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Meningioma is the most common primary neoplasm of the central nervous system (CNS).
Generally, these tumors are benign and have a good prognosis. However, treatment can
be challenging in cases with aggressive variants and poor prognoses. Among various
prognostic factors that have been clinically investigated, bone invasion remains
controversial owing to a limited number of assessments. Recent study reported that
bone invasion was not associated with WHO grades, progression, or recurrence.
Whereas, patients with longer-recurrence tended to have a higher incidence of bone
invasion. Furthermore, bone invasion may be a primary preoperative predictor of the
extent of surgical resection. Increasing such evidence highlights the potential of
translational studies to understand bone invasion as a prognostic factor of
meningiomas. Therefore, this mini-review summarizes recent advances in
pathophysiology and diagnostic modalities and discusses future research directions
and therapeutic strategies for meningiomas with bone invasion.
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INTRODUCTION

Meningiomas
Meningioma is the most common primary neoplasm of the central nervous system (CNS) in adults,
originating from arachnoid cap cells covering the CNS. They are classified according to
histopathological characteristics and have a broad morphological spectrum, reflected in 15
subtypes. (1–3). The World Health Organization (WHO) has also classified meningiomas into
three grades (1–3), similar to other CNS tumors, linked to overall expected clinical-biological
behaviors. Most tumors are WHO grade 1, which are slow-growing with benign features and a
comparatively good prognosis. WHO grades 2 and 3 (4, 5) have local brain invasiveness and cellular
features, including higher mitosis and atypia. In general, symptomatic cases of any WHO grade are
surgically treated, and to date, there is no consensus on the effectiveness of pharmacotherapy,
including chemotherapy (6). Hence, Simpson’s grade, based on the extent of surgical resection, has
been considered a good tumor recurrence indicator in addition toWHO grading (7). Simpson grade
Abbreviations: CNS, central nervous system; WHO, World Health Organization; NF2, neurofibromatosis type 2; CT,
computer tomography; MRI, magnetic resonance imaging; 5-ALA, 5-aminolevulinic acid; GTR, gross total removal; OR, odds
ratio; PET, positron emission tomography; SSR2, somatostatin receptor subtype 2; VEGF, vascular endothelial growth factor;
IMRT, intensity modulated radiation therapy; BNCT, boron neutron capture therapy; PDT, photodynamic therapy.
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I is defined as complete removal, including resection of the
underlying bone and associated dura. However, meningiomas
classified as WHO grade 1 and Simpson grade I sometimes recur
in long-term follow-up, often requiring additional treatments,
such as secondary surgery or salvage radiosurgery, which can be
challenging and potentially lead to morbidity (8). Therefore,
recent studies have highlighted the importance of long-term
recurrence prediction with a different viewpoint than WHO
grade and developing diagnostic and therapeutic options for
such recurrent cases.

Meningioma With Bone Invasion
Meningiomas are categorized inconsistently based on their
location (9). Sometimes, meningiomas grow extracerebrally,
corresponding with the tumor’s origin. Tumors arising from
locations other than the subdural compartment have been
termed ectopic, extracranial, extraneuraxial, extradural, or
intraosseous meningiomas (9, 10).

