factors that 
influence the accuracy and precision of high-throughput-
based assays in clinical practice. Principal among these fac-
tors is the variability of biomarker measurements, which 
can be classified into preanalytical (intrinsic to the sample) 
and technical (intrinsic to the platform) sources of varia-
tion. Tissue-specific variability influences mRNA expres-
sion and is controlled by introducing several reference 
genes; relative quantitation is adopted to assess mRNA 
expression by normalization to reference genes. The risk 
score formulas and threshold values of these mRNA sig-
natures are not suitable for validation using other types 
of measurement data. In the current study, we developed 
a mutation-based gene set to predict the clinical efficacy 
of ICI therapy. The composition of the above mutations is 
neither affected by the tissue type nor adjusted for by any 
other biomarker. However, the risk score formula as well 
as the threshold value for the mutation-based gene set 
can be validated by other tumor analysis methods, such 
as DNA sequencing and single-nucleotide polymorphism 
microarray analysis. Hence, the mutation-based gene set is 
not affected by technical sources of variation, even when 
using different platforms for different centers. Third, in 
practice, the mutation-based gene set avoids exposing 
patients to potential immune-related adverse effects if they 
are unlikely to respond and enables matching of a patient 
to a potentially more effective treatment sooner. In addi-
tion, given that the treatment course typically costs more 
than $120  000 on average [73], the application of bio-
marker strategies that improve diagnostic accuracy may 
help avoid considerable costs for what is anticipated to be 
a substantially reduced benefit. Overall, a mutation-based 
gene set incorporating these alterations should be assessed 
due to the greater ease of obtaining tumor specimens from 
patients on the basis of targeted NGS of these genes rather 
than assessing the TMB, which is complicated and expen-
sive in routine practice. Fourth, we compared prediction 
performance between the mutation-based gene set and 
other factors that can predict immunotherapy, includ-
ing the frameshift indel mutation burden, tobacco muta-
tion signature, UV signature, APOBEC signature, DNA 
damage response pathway mutations, B2M mutation, 
JAK1 mutation, JAK2 mutation, KRAS mutation, TP53 
mutation, PTEN mutation, STK11 mutation, and BAP1 

mutation. We found that the prediction performance of 
the mutation-based gene set was superior to that of all of 
those factors.

Several limitations of this study should be considered. 
First, as some mutations may be enriched in some tumor 
types, the original goal of this study was to create a panel 
rather than identify a single gene (such as BRAF), as 
the former can include more genes to predict prognosis 
across different types of tumors. In addition, we explored 
all pancancer articles and evaluated how other research-
ers eliminated the biases associated with different types 
of tumors. Because we found that the PSM adjustment 
method is well recognized [33, 34, 74–77], we used PSM 
adjustment in this study to eliminate such bias. We also 
included different types of tumors as much as possible to 
eliminate these biases. To the best of our knowledge, this 
study is the largest to date to explore prognosis prediction 
for mutation-based pancancer immunotherapy. Of course, 
as large sample sizes of immunotherapy cohort clinical tri-
als and better algorithms continue to be published, we will 
update our mutation-based gene set accordingly in the 
future to make it more comprehensive. Second, although 
we explored the immune landscape of each of the 11 genes 
in the mutation-based gene set, we still need to elucidate 
the molecular mechanism underlying the influence of each 
gene on immunotherapy in in vivo and in vitro functional 
experiments. Third, the enrichment scores of oncogenic 
pathways and expression patterns of immune checkpoints 
should also be examined by immunohistochemistry.

Conclusions
To use high-throughput methodologies in clinical prac-
tice, a marker must be validated by utilizing widely 
available tissues, such as formalin-fixed and paraffin-
embedded tumor tissues. Once this major step has been 
achieved, we will enter a new era of truly tailored and 
precision medicine, likely with higher cure rates. Our 
mutation-based gene set meets the above requirement 
and is the first systematically identified comprehensive 
genomic marker for assessing the effect of ICI therapy 
across a broad spectrum of cancers. This study also rep-
resents the largest prognostic model discovery project 
for cancer patients who received ICI treatment (either as 
monotherapy or as a combination of anti-PD-1 and anti-
CTLA-4). The nomogram combining the mutation-based 
gene set with the TMB and drug type can help clinicians 
select patients who have a strong likelihood of respond-
ing to ICI therapies. In addition, our study revealed 
distinct immune landscapes for the high- and low-risk 
groups. Specific genomic alterations might drive the for-
mation of these microenvironment phenotypes. Overall, 
this work proposes a new tumor classification system 
with the potential to guide ICI treatment decisions.
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