Primary intraosseous meningioma usually describes tumors
that develop mainly from the calvarium and are unequivocally
Frontiers in Oncology | www.frontiersin.org 2
excluded from the subdural component (11). Contrastingly, many
unrecognizable meningioma synonyms and subtypes secondarily
extend into the adjacent bone, such as secondary intraosseous
meningioma, meningioma with bone infiltration, and meningioma
with bone invasion. (In this review, they are consistently noted as
bone-invasive meningiomas to avoid confusion). In general, bone
invasive meningiomas can be preoperatively diagnosed by
conventional radiographic modalities, such as magnetic
resonance imaging (MRI) and computed tomography (CT). They
are histopathologically confirmed after surgery, since the
preoperative judgment of bone involvement is sometimes
ambiguous (Figures 1A–D). Meningioma en plaque, a relatively
uncommon and unique form accounting for 2-9% of
meningiomas, is often accompanied by hyperostosis in the
middle fossa and sphenoid wing, with an incidence rate of 13–
49% (12–14). Nevertheless, hyperostosis is seen less in other
meningiomas except for lymphoplasmacyte-rich meningioma, a
rare histologic subtype (WHO grade 1), which can arise as an en-
plaque meningioma, and is characterized by a prominent
infiltration of plasma cells and lymphocytes with a variable
FIGURE 1 | A representative case of meningioma with bone invasion. Axial (A, C, E) and coronal (B, D, F) images demonstrating a petroclival meningioma.
(A, B) T1-post contrast MRI shows a characteristic dural tail (white arrows). Enhancement in the adjacent bone is ambiguous, and no obvious laterality is found
(yellow arrows). (C, D) Non-contrast bone CT does not reveal a hyperostosis with tumor-associated laterality. (E, F) However, F18 fluoride PET/CT fusion image
indicates prominent uptake in the adjacent bone suggesting bone invasion of the tumor (white arrowheads).
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proportion of meningothelial elements (15–17). To date,
hyperostosis has been thought as due to direct tumor invasion to
adjacent bone and reactive hypervascularity of the periosteum
leading to benign formation, and thus can often be classified as
bone-invasive meningiomas (18–22).

In addition to histopathological aggressiveness and surgical
extension, accumulating evidence suggests that bone invasion
could predict recurrence and is possibly associated with reduced
progression-free and overall survival, even in WHO grade 1 or 2
cases that surgically achieved total removal (Gabeau-Lacet et al.:
Simpson I-III in WHO grade 1, Abdelzaher et al.: Simpson grade
I-II in WHO grade 2, Lemee et al.: Simpson grade I-III in WHO
grade 1-3) (23–25). However, due to the limited assessability,
bone invasion as a recurrent predictor remains less understood,
and is therefore not reflected in the WHO grading criteria. Taken
together, these facts strongly suggest that further integrative
study of bone invasive meningioma may provide deeper
understanding of bone invasive meningioma and improve the
long-term prognosis.

Current Issues
The rarity of bone-invasive meningioma may contribute to the
limited number of assessments. Thus, bone-invasive meningiomas
has not been well described compared with primary intraosseous
meningioma (9, 26–28). Another obstacle is the lack of a standard
assessment method for bone-invasive meningiomas, except tissue
histopathology. In other words, diagnostic options for
meningiomas with bone invasion have been less studied. In
addition, the specific mechanism of cellular infiltration and the
molecular background characteristics are ambiguous. Overall,
these facts result in the underdevelopment of therapeutic
alternatives for invasion, except for direct microscopic surgery.

However, clinical evidence of bone-invasive meningioma is
increasing, emphasizing the importance of further studies to
understand bone invasion as an independent prognostic factor or
a preoperative factor related to the extent of surgical resection.
Several diagnostic modalities have been developed for
meningiomas, including bone invasion. Furthermore, recent
molecular biology advances exploring therapeutic targets provide
future opportunities to reorganize meningioma issues (3, 29).

Aims
Therefore, this mini-review briefly summarizes recent advances
in the clinical knowledge of bone-invasive meningioma as a long-
term recurrent predictor and introduces potent diagnostic
options and molecular pathophysiology. Finally, we discuss
future research directions and therapeutic strategies for
meningiomas with bone invasion.
BONE INVASION AS A PREDICTOR
OF RECURRENCE

In a surgical series of WHO grade 2 (atypical) meningiomas, as
expected, several studies reported a significant association between
bone invasion and progression, multiple recurrences, and poor
Frontiers in Oncology | www.frontiersin.org 3
outcomes, even in patients who underwent gross total resection
(23, 30–32). In contrast, a surgical series of non-neurofibromatosis
type 2 (NF2) cases (WHO grade 1; N = 118, grade 2 or 3; N = 26)
reported that bone invasion, dural tails (identified by conventional
MRI), and reactive hyperostosis (assessed by CT) were not
associated with WHO grades, progression, or recurrence (33).
Additionally, in a recent large series of WHO grade 1 studies, such
as Corniola et al. (N = 1352) and Haddad et al. (N = 239), bone
invasion was not associated with progression or recurrence (34,
35). However, patients with post-median recurrence (>24 months
after treatment) tended to have a higher incidence of
histopathological bone invasion (38.5% vs. 16.9% without
recurrence, p = 0.064). Furthermore, Cox regression analysis
identified an independent relationship between recurrence and
incomplete (subtotal) resection, even in WHO grade 1 tumors
with a consistent Simpson’s grade (35). Therefore, a long-term
clinico-radiological study with histopathological assessment of
bone invasion may be preferable to understand how bone
invasion affects the recurrence of WHO grade 1 meningioma.

Bone Invasion as a Preoperative Factor
to Determine the Extent of
Surgical Resection
As previously mentioned, the extent of surgical resection
quantified by Simpson grade is the main predictor of
recurrence. Microsurgery is “tailor-made” according to the size,
surrounding structure, and anatomical location of the tumor, yet
complete resection is rarely achieved. Therefore, preoperative
factors for determining the extent of surgical resection are also
important for predicting the prognosis during the early
therapeutic stage (35, 36).

A recent surgical series incorporating retrospectively and
prospectively collected data included 1469 meningiomas of all
three WHO grades (1, 92.3%; 2, 5.2%; 3, 2.2%) and analyzed
predictive factors related to the surgical extent of resection (25). In
the largest study among a similar series, bone invasion (definition
not addressed) was observed in 18.7% of cases and significantly
associated with lower rates of a low Simpson’s grade (not defined)
and gross total removal (GTR: defined as a Simpson grade I-III
resection in this report) [odds ratio: 0.85 (0.73–0.99) and 0.55
(0.73–0.99), respectively]. Based on these results and the
classification and regression tree recursive partitioning analysis,
the authors demonstrated that the extent of resection could be very
low for symptomatic cases, followed by bone invasion as the
second main predictor [GTR; 79% (903/1130) of the cases without
bone invasion]. Considering the surgical selection bias underlying
asymptomatic cases, as the authors addressed, bone invasion
would be a primary preoperative predictor of the extent of
surgical resection. Furthermore, bone invasion may be an
indirect predictor of meningioma recurrence (37–40).

Bone Invasion and Clinicopathological
Grading
Prior investigations have identified that aggressive imaging
features are associated with clinicopathologically high-grade
meningiomas and, therefore, increase the risk of progression or
June 2022 | Volume 12 | Article 895374

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Takase and Yamamoto Bone Invasive Meningioma
recurrence (41–45). To date, increasing findings remind us that
bone invasion is a unique characteristic, partly resembling a
high-grade phenotype, despite not being included in any WHO
grading criteria of meningioma (5). As previously described, the
incidence of histopathologically confirmed bone invasion in
WHO grade 1 tended to be higher in the subgroup of post-
median recurrence (>24 months; 38.5%) than in those with early
recurrence (<24 months; 16.9%) (35). Nevertheless, another
study of 304 cases (grade 1, N = 227; 2, N = 77; 3, N = 5)
demonstrated a negative association between histopathological
bone invasion and the WHO grade (46). These results suggest
that long-term tumor recurrence-related bone invasion may be
slower than grade 2 or 3 due to different mechanisms from
ordinal histopathological aggressiveness, such as mitosis
(Figure 3) (4, 20, 47). Since the meningioma characteristics
vary tremendously and provide confusing results that are
difficult to adopt into clinical practice, molecular biology
research of bone-invasive meningioma may help identify
therapeutic targets and understand the clinicopathological
background, for instance, related to slower recurrence (33).

The findings detailed above highlight two emerging issues: 1)
accurately providing a preoperative diagnosis of meningioma
with bone invasion, especially for WHO grade 1 and 2) treating
these patients without long-term morbidity. Additionally, an
ongoing issue is whether meningiomas, including high-grade
and/or bone invasive cases, benefit from early irradiation.
Biological and diagnostic updates may be helpful in the future
to clarify these issues (32, 47, 48).
BIOLOGY AND DIAGNOSIS

Radiological and Histopathological
Diagnosis
There is no doubt that a suspected case of WHO grade 1
meningioma identified by MRI should be diagnosed and
Frontiers in Oncology | www.frontiersin.org 4
followed up. In addition, histopathological classification
generally helps facilitate a clinico-biological diagnosis, although
it is not mandatory in all cases (4). However, in meningiomas
with bone invasion, the judgment of bone involvement is
sometimes ambiguous as it is difficult to preoperatively
diagnose whether the tumor has invaded the adjacent bone
using conventional radiographic modalities, such as CT and
MRI (Figures 1A–D). Nevertheless, progress has been made in
several areas of meningioma diagnoses (48). Previously, bone
invasion was only postoperatively detected by histopathology in
suspected cases of bone resection.

Hyperostosis of the bone adjacent to the meningioma,
observable on CT with a bone window, has been well-
described, with many reports addressing the possible causes. A
primary theory is that cellular/tissue invasion of bone indicates
hyperostosis (19, 49). Specifically, histopathological studies have
clearly shown invasion of the tumor tissue to adjacent bone in
areas of characteristic hyperostosis, possibly associated with
strong somatostatin receptor subtype 2A (SSR2A) reactivity
(12, 18, 50, 51). Moreover, a photodynamic diagnosis
combined with histological study demonstrated the reactive
fluorescence signal from the dipole to the inner table at the
stump of the cranial window along with dense tumor-cells (52).
Then, meningioma tissue invades lamellar bone trabeculae (53)
(Figure 2). However, some false-negative and -positive
hyperostosis cases have been diagnosed using conventional
radiography (19, 51, 54). Thus, more accurate diagnostic
modalities are required for meningiomas with bone invasion.

The aforementioned facts strongly suggest that the
pathogenesis and molecular mechanisms underlying the
cellular/tissue invasion of bone are poorly understood. This is
potentially due to the high molecular and genetic heterogeneity of
meningioma. Further studies for the microenvironment including
bony tropism, osteolytic activity, and vascular remodeling
between meningioma and the adjacent bone, that is
“meningioma-bone niche”, may help in deeper understanding
FIGURE 2 | Histopathology of the case of bone invasive meningioma shown in Figure 1. (A) H&E staining demonstrating a cellular/tissue invasion into bone
trabecula. ×200 magnification. Scale bar = 200 mm. (B) H&E staining demonstrating a proliferation of tumor cells with round to oval nuclei. Whorl formation of the
tumor cells suggests meningothelial meningioma (WHO grade 1). ×400 magnification, Scale bar = 100 mm.
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and future development of molecular-based therapies (55) (related
to “protein expression” section) (Supplementary Figure 1).

There is growing evidence that molecular or metabolic
imaging using scintigraphy or positron emission tomography
(PET) is suitable for meningioma detection. Regarding bone-
invasive meningioma, Gay et al. detected SSR2 via pre- and
postoperative scintigraphy with a radiolabeled somatostatin
analog ([111In-DTPA] octreotide) and intraoperative radio
detection using a handheld gamma probe in 18 cases of
mening ioma en plaque . They repor ted that SSR2
radiodetection might help guide the surgical removal of bone
invasive meningioma en plaque, pre- and postoperative
management, and follow-up of meningioma with bone
invasion that MRI failed to detect (56). Another study reported
five cases of meningioma en plaque without previous bone
decalcification, showing that all cases histopathologically were
strongly positive for SSR2 and associated with intralesional
features similar to oncogenic osteomalacia (51). These findings
suggest a considerable limitation in the conventional
radiographic assessment of meningioma with bone invasion,
particularly when postoperative images are difficult to interpret
and other biological and clinical implications may be provided,
possibly linked to SSR2A expression. PET, recently developed
using some somatostatin analogs, may also help detect bone
invasion in meningioma (57, 58).

Whole-body 18F fluoride PET/CT has primarily been used in
the context of possible bone metastases. Interestingly, some
authors have incidentally found intense intracranial focal
radiotracer accumulation in intracranial meningiomas in
patients with a history of cancer (59–61). It has been suggested
Frontiers in Oncology | www.frontiersin.org 5
that 18F fluoride PET/CT may allow for the detection of bone
invasion in meningiomas (Figures 1E, F; Figure 2) (62, 63).
Nevertheless, the accumulation of 18F fluoride theoretically
indicates pathological bone diseases that affect osteoblast
activity, osteoclast-osteoblast interaction, and bone perfusion.
Therefore, 18F fluoride PET can detect various metabolic,
autoimmune, and osteogenic bone disorders (64). However, it
is necessary to remember that 18F fluoride PET may provide
false-positive lesions rather than bone invasion of meningiomas.

Radiomics is a novel imaging technique in the medical field,
providing data regarding the biological properties and
heterogeneity of the tumor by extracting many high-
throughput imaging features (65, 66). Recently, radiomics has
presented the possibility of accurately predicting meningioma
grades and histological subtypes (67). Furthermore, preoperative
imaging has the potential for predicting meningioma bone
invasion (68). Zhang et al. evaluated 490 meningioma cases, of
which 213 were bone-invasive meningioma primarily defined by
surgeons (WHO grade 1; N = 448, 2; N = 38, 3; N = 4; the
subtypes were not reported). They reported that radiomics
contributed to the amelioration of clinical decision-making and
bone invasion meningioma predictions, indicating that future
radiomics studies with histopathologically diagnosed cases may
be worthwhile to determine the value of radiomics for
preoperatively diagnosing bone invasion meningioma (68, 69).

Cytogenesis and Genomics
As previously mentioned, even histologically benign
meningiomas may show invasive behavior in the adjacent
bone, resulting in repeated recurrences. This phenomenon can
FIGURE 3 | Summary of prognostic factors of meningioma and their potential relationship with bone invasion.
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occur even after complete macroscopic resection (7, 70, 71).
These are some of the main reasons for accelerating cytogenetics
of meningioma, which has been best studied in humans (72) and
well-summarized in the literature (73). Briefly, meningiomas
typically have a normal karyotype or losses, which are mostly
monosomy, but on rare occasions, there are deletions of the
tumor suppressor gene NF2 located on chromosome 22 (74).
Additionally, recent studies using next-generation sequencing
approach have identified several mutations, such as TRAF7,
KLF4, AKT1, SMO, and PIK3CA, with an interesting finding
that mutations of these genes occur to a large degree without
concurrent alteration of NF2, and that the clinical outcome and
recurrence rate are associated with genomic subgroups (75, 76).

Most recently, technological developments have suggested
that a higher rate of malignant meningiomas may be induced by
increasing hypodiploidy, complex ablations, and even
epigenetics (77–80). Furthermore, certain characteristics have
been correlated with histological subtypes, especially copy
number alterations and mutations, suggesting a greater
potential for gene therapy (58, 80). Cytogenetics of
lymphoplasmacyte-rich meningioma, a rare type of WHO
grade 1 arising as an en plaque meningioma, is worth
investigating, to develop therapeutic strategies for bone
invasive meningioma.

Even in the era of genomics , epigenomics , and
transcriptomics, there are currently no valuable cytogenetic
and genetic recurrent predictors for meningioma, including
bone-invasive meningiomas. Therefore, approaches combining
histology, multi-”omics” patterns including radiomics and
genomics, and radiological data may open a window to
biology-based diagnostics for meningioma, perhaps leading to
stratification of the recurrent risk and aggressive behavior of
such tumors.

Protein Expression
Previous studies have revealed the presence of receptors in
meningioma tissues (81–87). In particular, SSR2 has been
reported in meningioma tissues, thus is being considered for
clinical applications based on its molecular characteristics. SSR2
is one of the most studied molecules in bone-invasive
meningioma, especially for diagnostic applications. The
vascular endothelial growth factor (VEGF) pathway, including
VEGF and its receptors, is involved in the dynamic blood vessel
structures under normal conditions and cooperates with growth,
recurrence, and development of edema of meningioma through
their neovascularization effect when overexpressed (88).
Although nothing has been reported regarding the VEGF
pathway in meningiomas with bone invasion, this angiogenic
molecular system is now thought to be a therapeutic target
(Supplementary Figure 1).

Matrix metalloproteinases (MMPs), a family of calcium-
dependent zinc-containing peptidases, are assumed to promote
tumor cell growth and invasion (89). To date, the functional role
of MMPs in meningioma biology is complex and unclear.
Previous studies focused on the role of MMP2 in meningiomas
with tumor recurrence and brain invasion, and produced
Frontiers in Oncology | www.frontiersin.org 6
contradictory results (55). MMP2 expression was found to be
different depending on histopathological subtypes (90). A study
that used high-throughput tissue microarray on bone invasive
meningiomas demonstrated that key proteins are differentially
expressed, and that the anatomical location of bone invasion is a
key determinant of the expression pattern of MMP2, together
with osteopontin (OPN) and integrin beta-1 (ITGB1) (55, 91).

Proteomics is a widely accepted screening approach for broad
protein profiles that directly analyzes proteins expressed by a cell,
tissue, or tumor type. Proteomic approaches for meningioma
arose in 2000s, and several methods have been used to
demonstrate molecular patterns (92–101). However, few
studies have reported on the proteome of benign meningiomas
(102, 103). Furthermore, the proteomics of bone-invasion
meningioma, first described by Wibom et al., has even fewer
reports. Wibom et al. evaluated 42 WHO grade 1 meningiomas
(13 fibrous, 29 meningothelial, 16 bone invasive, and 26
noninvasive) by mass spectroscopy, demonstrating that the
protein expression pattern distinguishes invasiveness and
histological type of meningioma. Furthermore, Mukherjee et al.
compared liquid chromatography-mass spectrometry-based
protein profiles between WHO grades 1 and 2, including bone
invasion, and indicated possible intratumoral heterogeneity, thus
requiring close follow-up (104). Nevertheless, proteomics is
growing as a characterizing tool for meningiomas, and features
of bone-invasion tumors have yet to be identified. In addition to
gene-related “omics” studies, proteomic analysis can be useful for
the molecular characterization of bone invasion meningiomas.
TREATMENT

Surgery
Longitudinal volumetric studies have determined that
meningiomas grow by approximately 1 cm3 annually.
Moreover, there is a significant risk of progression for younger
patients (<60 years) and those with larger tumors at the initial
diagnosis (>25 mm), tumors without calcification, and tumors at
specific locations (e.g., non-skull base) (69, 105). Thus, Oya et al.
suggested surgical resection for asymptomatic tumors with a
worsening Simpson grade after conservative management if they
grow under conservative management (106). In other words,
preoperative factors are essential for determining the extent of
surgical resection, and bone invasion may be a preoperative
factor related to incomplete resection, in addition to tumor
location in the skull-base (25, 33, 35). Taken together, in cases
of suspected meningioma with bone invasion, maximal resection
of the adjacent bone would be preferable (107). Although,
meningioma surgery is sometimes challenging due to
anatomical circumstances (e.g., venous sinus involvement,
arterial or cranial nerve envelopment, and extensive
involvement of the base of the skull), especially in skull base
cases (108–111). To achieve maximal resection of meningiomas,
including the adjacent bone, a multidisciplinary surgical strategy
combined with preoperative embolization may help (112).
Considering that patients with bone invasion may be
June 2022 | Volume 12 | Article 895374
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comparatively older and the invasive component of the bone
may not be too aggressive, the risk and benefit balance must be
assessed to establish a certain case selection and future surgical
strategy (113–117).

Intraoperative assistance to detect the suspected bone
invasion margin can be key for “complete” resection during
meningioma surgery. Growing experience has demonstrated the
usefulness of fluorescence guidance using 5-aminolevulinic acid
(5-ALA) in meningioma surgery, especially in cases of bone
invasion, in addition to intraoperative radio detection of
somatostatin analog using a handheld gamma probe (52, 118–
126). However, as Scheichel et al. reported, the accumulation
result has a positive predictive value of 100% and a negative
predictive value of 83% of 5-ALA fluorescence in meningioma
bone invasion, demonstrating that it may help to improve the
extent of resection. However, further studies are necessary to
investigate the rate of false-negative fluorescence and its effect on
progression-free survival (PFS) (126).

Recent studies have reported proliferation and invasiveness
differences between meningiomas located in the skull base and
other areas. Furthermore, the genetic background may differ
depending on the location, even in non-NF2meningiomas (127–
130). Given that skull-base meningioma may be less biologically
aggressive than those in other locations, extensive bony resection
may be too challenging even after meningioma surgery has
considerably improved, especially in skull-base cases. Thus far,
it is unclear whether surgical resection plays a central role in
meningioma treatment, and radiological follow-up is favorable in
cases with suspected bone invasion. Therefore, patients with
bone invasion may need additional treatments and future
medical therapy in addition to those with WHO grades 2 and 3.

Radiosurgery
Radiosurgery is an alternative for small to medium-sized
symptomatic or recurrent meningiomas. Patients with large or
post-surgical remaining tumors are also eligible for fractionated
radiosurgery (4, 58, 131). To date, therapeutic strategies
combining surgery and (fractionated) radiosurgery have been
developed. However, details regarding its use based on the WHO
grade, tumor size, and the anatomical location remain
controversial (111).

Radiosurgery for the bone-invading component of
meningiomas has been less studied. However, accumulating
evidence highlights that adjuvant radiosurgery improves local
control in WHO grade 2 meningiomas irrespective of the initial
resection extent compared to observation only. Furthermore,
bone invasion might be associated with multiple recurrences.
(32, 132). One study evaluated a cohort with mixed WHO grades
who underwent irradiation, reporting that PFS did not differ
between cases with and without bone invasion. These results
suggest that radiation may influence meningioma tissue invading
the bone (48). However, the major problem with radiosurgery for
bone invading meningioma is target delineation (133).
Brastianos et al. suggested that radiation is unnecessary for the
dural tail unless they contain suspicious nodular enhancement
because they are typically composed of benign and hypervascular
tissue. Additionally, WHO grade 1 and radiographically
Frontiers in Oncology | www.frontiersin.org 7
presumed grade 1 meningiomas require a 0–5 mm clinical
target volume margin. In contrast, in cases of WHO grade 2
and 3 meningiomas, hyperostosis or direct bone invasion should
be included in the gross tumor volume with an additional margin
of 3–5 mm (134). Future prospective studies combining
radiosurgery with reproducible target planning and image, and
histopathology-based therapeutic strategies are needed to set up
target delineation for bone-invasive meningiomas.

Recent progress in advanced radiation therapies has resulted
in possibilities for the development of future treatments for
bone- invas ive meningiomas , espec ia l ly high-grade
meningiomas (135–145).

Proton beam therapy and photon radiation therapy are
shown to be safe and effective for meningioma treatment (146–
149). Intensity-modulated radiation therapy (IMRT) provides
some benefits, such as higher dose conformality and improved
target coverage, without the contraindications of conventional
radiosurgery. It has also demonstrated preferable results for the
treatment of meningioma causing visual impairment by
minimizing toxicity to the adjacent nervous structure (148).
Boron neutron capture therapy (BNCT) is a targeted
radiotherapy that enables the selective elimination of
malignant cells and the sparing of surrounding normal cells.
Although evidence of BNCT for meningioma treatment is not as
robust, recent studies have shown relatively good local control
and favorable survival along with an acceptable safety profile for
recurrent and refractory high-grade meningioma (139, 144).
Photodynamic therapy (PDT) adopts a photosensitizer (PS)
accumulated into tumor tissue or hypervascular lesion.
Irradiation of the PS with a laser at a specific wavelength
causes a photochemical reaction and produces singlet oxygen,
resulting in cellular injury of the target (141). This mechanism
causes an inherent selectivity of the procedure. Since the laser
light can only penetrate a few millimeters of tissue, therapeutic
potential of PDT is limited for the tumor located in deeper areas
(150). Thus, PDT is lacking sufficient clinical evidence for
meningioma treatment. However, studies suggest adequate
effectiveness in the treatment of high-grade meningioma, in an
in vitro environment (141, 142). Although the effectiveness of
these modalities for bone-invasive meningioma is not well
understood, appropriate applications should be studied
according to modality-specific advantages and disadvantages
(136, 142, 151).

These findings suggest that radiosurgery for bone invasion
remains controversial but may show greater potential for
prognosis, and further prospective studies are warranted.

Medical Therapies
Compared with surgery and radiosurgery, studies on the
clinical application of medical therapies against meningiomas
are growing slowly, and some have promising results. However,
the European Association of Neuro-Oncology recommended
only experimental systemic therapy, with a “C” level class of
evidence. Thus, no specific recommendations are provided (58,
73) . The National Comprehensive Cancer Network
recommends using alpha-interferon, somatostatin receptor
agonists, and VEGF inhibitors to treat meningioma (152).
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However, their efficacy is limited. Thus far, there is no
established evidence for their use, and more studies are
required to unravel the mechanistic roles in bone-invasive
meningiomas and across the entire meningioma spectrum
(58, 78, 80, 153–155).

In vitro cell culture is widely used for oncological
investigations, including meningiomas (156). This model
provides self-mitogenic agents, autocrine mechanisms, and
several molecules for developing novel systemic therapies for
meningioma in the future. Studies have demonstrated the effects
of signaling suppression on tumor invasion and cell
proliferation, highlighting the importance of exploring novel
non-toxic drugs for aggressive meningiomas (157–159).
However, importantly, cell lines may harbor genomic and
transcriptomic alterations, confounding translational research
(160). Therefore, primary tumor culture should be performed
rather than using transcriptionally different cell lines to
understand the molecular mechanisms underlying meningioma
invasion and cell proliferation for clinical applications, although
there are limitations in availability and logistical concerns (160).
Primary culture and specific cell lines have not been established
for invasive bone meningiomas. A bone-like culture system
formed with minerals structuring pores and a bone-like
mechanical environment, similar to those used for other bone
tumor research (161), and related assessment methodologies
may help specify the molecular characteristics and further
provide information on a novel concept of a meningioma-bone
niche (Supplementary Figure 1).
SUMMARY AND THERAPEUTIC
PERSPECTIVES

The abundance of clinical results and advancing research
technologies have prompted the exploration of the biological
characteristics of bone-invasive meningiomas. Studies have
confirmed a significant association between bone invasion and
incomplete resection, possibly affecting long-term recurrence
and outcomes (Figure 3). Moreover, radio detection and
fluorescence-guided 5-ALA are confirmed intraoperative
assistance tools. If metabolic imaging, such as 18F fluoride PET,
is available in addition to a precise combination of CT and MRI,
suspected bone invasion can be diagnosed preoperatively.
However, postoperative histopathology of adjacent bone
remains a crucial part for definitive diagnosis. Advanced
preoperative diagnostic modalities, such as radiomics and PET
with SSR may play a central role in developing a surgical strategy
for suspected cases of bone invasion.

Combined direct surgery and radiosurgery is also becoming
more common, and advanced radiations, such as IMRT, BNCT,
and PDT, might be good candidates for treating bone-invasive
meningioma in the clinic. The specific genomic pattern of bone-
invasive meningioma has not been detected. However,
proteomics suggests that the protein profile of bone-invasive
meningioma is more heterogeneous than that of non-invasive
tumors, requiring closer follow-up. Although there is no medical
Frontiers in Oncology | www.frontiersin.org 8
therapy to treat meningiomas, including bone-invasive cases,
some medical therapies are promising druggable targets, and
their implementation in clinical practice is under consideration.
An in vitro cell culture model would be a good option to test
potential therapeutic targets in bone-invasive meningioma.
However, primary culture should be used rather than a
transcriptionally different cell line. Bone-like culture systems
used for other bone tumor research may help specify the
molecular characteristics and mechanisms in meningioma-
bone niche, and effects of therapeutic agents for bone-
invasive meningiomas.

Translating emerging clinical and basic research knowledge
into clinical management remains incipient. Thus, similar to
other biomedical research fields, “a valley of death exists between
basic and clinical research” (162). The clinicopathological
characteristics of bone-invasive meningioma are divergent, and
it is challenging to commit to a long-term result when treating
these tumors. However, collaborative efforts between basic
science and clinics and among clinical experts, such as
surgeons, radiosurgeons, radiologists, pathologists, clinician-
scientists familiar with basic research, and statisticians, would
help cross the valley (163).
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